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Abstract. In this paper we consider the development of Implicit-Explicit (IMEX) Runge–Kutta
schemes for hyperbolic systems with multiscale relaxation. In such systems the scaling depends on
an additional parameter which modifies the nature of the asymptotic behavior, which can be either
hyperbolic or parabolic. Because of the multiple scalings, standard IMEX Runge–Kutta methods for
hyperbolic systems with relaxation lose their efficiency, and a different approach should be adopted to
guarantee asymptotic preservation in stiff regimes. We show that the proposed approach is capable
of capturing the correct asymptotic limit of the system independently of the scaling used. Several
numerical examples confirm our theoretical analysis.
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1. Introduction. Hyperbolic systems with relaxation often contain multiple
space-time scales which may differ by several orders of magnitude due to the vari-
ous physical parameters characterizing the model. This is the case, for example, with
kinetic equations close to the hydrodynamic limit [4, 14, 12]. In such regimes these
systems can be more conveniently described in terms of fluid-dynamic equations when
they are considered on a suitable space-time scale.

As a prototype system that we will use to illustrate the subsequent theory, we
consider the following:

(1)


∂tu+ ∂xv = 0,

∂tv +
1
ε2α ∂xp(u) = − 1

ε1+α (v − f(u)) , α ∈ [0, 1],

where p′(u) > 0. System (1) is hyperbolic with two distinct real characteristic speeds
±
√
p′(u)/εα.
Note that the scaling introduced in (1) corresponds to the study of the limiting

behavior of the solution for the usual hyperbolic system with a singular perturbation
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source,

(2)


∂τu+ ∂ξV = 0,

∂τV + ∂ξp(u) = −1
ε

(V − F (u)) ,

under the rescaling t = εατ , ξ = x, v(x, t) = V (ξ, τ)/εα, and f(u) = F (u)/εα.
For α = 0, system 1 reduces to the usual hyperbolic scaling (2). However, if

α > 0, we are looking at larger microscopic times.
In particular, for small values of ε, using the Chapman–Enskog expansion, the

behavior of the solution to (1) is, at least formally, governed by the following nonlinear
parabolic equation:

(3)


v = f(u)− ε1−α∂xp(u) + ε1+αf ′(u)2∂xu+O(ε2),

∂tu+ ∂xf(u) = ε1+α∂x

[(
p′(u)
ε2α − f

′(u)2
)
∂xu

]
+O(ε2).

Therefore, as ε→ 0 when α ∈ [0, 1), we obtain the scalar conservation law

(4)

 v = f(u),

∂tu+ ∂xf(u) = 0.

Note that the main stability condition [13, 28] for system (3) corresponds to

(5) f ′(u)2 <
p′(u)
ε2α ,

and it is always satisfied in the limit ε→ 0 when α > 0, whereas for α = 0 it requires
suitable assumptions on the functions f(u) and p(u).

In classical kinetic theory the space-time scaling just discussed leads to the so-
called hydrodynamical limits of the Boltzmann equation (see [12, Chapter 11]). For
α = 0 this corresponds to the compressible Euler limit, whereas for α ∈ (0, 1) the
incompressible Euler limit is obtained.

Something special happens when α = 1. In this case, in fact, to leading order in
ε, we obtain the parabolic equation

(6)

 v = f(u)− ∂xp(u),

∂tu+ ∂xf(u) = ∂xxp(u).

In other words, considering times larger than those typical for Euler dynamics (α = 1
instead of α ∈ [0, 1)), dissipative effects become nonnegligible. This behavior charac-
terizes the incompressible Navier–Stokes limit in classical kinetic theory.

The development of numerical methods to solve hyperbolic systems with stiff
source terms in the case when α = 0 has been an active area of research in the past
three decades [10, 22, 18, 31, 33, 34, 32, 7]. Another series of works is concerned
with the construction of robust schemes for α = 1 when a diffusion limit is obtained
[21, 23, 25, 26]. However, very few papers have considered the general multiscale
problem of type (1) for the various possible values of α [29, 24].
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UNIFIED IMEX RUNGE–KUTTA 2087

The common goal of this general class of methods, often referred to as asymptotic-
preserving (AP) schemes, is to obtain the macroscopic behavior described by the
equilibrium system by solving the original relaxation system (1) with coarse grids
∆t, ∆x� ε, where ∆t and ∆x are, respectively, the time step and the mesh size.

Note that since the characteristic speeds of the hyperbolic part of system (1) are
of order 1/εα, most of the popular methods [10, 22, 32] for the solution to hyperbolic
conservation laws with stiff relaxation present several limitations when considering
the whole range of α ∈ [0, 1] and fail to capture the right behavior of the limit
equilibrium equation unless the small relaxation rate is numerically resolved, leading
to a stability condition of the form ∆t ∼ εα∆x. Clearly, this hyperbolic stiffness
becomes very restrictive when α > 0, and for α = 1 in the parabolic regime ε� ∆x,
where for an explicit scheme a parabolic time step restriction of the type ∆t ∼ ∆x2

is expected. A special class of Implicit-Explicit (IMEX) schemes with explicit flux
and implicit relaxation is able to deal with the parabolic relaxation (α = 1) [8]. Such
methods, however, converge to an explicit scheme for the limit parabolic equation,
thus requiring a penalization technique to remove the final parabolic stiffness [6, 8, 9].

In the present paper, using a reformulation of the problem, we develop high-order
IMEX Runge–Kutta schemes for a system like (1) in the stiff regime which work
uniformly with respect to the scaling parameter α. In the parabolic regime, α = 1,
our approach gives a scheme which is not only consistent with (6) without resolving
the small ε scale, but is also capable of avoiding the parabolic stiffness leading to the
CFL condition ∆t ∼ ∆x2. In other limiting regimes, that is to say, when α ∈ [0, 1),
the scheme maintains all the nice properties of the numerical schemes for hyperbolic
conservation laws, such as the ability to capture shocks with high resolution.

Here, although the final schemes we develop will work independently on ε, we
will mainly concentrate on the study of the stiff regime for system (1), that is to say,
when ε� 1.

Finally we emphasize that from a physical point of view the problem we consider
here is close in spirit to the description of the macroscopic incompressible Navier–
Stokes equations of fluid-dynamics by way of detailed kinetic equations [4, 14, 12].
Although, for the sake of simplicity, we develop our theory for one-dimensional 2×2
systems, the results extend far beyond these models.

The rest of this paper is organized as follows. In section 2 we recall some of the
most popular IMEX Runge–Kutta approaches and emphasize their limited applica-
bility when α ranges on the whole [0, 1] interval. Next, in section 3 we introduce
our new approach with the aim of avoiding the stiffness induced by the characteristic
speeds of system (1). First, we present the simple first order scheme and then, using
the IMEX Runge–Kutta formalism, we construct high order methods. In the case
when α = 1, these methods give rise to an explicit approximation of the limiting
parabolic problem. In section 4 we modify the previous schemes in order to avoid
the limiting parabolic stiffness. In these schemes the diffusion term in the limiting
equation is integrated implicitly. Finally, in section 5 several numerical examples are
presented showing the robustness of the present approach. Some final considerations
are contained in the last section and an appendix is also included.

