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Abstract. The overarching goal of this paper is to link the notion of sets of finite
perimeter (a concept associated with N1,1-spaces) and the theory of heat semigroups (a
concept related to N1,2-spaces) in the setting of metric measure spaces whose measure
is doubling and supports a 1-Poincaré inequality. We prove a characterization of sets of
finite perimeter in terms of a short time behavior of the heat semigroup in such metric
spaces. We also give a new characterization of BV functions in terms of a near-diagonal
energy in this general setting.
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1. Introduction

In this paper we study functions of bounded variation and, in particular, sets of finite
perimeter on general metric measure spaces. More precisely, we investigate a relation
between the perimeter of a set and the short-time behavior of the action of a heat
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semigroup on the characteristic function of such a set. First, we provide in Theorem 3.1 a
new characterization of BV functions in terms of asymptotic behavior of a near-diagonal
energy or, in other words, the near-diagonal part of the Korevaar–Schoen type energy
[KS]: Suppose that u ∈ L1(X), then u ∈ BV(X) if, and only if,

lim inf
ε→0+

1

ε

∫
∆ε

|u(x)− u(y)|√
µ(Bε(x))

√
µ(Bε(y))

dµ(x, y) <∞.

Here ∆ε, ε > 0, denotes the ε-neighborhood of the diagonal in X ×X.
Second, we shall give in Theorem 4.1 a Ledoux-type characterization of sets of finite

perimeter in terms of the heat semigroup [L], with the focus again on the near-diagonal
part of the boundary of the set. To motivate the discussion below let us state at this
point the main parts of Theorem 4.1: If

lim inf
t→0+

1√
t

∫
E
√
t\E

TtχE(x) dµ(x) <∞,

then E is of finite perimeter. On the other hand, if E is a set of finite perimeter and
satisfies an extra assumution in (4.2), then E must satisfy the inequality above.

The characterizations obtained in this paper connect the theory of functions of boun-
ded variation and sets of finite perimeter to the theory of the heat semigroup and heat
flow in metric spaces, thus connecting the nonlinear potential theory associated with
the index p = 1 to the linear potential theory associated with the index p = 2. In the
Euclidean setting such a connection is well-established, see for example [DeG] and [L]. In
the setting of Riemannian manifolds with lower bounded Ricci curvature, see [CM], [MP],
and [MP2]. In the more general metric setting there is precedence; indeed, it was shown
in [JK] that when the measure on a metric measure space X is doubling, supports a 2-
Poincaré inequality, and satisfies a curvature condition, a global isoperimetric inequality
holds in X. In this note we are more interested in characterizing sets of finite perimeter
in terms of the asymptotic behavior of the heat extension of the characteristic function
of the sets, and to do so we need the stronger assumption of 1-Poincaré inequality.
However, we avoid the use of curvature conditions by focusing on near-diagonal part of
the set in question. It is not known whether the curvature condition assumed in [JK],
together with the doubling property of the measure and the support of a 2-Poincaré
inequality, implies the support of a 1-Poincaré inequality.

1.1. Ledoux-type characterization. It was observed by Ledoux in [L] that the clas-
sical isoperimetric inequality in Rn, and also in more general Gauss spaces, can be
characterized by the fact that the L2-norm of the heat semigroup acting on the charac-
teristic function of sets is increasing under isoperimetric rearrangement. More precisely,
condition that a set B is isoperimetric, that is a minimizer of the perimeter measure
among all sets E with the same measure as B, is equivalent to the following L2-inequality

‖TtχE‖L2(Rn) ≤ ‖TtχB‖L2(Rn)

for all t ≥ 0 and sets E ⊂ Rn with the same volume as the Euclidean ball B. Here χE
denotes the characteristic function of the set E, and Tt stands for the heat semigroup
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defined on L2(Rn) by convolution with the classical Gauss–Weierstrass kernel so that
Ttf solves the Cauchy problem {

∂tu = ∆u
u(0, x) = f(x),

with f ∈ L2(Rn). In particular, it was shown in [L] (the reader is recommended to also
see the paper [P] by Preunkert) that

(1.1) lim
t→0+

√
π

t

∫
Rn\B

TtχB(x) dx = P (B),

whenever B is a Euclidean ball and P (B) the perimeter of B in Rn. Moreover, the
inequality √

π

t

∫
Rn\E

TtχE(x) dx ≤ P (E)

holds for every t ≥ 0 and for all subsets E of Rn with finite measure.
The authors in [MP2] pursued the investigation of the relation between the perimeter

of a set and the short-time behavior of the heat semigroup as described in (1.1). They
observed, by considering the measure-theoretic properties of the reduced boundary of a
set, that equality (1.1) is actually valid for all sets of finite perimeter. In addition, the
finiteness of the limit on the left hand side in (1.1) is enough to characterize sets of finite
perimeter in Rn. Similar characterizations have also been obtained in [B], [D], and [P-P],
where more general convolution kernels than the classical Gauss–Weierstrass kernel were
considered. On the other hand, the approach taken in [MP2] has more geometric flavor.

In the present paper, we study characterizations of sets of finite perimeter and hence,
by the co-area formula, all functions in the BV-class, in terms of the heat semigroup.
The recent results in [JK] demonstrate that under some curvature assumptions on the
metric measure space, if the space is also doubling in measure and supports a 2-Poincaré
inequality, a (global) isoperimetric inequality follows. Adding this to the discussion
above, it is reasonable to ask whether the notion of a set of finite perimeter in a metric
measure space (first defined in [Mr]), using L1-approximations by Lipschitz functions,
is connected to the behavior of heat extension of the characteristic function of the set.
In this paper we show that a Ledoux-type characterization of sets of finite perimeter in
terms of the heat extension of the characteristic function of such sets is possible if the
measure on the space is doubling and supports a 1-Poincaré inequality.

The Ledoux characterization in the limit of (1.1) requires global information of the
decay of the heat extension. So if the space is hyperbolic then the behavior of E and
Rn \E far away from ∂E also might play a role in the limit given in (1.1). We therefore
modify the criterion and consider only regions near ∂E as in (4.1).

1.2. De Giorgi-type characterization. In the Euclidean setting the original defini-
tion of sets of finite perimeter in terms of heat extension, is due to De Giorgi [DeG].
In Section 5 we consider a characterization of total variation and BV functions. Such
a characterization is related to the definition of sets of finite perimeter considered by
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De Giorgi [DeG] making use of a regularization procedure based on the heat kernel.
Indeed, for a function u ∈ L1(Rn) the limit

(1.2) lim
t→0+

∫
Rn
|∇Ttu(x)| dx

exists and is finite if, and only if, the distributional gradient of u is an Rn-valued measure
Du with finite total variation |Du|(Rn). Moreover, the limit in (1.2) equals |Du|(Rn).
This result has been generalized to the setting of Riemannian manifolds in [CM], with
the restriction that the Ricci curvature of a manifold is bounded from below. We refer
also to the result in [MP], where further bounds on the geometry of the manifold were
assumed. We refer also to a recent paper [GP] where a more general condition on the
Ricci curvature has been considered, that is the Ricci tensor can be splitted into a sum of
two terms, one which is bounded from below and the second one belonging to a suitable
Kato class. We mention, in passing, that in the setting of Carnot groups the authors
of [BMP] showed that the aforementioned result is valid in a weaker sense, namely that
both the limit inferior and superior are comparable to the total variation of u, but it is
not known whether equality holds.

In Section 5, we shall give a generalization of the preceding result to metric measure
spaces as discussed above by imposing an additional assumption on a Dirichlet form
E compatible with the Cheeger differentiable structure and associated with X. We
shall assume that the Dirichlet form as considered above satisfies the Bakry–Émery
condition BE(K,∞) (see Definition 5.1), for some K ∈ R. Providing the analogous self-
improvement property of the BE(K,∞) condition as obtained by Savaré in a recent paper
[S], we obtain in Proposition 5.2 a metric space version of the De Giorgi characterization
of the total variation of a BV function. We point out here, however, that the condition
BE(K,∞) is not satisfied by some Carnot groups, for example Heisenberg groups, and so
our discussion does not overlap with that of [BMP]. Recall that a 1-Poincaré inequality
follows from the BE(K,∞) condition, or even from weaker curvature conditions like
the CD(K,∞) condition of Lott–Sturm–Villani. However, a complete separable metric
space endowed with a probability measure and satisfying the BE(K,∞) condition need
not be doubling.

1.3. Organization of the paper. We have organized our paper as follows. In Section 2
we recall the tools needed for our analysis in metric measure spaces as well as the basic
properties of the heat semigroup and BV functions in this setting. Our main results are
then stated in Theorem 3.1 and Theorem 4.1 in Section 3 and Section 4, respectively.
In Section 5 we consider a characterization of total variation and BV functions. In the
appendix, see Section 6, we gather together properties of the Bakry–Émery condition
needed in Section 5.
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2. Basic concepts

In this section we recall the basic concepts that allow for nonsmooth analysis on metric
measure spaces.

2.1. Standing assumptions. Throughout the paper we will assume that (X, d, µ) is a
complete metric measure space equipped with a Borel regular doubling measure µ sup-
porting a 1-Poincaré inequality.

Recall that a Borel-regular measure µ is doubling if there exists a constant cD ≥ 1
such that for every ball Br(x) := B(x, r) = {y ∈ X : d(x, y) < r}, x ∈ X and r > 0,

0 < µ(B2r(x)) ≤ cDµ(Br(x)) <∞.

Moreover, (X, d, µ) supports a 1-Poincaré inequality if there exist constants c > 0 and
λ ≥ 1 such that for any u ∈ Lip(X) (real-valued Lipschitz continuous function on X),
the inequality ∫

Br(x)

|u(y)− uBr(x)| dµ(y) ≤ cP r

∫
Bλr(x)

lip(u)(y) dµ(y)

holds, where lip(u) is the local Lipschitz constant of u defined as

lip(u)(y) := lim inf
%→0+

sup
z∈B%(y)

|u(y)− u(z)|
d(y, z)

;

we shall denote by cP the minimal constant verifying the Poincaré inequality. We write
the integral average of a function u over a ball Br(x) as uBr(x). Let us mention in
passing that, by the doubling property, for every BR(x) ⊂ X and y ∈ BR(x) and for
0 < r ≤ R <∞ the inequality

(2.1)
µ(BR(x))

µ(Br(y))
≤ C

(
R

r

)qµ
,

holds, where C is a positive constant depending only on cD and qµ = log2 cD. In what
follows, qµ denotes a counterpart of dimension related to the measure µ on X.

Unless otherwise stated, C will denote a positive constant whose exact value is not
important and it may change even within a line. A concentric α-dilate, α > 1, of a ball
B = Br(x) = B(x, r) is written as αB or Bαr(x). We write the topological boundary
of a set E as ∂E, and ∂∗E denotes the measure theoretic boundary of E, i.e. the set
of points x ∈ X where both E and its complement X \ E have positive upper density.
Recall that ∂∗E ⊂ ∂E.

Finally, by the Hausdorff measure of co-dimension one we mean the generalized spher-
ical Hausdorff measure H obtained by applying the Carathéodory construction to the
function h(Br(x)) = µ(Br(x))/r (see [A]).
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2.2. Differentiable structure. An upper gradient for an extended real-valued function
u on X is a Borel function g : X → [0,∞] such that

(2.2) |u(γ(0))− u(γ(lγ))| ≤
∫
γ

g ds

for every nonconstant compact rectifiable curve γ : [0, lγ] → X. This notion is due
to [HK]. We say that g is a p–weak upper gradient of u if (2.2) holds for p–almost every
curve, see [KM]. If u has an upper gradient in Lp(X), then there exists a unique minimal
p–weak upper gradient gu ∈ Lp(X) of u, where gu ≤ g µ-a.e. for every p–weak upper
gradient g ∈ Lp(X) of u.