2. Previous IMEX Runge–Kutta approaches. In this section, to motivate
the new approach, we recall briefly other ways to tackle stiff problems through an
IMEX partitioning of the differential system.

We discretize time first, and then we discretize space on the time discrete scheme.
The motivation for not adopting a method of line approach is that we can choose the
space discretization most suitable for each term. For simplicity of notation, in what
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2088 S. BOSCARINO, L. PARESCHI, AND G. RUSSO

follows we assume that α = 1, and consider the hyperbolic-to-parabolic relaxation.
Similar conclusions are obtained for α ∈ (0, 1). Considerations on the case α = 0 are
reported at the end of each subsection.

2.1. Additive approach. Let us consider the simple IMEX Euler method as
applied to (1), based on taking the fluxes explicitly and the stiff source implicitly [32]:

(7)

un+1 − un

∆t
= −vnx ,

ε2 v
n+1 − vn

∆t
= −p(un)x −

(
vn+1 − f(un+1)

)
.

Solving the second equation for vn+1 one obtains

(8) vn+1 =
ε2

ε2 + ∆t
vn − ∆t

ε2 + ∆t
(
p(un)x − f(un+1)

)
.

Making use of this relation (replacing n by n− 1) in the first equation, we get

un+1 − un

∆t
+

ε2

ε2 + ∆t
vn−1
x =

∆t
ε2 + ∆t

(
p(un−1)xx − f(un)x

)
.

Therefore, in the limit ε→ 0, we have a two level scheme (in time) for problem (6),

(9) un+1 − un

∆t
= p(un−1)xx − f(un)x.

Although (9) is a consistent time discretization of the limit convection-diffusion equa-
tion (6), the presence of the term un−1 degrades the accuracy of the first order scheme.

Furthermore, since as ε→ 0 the equilibrium state of (8)

vn+1 = f(un+1)− p(un)x

involves two time levels, in general additional conditions on the explicit and implicit
schemes are necessary in order to obtain asymptotic preserving high order methods.
We refer to [8] for more details. These drawbacks are also present for any value of
α ∈ (0, 1]. Of course, since the additive approach has been originally designed to deal
with the case α = 0, there are no problems in the regime.

2.2. Partitioned approach. A different way to apply the IMEX Euler method
to (1) is based on taking the first equation explicitly and the second implicitly [5, 6, 30]:

(10)

un+1 − un

∆t
= −vnx ,

ε2 v
n+1 − vn

∆t
= −p(un+1)x −

(
vn+1 − f(un+1)

)
.

Solving for vn+1, the second equation we get is

(11) vn+1 =
ε2

ε2 + ∆t
vn − ∆t

ε2 + ∆t
(
p(un+1)x − f(un+1)

)
,

which substituted into the first equation results in the two level scheme

un+1 − un

∆t
+

ε2

ε2 + ∆t
vn−1
x =

∆t
ε2 + ∆t

(p(un)xx − f(un)x) .
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Of course, since the method has been developed specifically for the case when α = 1,
in the limit ε→ 0 it yields a consistent explicit scheme for problem (6),

(12) un+1 − un

∆t
= p(un)xx − f(un)x.

It is easy to verify that this approach also gives a consistent explicit scheme for any
value of α ∈ [0, 1) in the hyperbolic limit. However, for nonvanishing small values of
ε, the discretization of the fluxes at different time levels poses several difficulties. For
example, if we consider for simplicity p′(u) = 1, introducing the diagonal variables
u± εv, system (10) reads

(13)

(un+1 + εvn+1)− (un + εvn)
∆t

= −1
ε

(un+1 + εvn)x −
1
ε

(
vn+1 − f(un+1)

)
,

(un+1 − εvn+1)− (un − εvn)
∆t

= +
1
ε

(un+1 − εvn)x +
1
ε

(
vn+1 − f(un+1)

)
,

and therefore, the space derivatives of diagonal variables in (13) are defined as a
combination of two time levels, and it is then not clear how to discretize the system in
characteristic variables. Furthermore, most numerical methods based on conservative
variables evaluate the flux at the same time level. We refer to [6] for a discussion
on these aspects and extensions to schemes that avoid the parabolic stiffness in the
relaxation limit for α = 1.

2.3. Hybrid additive-partitioned approach. A method which combines the
advantages of the previous approaches in the various regimes has been proposed in
[25, 26]. The idea is to take a convex combination of the previous schemes in such a
way that we have an additive scheme in hyperbolic regimes and a partitioned one in
parabolic regimes. This is achieved by taking

(14)

un+1 − un

∆t
= −vnx ,

ε2 v
n+1 − vn

∆t
= −φ(ε)p(un)x − (1− φ(ε))p(un+1)x −

(
vn+1 − f(un+1)

)
,

where 0 ≤ φ(ε) ≤ 1 is such that φ(ε) ≈ 1 for ε = O(1) and φ(ε) ≈ 0 when ε� 1. For
example φ(ε) = min{ε2, 1} and the smoother approximation φ(ε) = tanh(ε2) were
considered in [26, 25].

In the limit ε→ 0 we have the asymptotic behavior of the partitioned approach,
whereas for larger values of ε we have the usual additive approach. The method can
be naturally extended to the general multiscale case and provides a consistent dis-
cretization also for any value of α ∈ [0, 1). We refer to [24, 29] for further details. One
of the main advantages of this approach is that it results in a convex approximation
at different times of the space derivative p(u)x. Therefore, one can use different space
discretizations for the derivative appearing at time n and the one at time n+ 1. Typ-
ically, at time n one can choose a standard hyperbolic discretization that works for
large values of ε, whereas at time n+ 1 classical central difference schemes that work
in the parabolic limit suffice to avoid a CFL condition of the type ∆t = O(ε). In this
sense the function φ(ε) can be also interpreted as an interpolation parameter between
different fluxes in the evaluation of the space derivatives in (10). The determination
of the optimal expression of φ(ε) in terms of stability and accuracy is a delicate aspect
which is beyond the scope of the present paper.
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3. A unified IMEX Runge–Kutta approach. In this section we present a
different approach which overcomes some of the drawbacks of the above mentioned
methods.

3.1. Description of the method. Again let us consider initially, for simplicity
of notation, the case α = 1.

We now consider the following discretization for system (1):

(15)

un+1 − un

∆t
= −vn+1

x ,

ε2 v
n+1 − vn

∆t
= −

(
p(un)x + vn+1 − f(un)

)
.

Solving the second equation for vn+1 one obtains

(16) vn+1 =
ε2

ε2 + ∆t
vn − ∆t

ε2 + ∆t
(p(un)x − f(un)) .

Making use of this relation in the first equation, we get

un+1 − un

∆t
+

ε2

ε2 + ∆t
vnx =

∆t
ε2 + ∆t

(p(un)xx − f(un)x) .