Under our standing assumptions on X, we have also the Cheeger differentiable struc-
ture available (see [C]) that allow us to define a linear gradient operator for Lipschitz
functions. There exists a countable measurable partition Uα of X, and Lipschitz coor-
dinate charts Xα = (Xα

1 , . . . , X
α
kα

) : X → Rkα such that µ(Uα) > 0 for each α, and
µ(X \

⋃
α Uα) = 0. Moreover, for all α the charts (Xα

1 , . . . , X
α
kα

) are linearly independent
on Uα and 1 ≤ kα ≤ N , where N is a constant depending on cD, cP , and λ, and in
addition for any Lipschitz function u : X → R there is an associated unique (up to a
set of zero µ-measure) measurable function Dαu : Uα → Rkα for which the following
Taylor-type approximation

u(x) = u(x0) +Dαu(x0) · (Xα(x)−Xα(x0)) + o(d(x, x0))

holds for µ-a.e. x0 ∈ Uα. In particular, for x ∈ Uα there exists a norm ‖ · ‖x on Rkα

equivalent to the Euclidean norm | · |, such that gu(x) = ‖Dαu(x)‖x for almost every
x ∈ Uα. Moreover, it is possible to show that there exists a constant c > 1 such that
c−1gu(x) ≤ |Du(x)| ≤ cgu(x) for all Lipschitz functions u and µ-a.e. x ∈ X. By Du(x)
we mean Dαu(x) whenever x ∈ Uα. Indeed, one can choose the cover such that Uα ∩Uβ
is empty whenever α 6= β.

For the definition of the Sobolev spaces N1,p(X) we will follow [Sh]. Since we assume
X to satisfy a 1-Poincaré inequality, the Sobolev space N1,p(X), 1 ≤ p < ∞, can also
be defined as the closure of the collection of Lipschitz functions on X in the N1,p-norm
defined as ‖u‖p1,p = ‖u‖pLp(X) + ‖gu‖pLp(X). The space N1,p(X) equipped with the N1,p-

norm is a Banach space and a lattice [Sh]. By [FHK], the Cheeger differentiable structure
extends to all functions in N1,p(X).

2.3. Semigroup associated with E. In the metric space setting, there is a standard
way to construct a semigroup by using the Dirichlet forms approach. The best way
to construct it is to use the L2–theory of (bilinear) Dirichlet forms and then apply a
classical result asserting that such semigroup can be extrapolated to any Lp, 1 ≤ p ≤ ∞.

We start with the following Dirichlet form E : L2(X)× L2(X)→ [−∞,∞] defined in
terms of the Cheeger differentiable structure by

E(u, v) =

∫
X

Du(x) ·Dv(x) dµ(x)

with domain D(E) := N1,2(X) (if u or v does not belong to N1,2(X), then E(u, v) =∞).
This bilinear form is an example of a regular and strongly local Dirichlet form as defined
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in [FOT]. The associated infinitesimal generator A acts on a dense subspace D(A) of
N1,2(X) so that for each u ∈ D(A) and for every v ∈ N1,2(X),∫

X

vAu dµ = −E(u, v).

The operator A is dissipative in the sense that∫
X

uAu dµ = −E(u, u) ≤ 0

and is merely the Laplacian ∆ when X = Rn, the Cheeger differentiable structure is the
standard Euclidean structure, and µ is the Lebesgue measure.

We also point out that under our standing assumptions, the metric induced by the
form

dE(x, y) = sup
{
f(x)− f(y) : f ∈ N1,2(X), |Df | ≤ 1µ-a.e.

}
is bi-Lipschitz equivalent to the original metric d. Note that the Cheeger differen-
tial structure satisfies |Df | is comparable to the minimal 2-weak upper gradient of f .
Therefore, if |Df | ≤ 1 µ-a.e. in X then f has a Lipschitz continuous representative.

Remark 2.1. Associated with the above Dirichlet form E and its infinitesimal generator
A there is a Markov semigroup (Tt)t>0 acting on L2(X) with the following properties (we
refer to [FOT], [KRS], or [MMS] for properties (1) through (7)):

(1) Tt ◦ Ts = Tt+s for all t, s > 0;
(2) since A is symmetric in L2(X), then Tt is self adjoint in L2(X), that is∫

X

Ttfg dµ =

∫
X

fTtg dµ,

for all f, g ∈ L2(X);
(3) Ttf → f in L2(X) when t→ 0;
(4) since A is dissipative, Tt is a contraction in L2(X), i.e. ‖Ttf‖L2(X) ≤ ‖f‖L2(X)

for all f ∈ L2(X) and t > 0;
(5) if f ∈ D(A), then 1

t
(Ttf − f)→ Af in L2(X) as t→ 0;

(6) for all t > 0 and f ∈ L2(X), we have that ∂tTtf and ATtf are both in L2(X)
and

∂tTtf = ATtf ;

(7) (Tt)t>0 is a Markovian semigroup, that is if 0 ≤ f ≤ 1, then 0 ≤ Ttf ≤ 1;
(8) (Tt)t>0 can be extended to L∞(X) by first considering positive functions f ≥ 0

and sequences fn ∈ L2(X), fn ↗ f and setting

Ttf = lim
n→∞

Ttfn,

we refer to [FOT, p. 56];
(9) since the measure µ is doubling, (Tt)t>0 is stochastically complete : Tt1 = 1 [St1,

Theorem 4] (see also [G] for stochastic completeness in the manifold setting);
(10) Since |Ttf | ≤ Tt|f | µ-a.e. for f ∈ L1(X)∩L∞(X), and since L1(X)∩L∞(X) is

dense in L1(X), (Tt)t can be extended to a contraction semigroup on L1(X).
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A measurable function p : R × X × X → [0,∞] is called a heat kernel or transition
function on X associated with the semigroup (Tt)t>0 if

Ttf(x) =

∫
X

p(t, x, y)f(y) dµ(y),

for every f ∈ L2(X) and for every t > 0. For t ≤ 0 we have p(t, x, y) = 0, and
p(t, x, y) = p(t, y, x) by the symmetry of the semigroup. The existence of a heat kernel
is a direct consequence of the linearity of the operator f 7→ Ttf together with the L∞-
boundedness of such an operator (Markovian property) and the Riesz representation
theorem, see for instance Sturm [St2, Proposition 2.3]. Standard regularity arguments
on doubling metric measure spaces admitting a 2-Poincaré inequality imply that the
map x 7→ p(t, x, y) is Hölder continuous for any (t, y) ∈ (0,∞)×X.