Note that at variance with all the previous approaches, the first equation now uses
only two time levels, and the space derivatives all appear at the same time level n.
Therefore, we can rewrite the scheme in the equivalent fully explicit form,

(17)

un+1 − un

∆t
+

ε2

ε2 + ∆t
vnx +

∆t
ε2 + ∆t

f(un)x =
∆t

ε2 + ∆t
p(un)xx,

vn+1 − vn

∆t
+

1
ε2 + ∆t

p(un)x = − 1
ε2 + ∆t

(vn − f(un)) .

In particular, for small values of ∆t the scheme (17) corresponds to the system

(18)
ut +

ε2

ε2 + ∆t
vx +

∆t
ε2 + ∆t

f(u)x =
∆t

ε2 + ∆t
p(u)xx +O(∆t),

vt +
1

ε2 + ∆t
p(u)x = − 1

ε2 + ∆t
(v − f(u)) +O(∆t),

where we only used

un+1 − un

∆t
= ut +O(∆t),

vn+1 − vn

∆t
= vt +O(∆t),

leaving all other terms.
Note that the left part of system (18) is hyperbolic with characteristic speeds1

(19) λ1
±(∆t, ε) =

ξ1
2

(
c±

√
c2 +

4ε2

∆t2

)
,

with ξ1 = ∆t/(ε2 + ∆t) ∈ (0, 1), c = f ′(u), and for simplicity we have set p′(u) = 1.

1The subscript 1 in (19) indicates α = 1.
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Now, if ∆t→ 0 for a fixed ε, system (18) converges to the original system (1) for
α = 1, and by (19), the characteristic speeds converge to the usual ones, i.e.,

λ1
±(0, ε) = ±1

ε
.

On the other hand, for a fixed ∆t, the characteristic speeds λ1
+ and λ1

− in (19)
are, respectively, decreasing and increasing functions of ε and as ε→ 0 they converge
to

(20) λ1
±(∆t, 0) =

1
2

(c± |c|) .

Therefore, if we denote by ∆x the space discretization parameter, we obtain the
expected hyperbolic CFL condition ∆t ≤ ∆x/|c|.

Concerning the second order derivative on the right-hand side of (18), this induces
a stability restriction of type ∆t ∼ (∆x)2/ξ1. In particular, since the discrete system
(17) as ε→ 0 relaxes towards

(21) un+1 − un

∆t
+ f(un)x = p(un)xx,

in such a limit we have the natural stability condition which links the time step to
the square of the mesh space ∆t ∼ (∆x)2.

Similarly, in the case when α ∈ [0, 1), for small values of ∆t the scheme applied
to (1) corresponds to the system

(22)
ut +

ε1+α

ε1+α + ∆t
vx +

∆t
ε1+α + ∆t

f(u)x =
∆t ε1−α

ε1+α + ∆t
p(u)xx +O(∆t),

vt +
ε1−α

ε1+α + ∆t
p(u)x = − 1

ε1+α + ∆t
(v − f(u)) +O(∆t).

The left-hand side in (22) now has characteristic speeds

(23) λα±(∆t, ε) =
ξα
2

(
c±

√
c2 +

4ε2

(∆t)2

)
,

with ξα = ∆t/(ε1+α + ∆t) ∈ [0, 1). As before, if we fix ε and send ∆t→ 0, we obtain
the usual characteristic speeds

λα±(0, ε) = ± 1
εα
.

The limit behavior of the discrete system now is given by

(24) un+1 − un

∆t
+ f(un)x = 0,

and, similarly to the analysis for α = 1, we now observe that the characteristic speed
does not diverge as ε→ 0 since we have

λα±(∆t, 0) =
1
2

(c± |c|).

Therefore, we obtain the expected hyperbolic CFL condition ∆t ≤ ∆x/|c|, coming
from the hyperbolic part of the system. As before, the stability restriction coming
from the parabolic term is ∆t ∼ ∆x2/ξα.
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3.2. Extension to general IMEX Runge–Kutta schemes. Now we extend
the analysis just performed for the simple first order IMEX Euler scheme to a general
IMEX Runge–Kutta (RK) scheme.

3.2.1. Notation. An IMEX RK scheme can be represented with a double Butcher
tableau,

Explicit :
c̃ Ã

b̃T
, Implicit :

c A

bT
,(25)

where Ã = (ãij) is an s × s lower triangular matrix with zero diagonal entries for
an explicit scheme, and, since computational efficiency in most cases is of paramount
importance, usually the s × s matrix A = (aij) for an implicit scheme is restricted
to the particular class of diagonally implicit Runge–Kutta (DIRK) methods, i.e.,
(aij = 0, for j > i). In fact, the use of a DIRK scheme is enough to ensure that the
explicit part of the scheme term is always evaluated explicitly (see [1, 11, 7]).

The coefficients c̃ and c are given by the usual relation c̃i =
∑i−1
j=1 ãij , ci =∑i

j=1 aij , and the vectors b̃ = (b̃i)i=1,...,s and b = (bi)i=1,...,s provide the quadrature
weights to combine internal stages of the RK method.

The order conditions can be derived as usual by matching the Taylor expansion
of the exact and numerical solution; we refer to [1, 11, 32] for more details. Let us
mention that from a practical viewpoint, coupling conditions becomes rather severe
if one is interested in very high order schemes (say higher then third).

Here we recall the order conditions for IMEX RK schemes up to order p = 2 and
p = 3, under the assumption that c̃ = c:

first order (consistency) b̃T e = 1, bT e = 1,
second order b̃c = 1/2, bT c = 1/2,

third order b̃c2 = 1/3, bT c2 = 1/3,
bT Ãc = 1/6, b̃T Ãc = 1/6, bTAc = 1/6, b̃TAc = 1/6,

(26)

where we denote eT = (1, . . . , 1) ∈ Rs, and from the previous relaxation for c̃ and c,
we have Ãe = c̃ and Ae = c.

It is useful to characterize the different IMEX schemes we consider in this paper
according to the structure of the DIRK method. From [2], we have the following
definition.

Definition 3.1. 1. We call an IMEX RK method to be of type I or type
A (see [32]) if the matrix A ∈ Rs×s is invertible, or, equivalently, aii 6= 0,
i = 1, . . . , s.

2. We call an IMEX RK method to be of type II or type CK (see [11]) if the
matrix A can be written as

(27) A =
(

0 0
a Â

)
,

with a = (a21, . . . , as1)T ∈ R(s−1), and the submatrix Â ∈ R(s−1) × (s−1) is
invertible, or equivalently, aii 6= 0, i = 2, . . . , s. In the special case when
a = 0, b1 = 0, the scheme is said to be of type ARS (see [1]) and the DIRK
method is reducible to a method using s− 1 stages.
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The following definition will also be useful to characterize the properties of the
method [6, 8].

Definition 3.2. We call an IMEX RK method implicitly stiffly accurate (ISA)
if the corresponding DIRK method is stiffly accurate, namely

(28) asi = bi, i = 1, . . . , s.

If, in addition, the explicit method satisfies

(29) ãsi = b̃i, i = 1, . . . , s− 1,

the IMEX RK method is said to be globally stiffly accurate (GSA).