Under our standing assumptions on X, we have the following estimates for a heat
kernel uniformly for all x, y ∈ X and all t > 0, we refer to [St3, Corollary 4.10]. There
are positive constants C,C1, C2 such that

p(t, x, y) ≥ C−1e
− d(x,y)

2

C1t√
µ(B√t(x))

√
µ(B√t(y))

,(2.3)

p(t, x, y) ≤ Ce
− d(x,y)

2

C2t√
µ(B√t(x))

√
µ(B√t(y))

.(2.4)

2.4. BV functions and sets of finite perimeter. Following [Mr], we say that a
function u ∈ L1(X) is of bounded variation (u ∈ BV(X)) if

‖Du‖(X) = inf

{
lim inf
j→∞

∫
X

guj dµ : uj ∈ Liploc(X), uj → u in L1
loc(X)

}
is finite, where guj is the minimal 1-weak upper gradient of uj. Moreover, a Borel set
E ⊂ X is said to have finite perimeter if χE ∈ BV(X). We denote the perimeter
measure of E by P (E) = ‖DχE‖(X). By replacing X with an open set F we may
define ‖Du‖(F ) and we shall write the perimeter measure of E with respect to F as
P (E,F ) = ‖DχE‖(F ).

Strictly speaking, the definition given in [Mr] considers lip(uj) instead of guj . How-
ever, under our standing assumptions of doubling property and 1-Poincaré inequality,
lip(uj) = guj µ-a.e. in X (see [C] or [HKST]).

An equivalent definition can be also given by way of the Cheeger differentiable struc-
ture by replacing a 1-weak upper gradient of uj with its Cheeger derivative. We shall
say that u has bounded total Cheeger variation if ‖Dcu‖(X) <∞. A set with Cheeger
finite perimeter is a µ-measurable set E such that ‖DcχE‖(X) < ∞. By the results
contained in [C], it follows that these two definitions are equivalent, in the sense that
C−1‖Dcu‖ ≤ ‖Du‖ ≤ C‖Dcu‖. For further equivalent definitions of ‖Du‖, perhaps
more fruitful in a metric setting where Poincaré inequality and doubling properties may
not be available, see [AD].
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It follows from a 1-Poincaré inequality that for each u ∈ BV(X)∫
Br(x)

|u(y)− uBr(x)| dµ(y) ≤ cP r‖Du‖(B2λr(x)).

The factor of 2 in the ball on the right-hand side follows from the fact that weak lim-
its of measures might charge the boundary of Bλr(x). In particular, if E is a set of
finite perimeter and u = χE we recover the following form of the relative isoperimetric
inequality

(2.5) µ(Br(x) ∩ E)
µ(Br(x) \ E)

µ(Br(x))
≤ cP rP (E,B2λr(x)).

From the proof of [BH, Theorem 1.1] (see Section 3 of [BH]) and the above 1-Poincaré
inequality, we have the following regularity for sets of finite perimeter. Given a Lipschitz
function f on X, for t ∈ R we set At = {x ∈ X : f(x) > t}. Then for almost every
t ∈ R we have that

(2.6) lim inf
r→0

µ
(⋃

x∈∂At Br(x)
)

r
≤ CP (At) <∞.

Next, we recall that for any u ∈ BV(X) and Borel set E ⊂ X the co-area formula

(2.7)

∫ ∞
−∞

P ({x ∈ X : u(x) > t}, E) dt = ‖Du‖(E)

holds, and for the proof, we refer to [Mr, Proposition 4.2].
Finally, we recall that the measure P (E,F ) is concentrated on the set

Σγ =

{
x : lim sup

r→0
min

{
µ(Br(x) ∩ E)

µ(Br(x))
,
µ(Br(x) \ E)

µ(Br(x))

}
≥ γ

}
⊂ ∂∗E,

where constant γ > 0 depends only on cD, cP and λ, and moreover H(∂∗E \Σγ) = 0 and
H(∂∗E) <∞. We refer the reader to [A, Theorem 5.3, Theorem 5.4].

3. A characterization of BV functions

In the setting of metric measure spaces satisfying the standing assumptions listed in
Section 2, we now give a new characterization of BV functions in terms of the near-
diagonal parts of the Korevaar–Schoen type energy [KS]. The product measure µ ⊗ µ
in the space X ×X shall be written as µ(x, y).

We point out here that in the more general setting of topological spaces X, with
X ×X equipped with a nonnegative symmetric Radon measure Γ locally finite outside
the diagonal, Maz’ya proved in [M] a conductor inequality for compactly supported
continuous functions f on X for which

〈f〉pp,Γ :=

∫
X×X

|f(x)− f(y)|p dΓ(x, y) <∞.
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It was shown in [M, Theorem 2, Section 4] that, when 1 ≤ p ≤ q < ∞ and a > 1, the
following co-area–type integral can be majorized by the energy 〈f〉p,Γ

(3.1)

(∫ ∞
0

capp,Γ(Mat,Mt)
q/p dtq

)p/q
≤ C〈f〉pp,Γ,

where Mt = {x ∈ X : |f(x)| > t} and the capacity is obtained via minimization of 〈ϕ〉pp,Γ
over all admissible functions ϕ. With p = q = 1, in general the constant C in (3.1)
depends on a, and blows up in the order of (a− 1)−1 as a→ 1, see [M].

If we now take Γa to be defined by

dΓa(x, y) =
χ∆a−1(x, y) dµ(x, y)

(a− 1)
√
µ(Ba−1(x))

√
µ(Ba−1(y))

,

we obtain a near-diagonal energy

〈f〉1,Γa =
1

a− 1

∫
∆a−1

|f(x)− f(y)|√
µ(Ba−1(x))

√
µ(Ba−1(y))

dµ(x, y),

with the constant C in (3.1) now independent of a. Here ∆ε, ε > 0, denotes the ε-
neighborhood of the diagonal in X ×X, i.e.