The definitions of ISA follow naturally from the fact that s-stage implicit RK
methods for which asi = bi for i = 1, . . . , ν are called stiffly accurate (see [19] for
details). A ν-stage explicit RK method for which ãsi = b̃i for i = 1, . . . , s− 1 is called
FSAL (first same as last, see [20] for details). Note that FSAL methods have the
advantage that they require only s − 1 function evaluations per time step, because
the last stage of step n coincides with the first stage of step n+ 1.

Therefore, an IMEX RK scheme is GSA if the implicit scheme is stiffly accurate
and the explicit scheme is FSAL. We observe that this definition states also that the
numerical solution of a GSA IMEX RK scheme coincides exactly with the last internal
stage of the scheme.

3.2.2. The unified IMEX RK setting. Let us consider system (1), and again
for simplicity of notation, we set α = 1. The unified IMEX RK approach that
generalizes first order scheme (15) corresponds to compute first the internal stages
U and V ,

(30)
U = une−∆tAVx,

V = vne− ∆t
ε2 Ã(p(U)x − f(U))− ∆t

ε2 AV,

and then the numerical solution

(31)
un+1 = un −∆tbTVx,

vn+1 = vn − ∆t
ε2 b̃

T (p(U)x − f(U))− ∆t
ε2 b

TV,

where f(U) and p(U) are the vectors with component f(U)i = f(U i) and p(U)i =
p(U i), respectively. Solving the second equation for V in (30) with ζ = ε2/∆t, one
obtains

V = (ζI +A)−1
(
ζvne− Ã(p(U)x − f(U))

)
.(32)

Substituting this relation in the first equation, we have that the resulting IMEX RK
scheme may be written as
(33)

U − une
∆t

+ ζA(ζI +A)−1evnx +A(ζI +A)−1Ãf(U)x = A(ζI +A)−1Ãp(U)xx,

V − vne
∆t

+
1
ε2 Ãp(U)x = − 1

ε2

(
AV − Ãf(U)

)
,
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(34)
un+1 − un

∆t
+ ζbT (ζI +A)−1evnx + bT (ζI +A)−1Ãf(U)x = bT (ζI +A)−1Ãp(U)xx,

vn+1 − vn

∆t
+

1
ε2 b̃

T p(U)x = − 1
ε2

(
bTV − b̃T f(U)

)
.

Then setting B = (ζI +A)−1 for small values of ∆t, from (34) we get the system

(35)
ut + ζbTBevx + bTBÃf(U)x = bTBÃp(U)xx +O(∆t),

vt +
1
ε2 b̃

T p(U)x = − 1
ε2

(
bTV − b̃T f(U)

)
+O(∆t).

Now, we rewrite f(U)x = f ′(U)Ux and p(U)x = p′(U)Ux, where f ′(U) and
p′(U) are diagonal matrices with elements f ′(U)ii = f ′(U i) and p′(U)ii = p′(U i),
respectively. Furthermore, for simplicity we assume f ′(U i) = c and p′(U i) = 1.

From the IMEX RK stages (33) we have

(36) U = une− ε2ABevnx −∆tcABÃUx + ∆tABÃUxx,

and using the fact that U = une+O(∆t) and b̃T e = 1 (consistency of the IMEX RK
scheme), we can write the hyperbolic part in (35) as

(37)
ut + ζbTBevx + cbTBÃeux = O(∆t),

vt +
1
ε2ux = O(∆t).

By computing the eigenvalues of the hyperbolic part we obtain

(38) Λ1
±(∆t, ε) =

1
2

(
cbTBÃe±

√(
cbTBÃe

)2
+ 4

bTBe

∆t

)
.

Next, we show that the above characteristic speeds are limited. Here we need to
assume that the scheme is GSA. In fact,

bTBe = bT (ζI +A)−1e =

{ 1 for ζ → 0,

∼ 1
ζ

for ζ →∞,(39)

where for the first case using the ISA property we get bTA−1e = eTs e = 1 (here
eTs = (0, . . . , 0, 1) ∈ Rs), whereas for the second case, we note that for the consistency
of the scheme bT e = 1. On the other hand,

bTBÃe = bT (ζI +A)−1Ãe =

{ 1 for ζ → 0,

∼ 1
2ζ

for ζ →∞,(40)

where for the first case using the GSA property we get bTA−1Ãe = eTs Ãe = b̃T e = 1,
whereas for the second case we note that the quantity bT Ãe is a number, and if we
assume that the scheme is a second order accurate one, this gives bT Ãe = 1/2, by
(26).
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As a consequence we have

(41) Λ1
±(∆t, 0) =

1
2

(
c±

√
c2 +

4
∆t

)
, Λ1

±(0, ε) = ±1
ε
,

and therefore, the CFL condition, in the limit ε→ 0, becomes

(42) ∆t ≤

(
|c|
2

+

√
c2

4
+

1
∆t

)−1

∆x =
2
√

∆t
|c|
√

∆t+
√
c2∆t+ 4

∆x.

Now, if ∆t� 1, we get from
√

∆t ≤ 2
|c|
√

∆t+
√
c2∆t+ 4

∆x

the parabolic time step restriction ∆t ∼ ∆x2.

Finally, we prove that the scheme (33)–(34) in the limit case ε→ 0 is a consistent
discretization of the limit equation (6), i.e., the scheme is AP.

From (32) we get

V = ζA−1vne−A−1(I − ζA−1)Ã(f(U)− p(U)x) +O(ζ2),

and substituting in the numerical solution vn+1 we obtain

ζvn+1 = ζ(1−bTA−1e)vn+(bTA−1Ã−b̃T )(Ux−f(U))−ζbTA−2Ã(f(U)−p(U)x)+O(ζ2).

Consistency, as ζ → 0, implies (bTA−1Ã − b̃T ) = 0, which is satisfied if the scheme
is GSA, because in this case bT = eTs A, b̃T = eTs Ã; therefore, 1 − bTA−1e = 0 and
bTA−1Ã− b̃T = eTs Ã− b̃T = 0. Then we have

vn+1 = −bTA−2Ã(f(U)− p(U)x) = eTs A
−1Ã(f(U)− p(U)x)

with
V = −A−1Ã(f(U)− p(U)x).

Similarly, from (33) we have for the U internal stages

U − un

∆t
= −ζvnxe+ Ã(p(U)x − f(U))x − ζA−1Ã(p(U)x − f(U)) +O(ζ2),

and for the numerical solution

un+1 − un

∆t
= −ζbT vnxe+bTA−1Ã(p(U)x−f(U))x−ζbTA−2Ã(p(U)x−f(U))x+O(ζ2).

Therefore, for ζ → 0, this leads to

U = une+ ∆tÃ(p(U)x − f(U))x,

un+1 = un + ∆tbTA−1Ã(p(U)x − f(U))x.
(43)

Assuming that the IMEX RK scheme is GSA, the term bTA−1Ã = eTs Ã = b̃T , and,
as ε→ 0, the scheme relaxes to the explicit one, i.e.,

U − une
∆t

+ Ãf(U)x = Ãp(U)xx,

un+1 − un

∆t
+ b̃T f(U)x = b̃T p(U)xx.