∆ε = {(x, y) ∈ X ×X : d(x, y) < ε}.

We point out here that when p = q = 1, the above Maz’ya-type inequality, (3.1), in this
setting, is equivalent to the the following generalization of the co-area inequality (with
ε = a− 1)

lim sup
ε→0

1

ε

∫ ∞
0

(∫
Mt

∫
Bε(x)\Mt

dµ(y)dµ(x)√
µ(Bε(x))

√
µ(Bε(y))

)
dt ≤ C lim sup

ε→0
〈f〉1,Γ1+ε

associated with the near-diagonal Korevaar-Schoen energy.
In this section we will show that in our more specialized setting of metric measure

spaces, the family (with respect to ε > 0) of above energies 〈f〉1,Γ1+ε corresponding to
a given function f has a finite limit infimum as ε → 0 if and only if f is in the BV
class. The proof will also show that for small ε > 0 the above energy is controlled by a
constant multiple of the BV-energy of f . This also provides a connection between the
energy studied by Maz’ya [M] in our, more specialized, setting and the BV-energy.

Let us now formulate the main theorem of this section.

Theorem 3.1. Suppose that u ∈ L1(X). Then u ∈ BV(X) if, and only if,

lim inf
ε→0+

1

ε

∫
∆ε

|u(x)− u(y)|√
µ(Bε(x))

√
µ(Bε(y))

dµ(x, y) <∞.

Remark 3.2. As can be deduced from the proof, we in fact will show that if u ∈ BV (X)
or if the limit in the above theorem is finite, then the limit supremum of the expression
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considered in the theorem is comparable with |Du|, that is, there is a constant C ≥ 1,
that depends only on the data of the space X, such that

C−1‖Du‖(X) ≤ lim inf
ε→0+

1

ε

∫
∆ε

|u(x)− u(y)|√
µ(Bε(x))

√
µ(Bε(y))

dµ(x, y) ≤ C‖Du‖(X).

Proof of Theorem 3.1. Let us assume first that u ∈ BV(X) and fix ε > 0. Then we can
find a sequence of points in X, {xi}i∈N, such that

X =
⋃
i∈N

Bε(xi), and Bε/2(xi) ∩Bε/2(xj) = ∅ whenever i 6= j,

and such that the covering has bounded overlap

(3.2)
∑
i∈N

χB4λε(xi)(x) ≤ cO.

Since for x ∈ Bε(xi) and y ∈ Bε(x) we have that Bε(xi) ⊂ B2ε(x) and Bε(xi) ⊂ B4ε(y),
we get, by the doubling property of µ,

µ(Bε(xi)) ≤ µ(B4ε(y)) ≤ c2
Dµ(Bε(y)),

µ(Bε(xi)) ≤ µ(B2ε(x)) ≤ cDµ(Bε(x)).

We obtain ∫
∆ε

|u(x)− u(y)|√
µ(Bε(x))

√
µ(Bε(y))

dµ(x, y)

≤c
3
2
D

∑
i∈N

1

µ(Bε(xi))

∫
Bε(xi)

∫
Bε(x)

|u(x)− u(y)| dµ(y)dµ(x)

≤c
3
2
D

∑
i∈N

1

µ(Bε(xi))

∫
Bε(xi)

∫
Bε(x)

|u(x)− uBε(xi)| dµ(y)dµ(x)

+ c
3
2
D

∑
i∈N

1

µ(Bε(xi))

∫
Bε(xi)

∫
Bε(x)

|u(y)− uBε(xi)| dµ(y)dµ(x)

=C(I1 + I2).

Since Bε(x) ⊂ B2ε(xi) for x ∈ Bε(xi) we get, by a 1-Poincaré inequality,

I1 =
∑
i∈N

1

µ(Bε(xi))

∫
Bε(xi)

µ(Bε(x))|u(x)− uBε(xi)| dµ(x)

≤
∑
i∈N

µ(B2ε(xi))

µ(Bε(xi))

∫
Bε(xi)

|u(x)− uBε(xi)| dµ(x)

≤εcP cD
∑
i∈N

‖Du‖(B2λε(xi)) ≤ εC‖Du‖(X).
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We treat the term I2 in a similar fashion

I2 ≤
∑
i∈N

1

µ(Bε(xi))

∫
Bε(xi)

dµ(x)

∫
B2ε(xi)

|u(y)− uBε(xi)| dµ(y)

=
∑
i∈N

∫
B2ε(xi)

|u(y)− uBε(xi)| dµ(y)

≤
∑
i∈N

∫
B2ε(xi)

|u(y)− uB2ε(xi)| dµ(y)

+
∑
i∈N

|uBε(xi) − uB2ε(xi)|µ(B2ε(xi))

≤2εcP (1 + cD)
∑
i∈N

‖Du‖(B4λε(xi)) ≤ εC‖Du‖(X),

where we have used a 1-Poincaré inequality and the fact that

µ(B2ε(xi))|uBε(xi) − uB2ε(xi)| ≤C
∫
Bε(xi)

|u(x)− uB2ε(xi)| dµ(x)

≤C
∫
B2ε(xi)

|u(x)− uB2ε(xi)| dµ(x)

≤εC‖Du‖(B4λε(xi)).

This completes the proof of the claim that if u ∈ BV(X) then the limit infimum is finite
(in fact, we have obtained that the lim sup is finite).

For the converse statement, we assume that

lim inf
ε→0+

1

ε

∫
∆ε

|u(x)− u(y)|√
µ(Bε(x))

√
µ(Bε(y))

dµ(x, y) <∞.

For every ε > 0, let us define a positive and finite measure on X as

(3.3) dµε(x) = ũBε(x) dµ(x),

where for each x ∈ X we set

ũBε(x) =
1

µ(Bε(x))

∫
Bε(x)

|u(x)− u(y)|
ε

dµ(y).

Note that ∫
X

ũε(x) dµ(x) ≤ C

ε

∫
∆ε

|u(x)− u(y)|√
µ(Bε(x))

√
µ(Bε(y))

dµ(x, y),

and so we have that

(3.4) lim
ε→0+

∫
X

ũε(x) dµ(x) ≤ lim inf
ε→0+

C

ε

∫
∆ε

|u(x)− u(y)|√
µ(Bε(x))

√
µ(Bε(y))

dµ(x, y).

Let {Bε
i = Bε(xi)} be a family of balls which covers X with the following bounded

overlap property: ∑
i∈N

χB6ε(xi)(x) ≤ cO.
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Then, with respect to this family of balls, there exists a collection (ϕεi )i of functions on
X such that each ϕεi is Cε−1-Lipschitz continuous, where C is a constant depending only
on the doubling constant cD, 0 ≤ ϕεi ≤ 1 for all i, ϕεi (x) = 0 for x ∈ X \ B2ε

i for every
i, and

∑
i ϕ

ε
i (x) = 1 for all x ∈ X. The collection (ϕεi )i forms a partition of unity of

X with respect to {Bε
i }. We refer the reader to [HKT], and the references therein, for

these properties of ϕεi . Let us then define

uε(x) =
∞∑
i=1

uBεiϕ
ε
i (x)

for every x ∈ X. The function uε is locally Lipschitz continuous, since it is locally a
finite sum of Lipschitz functions. Furthermore, the sequence (uε)ε converges to u in
L1(X) as ε→ 0 [HKT, Lemma 5.3.(2)].

We need an estimate on the Lipschitz constant of uε. Suppose that x, y ∈ Bε
i and let

J = {j : B2ε
i ∩ B2ε

j 6= ∅}. By the doubling property, balls Bε
i have bounded overlap and

so the cardinality of J is bounded by a constant depending only on the doubling constant
cD, that is #J ≤ c# with c# = c#(cD). In addition Bε

j ⊂ B6ε
i . By the properties of the

partition of unity, we have exactly as in [HKT] that for any x, y ∈ Bε
i

|uε(x)− uε(y)| =

∣∣∣∣∣∑
j∈J

(uBεj − uBεi )(ϕ
ε
j(x)− ϕεj(y))

∣∣∣∣∣
≤ C

d(x, y)

ε

∑
j∈J

|uBεi − uBεj |.

For every j ∈ J we also have that

|uBεi − uBεj | ≤
1

µ(Bε
i )µ(Bε

j )

∫
Bεi

∫
Bεj

|u(y)− u(x)| dµ(y)dµ(x)

≤ 1

µ(Bε
i )µ(Bε

j )

∫
Bεi

∫
B6ε(x)

|u(y)− u(x)| dµ(y) dµ(x)

≤ εC

µ(Bε
i )
µ6ε(B

ε
i ),

where in the last inequality we have used the fact that Bε
j ⊂ B6ε(x) whenever x ∈ Bε

i .
In other words, we have proved that

lip(uε)(x) ≤ C
c#

µ(Bε
i )
µ6ε(B

ε
i )

for every x ∈ Bε
i . Here, µ6ε is as in (3.3). We therefore obtain∫

X

lip(uε)(x) dµ(x) ≤
∑
i∈N

∫
Bεi

lip(uε)(x) dµ(x) ≤ C

∞∑
i=1

c#µ6ε(B
ε
i )

≤ Cµ6ε(X).
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Now, by the assumption and the doubling property of the measure µ, we have by (3.4)

lim inf
ε→0+

µε(X) = lim inf
ε→0+

∫
X

ũBε(x) dµ(x)

≤ C lim inf
ε→0+

1

ε

∫
∆ε

|u(x)− u(y)|√
µ(Bε(x))

√
µ(Bε(y))

dµ(y, x) <∞,

and hence we can find a sequence {εj}j going to 0 such that

sup
j∈N

µεj(X) <∞,

and then the sequence of Lipschitz functions uj = uεj/6 converges to u in L1(X) and

‖Du‖(X) ≤ lim sup
j→∞

∫
X

lip(uj)(x) dµ(x)

≤ C lim inf
ε→0+

1

ε

∫
∆ε

|u(x)− u(y)|√
µ(Bε(x))

√
µ(Bε(y))

dµ(y, x) <∞,

which implies that u ∈ BV(X). �

4. Sets of finite perimeter: A Ledoux type characterization

We shall make use of Theorem 3.1 to connect the sets of finite perimeter to the theory
of heat semigroup in the sense of Ledoux [L]. The reader could also consult [P].

The Ledoux characterization in the limit of (1.1) requires global information of the
decay of the heat extension. So if the space is hyperbolic then the behavior of E and
Rn \E far away from ∂E also might play a role in the limit given in (1.1). We therefore
modify the criterion and consider only regions near ∂E.

Theorem 4.1. Let E ⊂ X be µ-measurable and assume that E has finite measure. Then
we have the following.

(1) If

(4.1) lim inf
t→0+

1√
t

∫
E
√
t\E

TtχE(x) dµ(x) <∞,

then E is of finite perimeter.
(2) If E is of finite perimeter and satisfies the inequality

(4.2) lim inf
r→0

µ
(⋃

x∈∂E Br(x)
)

r
≤ CP (E),

then E satisfies (4.1).

Here, E
√
t is the tubular neighborhood

E
√
t =

⋃
x∈E

B√t(x).
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Furthermore, every set E of finite perimeter can be approximated in the relaxed sense by
open sets of finite perimeter that satisfy inequality (4.2), that is, we can find a sequence
of sets Ek of finite perimeter satisfying (4.2) such that χEk → χE in L1(X) and

P (E) ≤ lim
k→∞

lim inf
t→0+

1√
t

∫
E
√
t\E

TtχEk(x) dµ(x) ≤ CP (E).

We remark that unlike in the case of Theorem 3.1, see Remark 3.2, here we do not
have equivalence between the expression in (4.1) and the perimeter P (E) of E. We only
obtain that

P (E) ≤ C lim inf
t→0+

1√
t

∫
E
√
t\E

TtχE(x) dµ(x).