(44)
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Generalization to the case α ∈ [0, 1). In the case α ∈ [0, 1), analogous
computations show that the characteristic speeds of the hyperbolic part are given by

(45) Λα±(∆t, ε) =
1
2

(
cbTBÃe±

√(
cbTBÃe

)2
+ 4

ε1−α

∆t
bTBe

)
,

where here ζ = ε1+α/∆t. We have

Λα±(∆t, 0) =
1
2

(c± |c|) , Λα±(0, ε) = ± 1
εα
.

A similar analysis performed in this case shows that

U = une−∆tÃf(U)x + ∆tε(1−α)Ã(p(U)xx +O(ξ2),

un+1 = un −∆tb̃T f(U)x + ∆tε(1−α)b̃T p(U)xx +O(ξ2).

As ε→ 0 we get the explicit RK scheme for system (4),

U − une
∆t

+ Ãf(U)x = 0,

un+1 − un

∆t
+ b̃T f(U)x = 0.

(46)

All the previous results can be stated by the following theorem.

Theorem 3.3. If the IMEX RK scheme (30)–(31) applied to (1) satisfies the
GSA property, then, as ε→ 0, it becomes the explicit RK scheme characterized by the
pair (Ã, w̃) applied to the limit convection-diffusion equation (6) for α = 1 and to the
limit scalar conservation law (3) for α ∈ [0, 1).

Some remarks are in order.

Remark 1. • The advantage of formulating the unified IMEX RK approach
in the form (33)–(34) is that we can now adopt different space discretizations
for the various terms appearing in the scheme. Typically, we use classical
hyperbolic-type schemes, like WENO, for the space derivatives characteriz-
ing the hyperbolic part (which now has finite characteristic speeds) and cen-
tered discretization for the second order term characterizing the asymptotic
parabolic behavior.

• If the IMEX RK scheme satisfies the GSA property, and the numerical solu-
tion is the same as the last stage, then V s = vn+1, and observing that b̃s = 0,
from the second equation of (34), we have

vn+1 − vn

∆t
+

1
ε2

s−1∑
i=1

b̃ip(U j)x = − 1
ε2

(
s−1∑
i=1

(biV i − b̃if(U i)) + bsv
n+1

)
.

Solving for vn+1, after some algebra, the equation can be written as

vn+1 − vn

∆t
+

1
ε2 + bs∆t

s−1∑
i=1

b̃ip(U j)x

= − 1
ε2 + bs∆t

(
s−1∑
i=1

(biV i − b̃if(U i)) + bsv
n

)
.
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Assuming p′(u) = 1 and using the fact that U = une + O(∆t), we can now
write the hyperbolic part in (33) as

(47)
ut + ζbTBevx + cbTBÃeux = O(∆t),

vt +
1

ε2 + ass∆t
ux = O(∆t).

Therefore, the characteristic speeds read

(48) Λ1
±(∆t, ε) =

1
2

cbTBÃe±√(cbTBÃe)2
+ 4

ζbTBe

ε2 + ass∆t

 ,

and now when ε→ 0, as in the first order case discussed in section 3, we get

Λ1
±(∆t, 0) =

1
2

(c± |c|) .

4. Removing the parabolic stiffness. Although the final schemes developed
in the previous section will work independently on ε and α, for small values of ε
they relax to an explicit RK scheme originating a time step restriction of the type
∆t ≈ ∆x2/ε1−α, for α ∈ (0, 1]. Therefore, for small ε, only the case when α = 1 poses
stability restriction. For this reason, we shall consider α = 1 in this subsection.

The natural idea here is to treat the term p(u)x in (1) implicitly and to observe
that in the limit case, i.e., ε → 0, the IMEX RK scheme relaxes to an IMEX RK
scheme for the limit convection-diffusion equation (6), where the diffusion term is
now evaluated implicitly. Compared to similar schemes presented in [6, 8, 9] this new
approach has the advantage in that it is not based on a penalization technique and
therefore avoids the difficult problem of the optimal determination of the penalization
parameter (see [6]).

The unified IMEX RK scheme for system (1) now reads

(49)
U = une−∆tAVx,

V = vne+
∆t
ε2 Ãf(U)− ∆t

ε2 A(V + p(U)x),

and

(50)
un+1 = un −∆t bTVx,

vn+1 = vn +
∆t
ε2 b̃

T f(U)− ∆t
ε2 b

T (V + p(U)x).

Now, solving the second equation in (49) for V , one obtains

V = (ζI +A)−1
(
ζvne+ Ãf(U)−Ap(U)x

)
,(51)

where ζ = ε2/∆t. Using this relation in the first equation of (49), we get for the
internal stages

(52)

U − un

∆t
+ ζA(ζI +A)−1vnxe = A(ζI +A)−1(Ap(U)x − Ãf(U))x,

V − vn

∆t
+

1
ε2 Ãf(U) = − 1

ε2A(V + p(U)x),
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and similarly for the numerical solution,

(53)

un+1 − un

∆t
+ ζbT (ζI +A)−1vnxe = bT (ζI +A)−1(Ap(U)x − Ãf(U))x,

vn+1 − vn

∆t
+

1
ε2 b̃

T f(U) = − 1
ε2 b

T (V + p(U)x).

Then setting B = (ζI +A)−1 for small values of ∆t, from (53) we get the system

(54)
ut + ζbTBevx + bTBÃf(U)x = bTBAp(U)xx +O(∆t),

vt +
1
ε2 b

T p(U)x = − 1
ε2

(
bTV − b̃T f(U)

)
+O(∆t),

which is similar to (35), except that now A and bT appear in front of p(U) terms in
place of Ã and b̃, respectively. Therefore, we have the same characteristic speeds as
in the unified IMEX RK approach presented in the previous section, and the same
conclusions on the hyperbolic CFL condition hold true.

Concerning the AP property, in the limit ζ → 0 one has from (51)

V = −p(U)x +A−1Ãf(U),

and by the GSA property, i.e., bTA−1Ã = eTs Ã = b̃T , we get from (53)

vn+1 = −eTs (p(U)x −A−1Ãf(U)).

Thus, scheme (52)–(53) becomes an IMEX RK scheme for the convection-diffusion
equation (6),

U − une
∆t

+ Ãf(U)x = Ap(U)xx,

un+1 − un

∆t
+ b̃T f(U)x = bT p(U)xx.

(55)

Clearly, scheme (55) is a consistent approximation of the limit equation (6), where
now the diffusion term is evaluated implicitly. Therefore, the CFL condition of such
a scheme is uniquely determined by the hyperbolic restriction ∆t ∼ ∆x. A similar
analysis in the case when α ∈ [0, 1) for scheme (49)–(50) under the GSA assumption
produces the explicit RK scheme

U = un −∆tÃf(U)x,

un+1 = un −∆tb̃T Ãf(U)x.
(56)

Therefore we can summarize the results in the following theorem.