Proof of Theorem 4.1. Note first that∫
X

|TtχE(x)− χE(x)| dµ(x)

=

∫
X

∣∣∣∣∫
X

p(t, x, y)(χE(y)− χE(x)) dµ(y)

∣∣∣∣ dµ(x)

=

∫
E

∣∣∣∣−∫
X\E

p(t, x, y) dµ(y)

∣∣∣∣ dµ(x)

+

∫
X\E

∣∣∣∣∫
E

p(t, x, y) dµ(y)

∣∣∣∣ dµ(x)

=2

∫
E

∫
X\E

p(t, x, y) dµ(x)dµ(y)

=2

∫
X

∫
X

χX\E(x)p(t, x, y)χE(y) dµ(x)dµ(y)

=2

∫
X\E

TtχE(x) dµ(x).

Hence by the fact that Ttf → f in L1(X) as t→ 0 for each f ∈ L1(X), we have that

lim
t→0+

∫
X\E

TtχE(x) dµ(x) = 0.

Suppose now that in addition,

lim inf
t→0+

1√
t

∫
E
√
t\E

TtχE(x) dµ(x) <∞.
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We want to show that the set E has finite perimeter. By the symmetry of the heat
kernel

2

∫
E

∫
E
√
t\E
p(t, x, y) dµ(y) dµ(x) ≥

∫
E

∫
B√t(x)\E

p(t, x, y) dµ(y)dµ(x)

+

∫
E
√
t\E

∫
B√t(x)∩E

p(t, x, y) dµ(y) dµ(x)

=

∫
∆
√
t

p(t, x, y)|χE(y)− χE(x)| dµ× µ(y, x).

To obtain the last equality above, we used the fact that |χE(x) − χE(y)| = 1 precisely
when

(x, y) ∈ E × (X \ E) ∪ (X \ E)× E,

and zero otherwise.
By estimate (2.3) for the kernel p(t, x, y),

1√
t

∫
E

∫
E
√
t\E
p(t, x, y) dµ(y)dµ(x)

≥ C√
t

∫
∆
√
t∩[(E

√
t∩E)×(E

√
t\E)]

|χE(x)− χE(y)|√
µ(B√t(x))

√
µ(B√t(y))

dµ(y)dµ(x)

=
C√
t

∫
∆
√
t

|χE(x)− χE(y)|√
µ(B√t(x))

√
µ(B√t(y))

dµ(y)dµ(x),

and so we have

lim inf
t→0+

1√
t

∫
∆
√
t

|χE(x)− χE(y)|√
µ(B√t(x))

√
µ(B√t(y))

dµ(y)dµ(x) <∞.

By Theorem 3.1, we conclude that χE ∈ BV(X). This completes the proof of state-
ment (1) of the theorem.

To prove statement (2) of the theorem, suppose that E ⊂ X is open and of finite
perimeter, with µ(E) finite, and that (4.2) is satisfied by E.

For each t > 0 let

E
√
t \ E ⊂

⋃
k≥0

Bk,

where Bk := B2
√
t(xk) with xk ∈ ∂E such that the dilated balls 2λBk have bounded

overlap (3.2), the bound cO of the overlap depending solely on the doubling constant of
the measure µ. For each k ≥ 0, we also write E = E1

k ∪ E2
k , where

E1
k = E ∩Bk, E2

k = E \Bk.
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Then

1√
t

∫
E
√
t\E

TtχE(x) dµ(x) =
1√
t

∫
E

∫
E
√
t\E

p(t, x, y) dµ(y)dµ(x)

≤ 1√
t

∞∑
k=0

∫
E

∫
Bk\E

p(t, x, y) dµ(y)dµ(x)

≤ 1√
t

∞∑
k=0

(∫
E1
k

∫
Bk\E

p(t, x, y) dµ(y)dµ(x)

+

∫
E2
k

∫
Bk\E

p(t, x, y) dµ(y)dµ(x)

)

=:
1√
t

∞∑
k=0

(I1
k + I2

k).

Let us estimate the preceding terms separately, starting with the term I1
k . By (2.4), the

doubling condition and (2.1), and finally by (2.5), we have

I1
k =

∫
E∩Bk

∫
Bk\E

p(t, x, y) dµ(y)dµ(x) ≤
∫
E∩Bk

∫
Bk\E

C

µ(B√t(x))
dµ(y)dµ(x)

≤ C
µ(Bk \ E)

µ(Bk)
µ(E ∩Bk) ≤ C

√
tP (E, 2λBk).

Therefore, we may conclude that

1√
t

∞∑
k=0

I1
k ≤ CP (E).

We point out here again that C represents constants that depend only on the data of X
and whose particular value we do not care about, and that the value of C could change
even within a line.

The second term I2
k is treated as follows. We set

E2
k =

⋃
j≥1

[B2j+1
√
t(xk) \B2j

√
t(xk)] ∩ E =:

⋃
j≥0

Ajk.

By (2.4) we have

I2
k =

∫
E\Bk

∫
Bk\E

p(t, x, y) dµ(y)dµ(x)

≤ C

∫
Bk\E

∞∑
j=1

∫
Ajk

e−C4j√
µ(Bk)

√
µ(B√t(y))

dµ(y)dµ(x)

≤ C
µ(Bk \ E)√

µ(Bk)

∞∑
j=1

∫
Ajk

e−C4j√
µ(B√t(y))

dµ(y).
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By (2.1) we know that whenever y ∈ B2j+1
√
t(xk),

µ(B√t(y))

µ(B2j+1
√
t(xk))

≥ C

( √
t

2j+1
√
t

)qµ
= C2−jqµ .

Therefore,

I2
k ≤ C

µ(Bk \ E)√
µ(Bk)

∞∑
j=1

∫
Ajk

e−C4j2jqµ/2√
µ(B2j+1

√
t(xk))

dµ(y)

≤ C
µ(Bk \ E)√

µ(Bk)

∞∑
j=1

e−C4j2jqµ/2√
µ(B2j+1

√
t(xk))

µ(Ajk)

≤ C
µ(Bk \ E)√

µ(Bk)

∞∑
j=1

e−C4j2jqµ/2
√
µ(B2j+1

√
t(xk)).