Theorem 4.1. If the IMEX RK scheme (49)–(50), applied to (1) for α = 1,
satisfies the GSA property, then as ε → 0, it becomes the IMEX RK method charac-
terized by the pairs (Ã, b̃) and (A, b) for the limit convection-diffusion equation (6).
Otherwise, for α ∈ [0, 1) the IMEX RK scheme as ε→ 0 yields the explict RK method
characterized by the pair (Ã, b̃) for the limit scalar conservation law (4).

5. Numerical applications. In this section we present numerical results that
confirm the validity of the new approach presented in section 4. In all tests we used
the last approach described in section 4, so that we remove the parabolic restriction
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in the limit of small ε and α = 1. All the numerical examples presented here re-
fer to the IMEX RK schemes reported in the appendix. We shall use the notation
NAME(ν, σ, p), with the triplet (ν, σ, p), where ν, σ, and p represent, respectively, the
number of explicit function evaluations, the number of implicit function evaluations,
and the order of accuracy.

In order to avoid spurious numerical oscillations arising near discontinuities of
the solutions, we use interpolating nonoscillatory algorithms, like the WENO method
[36]. In these numerical tests, as emphasized in Remark 1, we use classical hyperbolic-
type schemes, like finite difference discretization with WENO reconstruction, for the
space derivatives characterized by the hyperbolic part, while for the second order
term p(u)xx we used the standard 2th and 4th order finite difference technique. Note
that when we consider the third order IMEX RK scheme we use fourth order finite
difference to discretize the term p(u)xx except at the nearby boundary points where
a third order formula was implemented, and this guarantees we will achieve a global
third order.

In all our numerical results, we take ∆t = λCFL∆x in all regimes. The precise
choice of λCFL is reported in the figure captions.

As a mathematical model for our numerical experiments, we consider the Ruijgrook–
Wu model of the discrete kinetic theory of rarefied gases. The model describes a
two-speed gas in one space dimension and corresponds to the system [17, 25, 35]

(57)


M∂tf

+ + ∂xf
+ = − 1

Kn
(af+ − bf− − cf+f−),

M∂tf
− − ∂xf− =

1
Kn

(af+ − bf− − cf+f−),

where f+ and f− denote the particle density distribution at time t, position x, and
with velocity +1 and −1, respectively. Here Kn is the Knudsen number, M is the
Mach number of the system, and a, b, and c are positive constants which characterize
the microscopic interactions. The local (Maxwellian) equilibrium is defined by

(58) f+ =
bf−

a− cf−
.

The macroscopic variables for the model are the density u and momentum v, defined
by

(59) u = f+ + f−, v = (f+ − f−)/M.

The nondimensional multiscale problem is obtained taking M = εα, Kn = ε. The
Reynolds number of the system is then defined according to Re = M/Kn = 1/ε1−α,
as usual. The model, as we will see, has a nice feature: it provides nontrivial limit
behaviors for various values of α, including the corresponding compressible Euler
(α = 0) limit and the incompressible Euler (α ∈ (0, 1)) and Navier–Stokes (α = 1)
limits.

Test 1. Diffusive scaling in the linear case. For this numerical test we
consider the case α = 1 (namely M = Kn = ε) with c = 0, a = (1 − Aε)/2, and
b = (1 +Aε)/2 in the right-hand side of (57).

Adding and subtracting the two equations in (57) one obtains the following macro-
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scopic equations for u and v:

(60)


∂tu+ ∂xv = 0,

∂tv +
1
ε2 ∂xu = − 1

ε2 (v −Au).

In the limit ε→ 0 the second equation relaxes to the local equilibrium

v = Au− ∂u

∂x
,

and substituting in the first equation this gives the limiting advection-diffusion equa-
tion

ut +Aux = uxx.

Next, we fix A = 1 and observe that the limiting advection-diffusion equation admits
the exact solution

u(x, t) = e−t sin(x− t), v(x, t) = e−t(sin(x− t)− cos(x− t))(61)

on the domain [−π, π] with periodic boundary conditions. We start to consider as
initial conditions (61) at t = 0, and choose ε = 10−6 with final time T = 0.1. The
numerical results are compared with (61) at t = T . Relative errors and convergence
orders are reported in Tables 1–3. In order to check the temporal order of convergence
of these schemes, ∆x decreases with the time step ∆t according to the CFL condition
∆t = 0.5 ∆x. In the tables we show the order of convergence as

p = log2(||E∆t||∞/||E∆t/2||∞),

with E∆t the relative error computed with time step ∆t. We consider the error
obtained with N = 40 time steps up to N = 640 time steps in the interval [0, T ]. We
observe that the classical order of the methods ARS(1,1,1), CK(2,2,2), and BPR(3,4,3)
is maintained in the limit case for the density u; see Table 1. We omit the convergence
results of the ARS(2,2,2) scheme (74) since they are essentially the same as those
obtained with the CK(2,2,2) scheme.

Typically, classical schemes like ARS(2,2,2), CK(2,2,2), and BPR(3,4,3), which
satisfy only the GSA property, have few numbers of internal stages but maintain,
in the limit ε → 0, the order in time only for the u-component, while for the v-
component they do not guarantee even the consistency [8]. As an example, we report
the convergence table for the variable v in Table 2 for the CK(2,2,2) scheme (75), and
we observe that we do not obtain the correct classical order of accuracy for v in the
limit case ε→ 0.

The reason for the lack of consistency in the algebraic component v is that these
classical schemes do not satisfy the additional order conditions (72) (see the appendix)
that guarantee the consistency of the scheme and the order up to 2 for the variable v.
As a comparison, we construct a new scheme, BPR(4,4,2), that satisfies the additional
order conditions (72), and in Table 3 we observe the correct convergence rate for both
components, u and v. Furthermore, in Figure 1, we also compare the numerical
solutions (star points) for u (u-num) and v (v-num) obtained with the second order
ARS(2,2,2) scheme (74) and BPR(4,4,2) scheme. In the same figure, the exact solution
is plotted by a continuous line. Note again that the new scheme BPR(4,4,2) shows
the correct behavior for the v variable.
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Table 1
Test 1. Convergence rates for the density u with ε = 10−6.

Method N L∞ error Order
ARS(1,1,1) 40 6.4800e− 03 −−
ARS(1,1,1) 80 3.5082e− 03 0.8853
ARS(1,1,1) 160 1.9203e− 03 0.8694
ARS(1,1,1) 320 9.6447e− 04 0.9935
ARS(1,1,1) 640 4.8457e− 04 0.9930
CK(2,2,2) 40 1.4911e− 04 −−
CK(2,2,2) 80 3.9405e− 05 1.9199
CK(2,2,2) 160 1.1356e− 05 1.7949
CK(2,2,2) 320 2.8331e− 06 2.0030
CK(2,2,2) 640 7.0874e− 07 1.9991

BPR(3,4,3) 40 5.8318e− 06 −−
BPR(3,4,3) 80 7.8658e− 07 2.8903
BPR(3,4,3) 160 1.2095e− 07 2.7012
BPR(3,4,3) 320 1.5297e− 08 2.9831
BPR(3,4,3) 640 1.9253e− 09 2.9901

Of course there are some advantages and disadvantages in considering additional
order conditions (72). The advantage is that they guarantee the correct order in
the limit case (ε → 0) for both variables. On the other hand, to construct schemes
that satisfy (72) requires a larger number of internal stages due to these extra order
conditions.

Table 2
Test 1. Convergence rates for v for the scheme CK(2, 2, 2) with ε = 10−6.

Method N L∞ v-error Order of v
CK(2,2,2) 40 1.3156e− 02 −−
CK(2,2,2) 80 1.4897e− 02 −0.1793
CK(2,2,2) 160 1.1520e− 03 3.6928
CK(2,2,2) 320 1.2584e− 03 −0.1274
CK(2,2,2) 640 1.2877e− 03 −0.0332

Table 3
Test 1. Convergence rates for u and v for the scheme (76) with ε = 10−6.

Method N L∞ u-error Order u L∞ v-error Order v
BPR(4,4,2) 40 1.9129e− 04 −− 2.8704e− 04 −−
BPR(4,4,2) 80 4.9963e− 05 1.9368 8.0261e− 05 1.8385
BPR(4,4,2) 160 1.4374e− 05 1.7974 2.0603e− 05 1.9618
BPR(4,4,2) 320 3.5895e− 06 2.0016 5.2702e− 06 1.9669
BPR(4,4,2) 640 9.0120e− 07 1.9939 1.4011e− 06 1.9113

Next, we consider a Riemann problem with initial data

(62)
{
uL = 4.0, vL = 0, −10 < x < 0,
uR = 2.0, vR = 0, 0 < x < 10,
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Fig. 1. Test 1. Comparison between classical ARS(2, 2, 2) scheme (left) and the BPR(4, 4, 2)
scheme (right) with N = 40 and ∆t = 0.5∆x.

and inflow and outflow boundary conditions. The exact solution for the limit advection-
diffusion equation is

(63) u(x, t) =
1
2

(uL + uR) +
1
2

(uL − uR)erf
(
t− x
2
√
t

)
,

where erf(x) denotes the error function. We take ∆x = 0.2 and the final time T = 3.0.
In Figure 2 we compare the numerical solutions computed by schemes SP(1,1,1),
BPR(2,4,4), and BPR(3,3,5) for the mass density in the intermediate regime (ε = 0.5)
with a reference solution obtained with ∆x = 0.001 and in the diffusive one (ε = 10−6)
with the analytical solution (63). As we can see, the numerical results for the different
schemes are in excellent agreement with the reference and analytical solutions using
a hyperbolic time step ∆t = 0.5∆x.
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Fig. 2. Test 1. Solution of problem (60) with initial data (62), ∆x = 0.2, and ∆t = 0.5∆x for
the density u. Left: The rarefied regime ε = 0.5. Right: The parabolic regime ε = 10−6.

Test 2. Multiscale limit in the nonlinear case. Here we consider the non-
linear Ruijgrok–Wu model (57) with interaction parameters c = εα and a = b = 1/2.

Adding and subtracting the two equations in (57) one obtains the following macro-
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scopic equations for u and v :

(64)


∂tu+ ∂xv = 0 ,

∂tv +
1
ε2α ∂xu =

1
ε1+α

{
−v +

1
2
(
u2 − ε2αv2)} .

For small values of ε the model behavior can be derived by the Chapman–Enskog
expansion and for α > 1/3 is characterized by the viscous Burgers equation

(65)
v =

1
2
u2 − ε1−α∂xu+O(ε2α),

∂tu+ ∂x

(
u2

2

)
= ε1−α∂xxu+O(ε2α).

To avoid dealing with nonlinear solvers, the IMEX schemes have been applied by
keeping implicit only the linear term v in the right-hand side of (64) and leaving
explicit the quadratic term v2. For this reason, for small values of ε we will restrict
to α ∈ (1/3, 1].

We consider two different initial conditions. In the first case we take α = 1 and
two local Maxwellian equilibrium characterized by

(66)
{
uL = 2.0, vL = 0, −10 < x < 0,
uR = 1.0, vR = 0, 0 < x < 10,

with v = [(1 + u2ε2)1/2 − 1]/ε2.
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Fig. 3. Test 2. Numerical solutions of problem (64) for α = 1 with initial conditions (66) at
T = 2.0 and ∆t = 0.5∆x. Left: The rarefied regime for u with ε = 0.4. Right: The parabolic regime
for u with ε = 10−6.

We show in Figure 3 the numerical solution for u using BPR(4,4,2) and BPR(3,4,3)
schemes in the rarefied (ε = 0.4) and parabolic (ε = 10−6) regimes with ∆x = 0.2 at
the final time T = 0.2. The solution of both schemes is in very good agreement with
the reference solution computed with ∆x = 0.04.

The last test case that we consider is the propagation of an initial square wave.
The initial profile is specified as

(67) u = 1.0, v = 0.0 for |x| < 0.125, u = v = 0 for |x| > 0.125,

with reflecting boundary conditions, i.e., v = 0, ux = 0 on the boundary.
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This test is taken from [30]. Because of the different notation, the parameters
ε and α adopted in [30], which we denote by ε̃, α̃, have a different meaning in our
paper. The correspondence between ε̃, α̃ and ε, α adopted in the present paper is

ε = ε̃(1+α̃), α =
1

1 + α̃
.

We integrate the equations over [−0.5, 0.5] with 200 spatial cells. We use the BPR(3,4,3)
scheme (77). In Figure 4 we plot the behavior of the system for various regimes. The
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Fig. 4. Test 2. Numerical solutions of system (64) with initial conditions (67) for the mass
density u (left) and the momentum v (right) in the rarefied regime (top panels) with ε = 0.7, α = 1,
and ∆t = 0.0025, ∆x = 0.005 at time T = 0.2. In the hyperbolic regime ε = 10−12, with α = 2/3
(mid panels), and parabolic regime ε = 10−10 with α = 4/5 (bottom panels) and ∆t = 0.004 (i.e.,
∆t = 0.8∆x) at time T = 0.5.

panels on the top are obtained in the rarefied regime, with ε = 0.7 and α = 1 (cor-
responding to ε̃ = 0.7 and α̃ = 0 in [30]) at time T = 0.2. We observe that in the
rarefied regime no oscillation appears and the scheme describes well the behavior of
the system.
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The middle panels illustrate the results obtained in the case of the hyperbolic
regime ε = 10−12 and α = 2/3 (corresponding to ε̃ = 10−8 and α̃ = 0.5 in [30]) at
time T = 0.5. Notice the propagation of the right moving shock.

The bottom panels present the results for the parabolic scaling ε = 10−10 and
α = 4/5 (corresponding to ε̃ = 10−8 and α̃ = 0.25 in [30]) at time T = 0.5. As we see,
the scheme perfectly captures all regimes, even if it is underresolved for small values
of ε.

The numerical solutions for the mass density u and momentum v are computed
in the rarefied regime and in the diffusive regime with ∆t = 0.5∆x and are depicted
with a reference solution obtained using fine grids with ∆x = 0.001.

Test 3. Multiscale space varying limit in the nonlinear case. Finally, we
consider the multiscale relaxation system of the previous section in the case where the
parameter α = α(x) ∈ (1/3, 1] depends on the space variable. Therefore, the limit
behavior of the system may depend on the particular region of the computational
domain. For this test, we consider α(x) ∈ [1/2, 1].

Now we apply our schemes to system (64) considering two different cases of the
varying α number. The domain is chosen to be x ∈ [−0.5, 0.5]. In the first case α
increases smoothly from a small value α0 to O(1) by the formula

(68) α(x) = α0 + 0.25(1 + tanh(20(x+ 0.1)))

with α0 = 0.5. In the second case we consider the function α which contains a
discontinuity

(69)
{
αL = 0.5, −0.5 < x < 0,
αR = 1.0, 0 < x < 0.5.
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Fig. 5. Test 3. Space varying α(x). Left: the smooth profile (68). Right: the discontinuous
profile (69).

The two different scenarios for α are depicted in Figure 5. The initial profile is
specified by (67) with reflecting boundary conditions, and we fix ε = 10−8 and ∆t =
0.5∆x. Here we use the BPR(3,4,3) scheme. The reference solutions are computed
using a fine grid with ∆x = 0.001. The results are depicted up to time T = 0.05 (left)
and T = 0.18 (right). In Figure 6 we observe that the scheme is able to capture the
correct behavior of the reference solution even in this test case.

6. Conclusions. In this work we have developed a new IMEX RK approach that
is capable of correctly capturing the asymptotic behavior of hyperbolic balance laws
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Fig. 6. Test 3. For ε = 10−8, the left and right pictures show the behavior of the component u
in the two different cases of α.

with relaxation under different kinds of scaling. Previous IMEX RK schemes were
designed to deal specifically with one kind of scaling, either hyperbolic [7, 10, 22, 32]
or parabolic [6, 21, 25, 29], whereas the present schemes are robust enough to be able
to deal with both scalings. Related approaches were presented in [8, 24, 27, 30].

From a physical viewpoint, these scaling limits correspond to the classical fluid-
dynamic scalings in the kinetic theory of rarefied gases that lead from the Boltzmann
equation to its compressible and incompressible limits. Several numerical tests for
a simple kinetic model which possess different asymptotic limits have confirmed the
validity of the present approach. In the near future, we hope to extend this class
of IMEX RK schemes to the full Boltzmann equation by adopting the penalization
techniques developed in [15, 16].

Appendix A. IMEX RK schemes. In order to achieve higher than first order
accuracy in time for GSA IMEX RK schemes, we need to observe first that there
are no second order GSA IMEX RK methods of type I with s = 3, i.e., with three
stages [6]. Thus, to construct a second order GSA IMEX RK scheme we consider the
following proposition [6].

Proposition A.1. The only type of second order GSA IMEX RK scheme with
three levels s = 3 that satisfies the classical second order conditions (26) is the type
II, where ci = c̃i for all i = 2, . . . , s− 1, with c1 = 0 and cs = 1.

As usual, order conditions are obtained by matching the Taylor expansion of the
exact solution and the numerical one, up to terms of the prescribed order. In the
relaxed case, i.e., ε→ 0, system (1) for α = 1 reduces to

(70) v = −p(u)x + f(u), ut + f(u)x = p(u)xx.

The unified IMEX RK approach described in section 4 provides a scheme that con-
verges to an explicit-implicit scheme for the limit convection-diffusion equation in
(70). Performing the same analysis as proposed in [8] for system (1), we obtain for
the u-component the classical order conditions, while some additional order condi-
tions for the v-component are required in order to have consistency and maintain the
classical order in the limit case. We recall that the GSA assumption of the method
guarantees that the IMEX RK scheme relaxes at the same IMEX RK scheme when
ε → 0, but to maintain the order of accuracy of the scheme in the limit we must
impose some additional order conditions.
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Below we list these new additional order conditions that the v-component must
satisfy up to second order.

consistency bTA−2Ãe = 1,
first order bTA−2Ãc = 1, bTA−2Ãc̃ = 1,

second order bTA−2Ãc2 = 1, bTA−2Ãc̃2 = 1, bTA−2Ãc̃c = 1, bTA−2Ãcc̃ = 1,
bTA−2ÃAc = 1/2, bTA−2ÃAc̃ = 1/2,
bTA−2ÃÃc = 1/2, bTA−2ÃÃc̃ = 1/2.

(71)

Note that in order to reduce the number of the additional order conditions, we require
that c̃ = c. This assumption considerably simplifies the number of coupling conditions.

consistency bTA−2Ãe = 1,
first order bTA−2Ãc = 1,
second order bTA−2Ãc2 = 1, bTA−2ÃAc = 1/2, bTA−2ÃÃc = 1/2.

(72)

Finally, we present the different IMEX RK schemes, up to order three, used in our
numerical tests. Below, these schemes are represented by the usual double Butcher
tableau. On the left we have the explicit part and on the right the implicit part of
the IMEX schemes. All of the schemes satisfy the GSA property, but only the new
scheme BPR(4, 4, 2) satisfies the additional order conditions (72).

• First order ARS(1, 1, 1) scheme:

0 0 0
1 1 0

1 0

0 0 0
1 0 1

0 1
.(73)

• Second order ARS(2, 2, 2) scheme [1]:

0 0 0 0
γ γ 0 0
1 δ 1− δ 0

δ 1− δ 0

0 0 0 0
γ 0 γ 0
1 0 1− γ γ

0 1− γ γ

,(74)

where γ = 1− 1/
√

2 and δ = 1− 1/2γ.
• Second order CK(2, 2, 2) scheme [11]:

0 0 0 0
2/3 2/3 0 0
1 1/4 3/4 0

1/4 3/4 0

0 0 0 0
2/3 −1/3 +

√
2/2 1−

√
2/2 0

1 3/4−
√

2/4 −3/4 + 3
√

2/4 1−
√

2/2
3/4−

√
2/4 −3/4 + 3

√
2/4 1−

√
2/2

.(75)

• Second order BPR(4, 4, 2) scheme:

0 0 0 0 0 0
1/4 1/4 0 0 0 0
1/4 13/4 −3 0 0 0
3/4 1/4 0 1/2 0 0
1 0 1/3 1/6 1/2 0

0 1/3 1/6 1/2 0

0 0 0 0 0 0
1/4 0 1/4 0 0 0
1/4 0 0 1/4 0 0
3/4 0 1/24 11/24 1/4 0
1 0 11/24 1/6 1/8 1/4

0 11/24 1/6 1/8 1/4

.(76)
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• Third order BPR(3, 4, 3) scheme [6]:

0 0 0 0 0 0
1 1 0 0 0 0

2/3 4/9 2/9 0 0 0
1 1/4 0 3/4 0 0
1 1/4 0 3/4 0 0

1/4 0 3/4 0 0

0 0 0 0 0 0
1 1/2 1/2 0 0 0

2/3 5/18 −1/9 1/2 0 0
1 1/2 0 0 1/2 0
1 1/4 0 3/4 −1/2 1/2

1/4 0 3/4 −1/2 1/2

.(77)
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