By (2.1),

µ(B2j+1
√
t(xk)) ≤ C2jqµµ(B√t(xk)) = C2jqµµ(Bk).

It follows that

I2
k ≤ C

µ(Bk \ E)√
µ(Bk)

∞∑
j=0

e−C4j2jqµ
√
µ(Bk) ≤ Cµ(Bk \ E).

Therefore, by the bounded overlap of the balls Bk,

1√
t

∞∑
k=0

I2
k ≤ C

µ(E
√
t \ E)√
t

,

and the fact that (4.2) holds for E, completes the proof of the statement (2) of the
theorem.

Finally, the last claim of the theorem follows from the proof of [BH, Theorem 1.1] (see
Section 3 of [BH]), see also [KKST]. This completes the proof of the theorem. �

Remark 4.2. The estimates of
∑∞

k=0 I
1
k and

∑∞
k=0 I

2
k hold also for all open sets E of

finite perimeter. However, while for all open sets E of finite perimeter we do have that

lim inf
t→0+

1√
t

∞∑
k=0

I1
k ≤ CP (E) <∞,

to know that

lim inf
t→0+

1√
t

∞∑
k=0

I2
k ≤ CP (E),

we need equation (4.2). Hence, our requirements for the set E in claim (2) of the
theorem. For example, in R2 the set

E =
⋃
k≥0

B2−k(qk)
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with {qk}k≥0 an enumeration of Q×Q is an open set of finite perimeter, but µ(E
√
t\E) =

∞ for all t > 0.
This may merely be an artifact of our method of proof. Note that in Rn, an alternative

proof due to Bakry shows that the additional requirement (4.2) is not needed to obtain
the Ledoux-type characterization (4.1) of sets of finite perimeter. We do not know how
to adapt the proof of Bakry in such a generality considered in our paper.

5. Total variation: De Giorgi characterization under Bakry–Émery
condition

We close this paper by proving a metric space version of the De Giorgi characterization
[DeG] of the total variation of a BV function. Our approach is based on recent works
by Amborsio, Gigli, and Savaré [AGS] and is essentially a consequence of [S].

We refer to [CM, MP, GP, BMP] for the De Giorgi characterization on Riemannian
manifolds and on Carnot groups, and to [AMPP] for the same result but with the semi-
group of a rather general second order elliptic operator on domains in Euclidean spaces.
All of these results require a condition on the curvature of the spaces; these conditions
are related to the Ricci curvature in the case of Riemannian manifolds. In [MP] the
requirement was on a lower bound of Ricci curvature plus a technical requirement on
a lower bound on the volume of balls. It was pointed out in [CM] that, thanks to the

works of Bakry and Émery (see for instance [BE]), the same result can be obtained only
with a lower bound condition on the Ricci curvature. In [GP] it has been shown that
one can also require that the Ricci tensor can be split into two parts, one bounded below
and one belonging to a Kato class. Also in this case the De Giorgi characterization of
the total variation holds true.

We recall the definition of BE(K,∞) condition as formulated in [BE, Ba].

Definition 5.1 (Bakry–Émery condition). The Dirichlet form E given in Section 2.3 in
relation to the Cheeger differentiable structure is said to satisfy the BE(K,∞) condition,
K ∈ R, if for every f ∈ D(A) such that Af ∈ N1,2(X), we have

(5.1)
1

2

∫
X

|Df |2Aϕdµ−
∫
X

ϕDf ·DAf dµ ≥ K

∫
X

ϕ|Df |2 dµ,

whenever ϕ ∈ D(A) ∩ L∞(X) is nonnegative such that Aϕ ∈ L∞(X).

We remind the reader about the connections between the BE(K,∞) condition and
the doubling property and a Poincaré inequality assumed in the previous sections. It
is known that a 1-Poincaré inequality follows from the BE(K,∞) condition, or even
from weaker curvature conditions like the CD(K,∞) condition of Lott–Sturm–Villani.
However, a complete separable metric space endowed with a probability measure and
satisfying the BE(K,∞) condition need not be doubling.

In the appendix, we recall some consequences of the Bakry–Émery condition. These
consequences are needed in the proof of the main result of this section, Proposition 5.2,
and have been investigated for instance in [S]. The setting in [S] is rather general, and
hence for the convenience of the reader we provide sketches of simplified proofs of these
results in the appendix.
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The main result of this section is the following.

Proposition 5.2. Let u ∈ L1(X). Suppose that

(5.2) lim sup
t→0+

∫
X

|DTtu| dµ <∞,

then u ∈ BV(X). Here, by assuming that u satisfies (5.2), we are also implicitly assum-
ing that Ttu ∈ N1,1(X) for each t > 0. On the other hand, whenever (5.2) holds and
if a Dirichlet form E compatible with the differentiable structure satisfies the BE(K,∞)
condition, we have

‖Dcu‖(X) = lim
t→0+

∫
X

|DTtu| dµ.

By the self-improvement property of the Bakry-Émery condition BE(K,∞), we can
easily prove Proposition 5.2. Of course, it would be interesting to obtain a similar result,
or even the weaker version as in [BMP], without imposing the Bakry–Émery condition
on E.

Proof of Proposition 5.2. The claim that (5.2) implies that u ∈ BV(X) follows imme-
diately from the definition of BV(X) upon noticing that as u ∈ L1(X) we must have
Ttu → u in L1(X) as t → 0 (see Remark 2.1(10)) and Ttu ∈ N1,1(X). Furthermore, it
is also immediate that

‖Dcu‖(X) ≤ lim sup
t→0+

∫
X

|DTtu| dµ.

Let u ∈ BV(X). We consider a sequence of Lipschitz functions (fj)j∈N ⊂ Lipc(X)
such that fj → u in L1(X) and

‖Dcu‖(X) = lim
j→∞

∫
X

|Dfj| dµ.

By the lower semicontinuity of the total variation together with Proposition 6.3 and the
fact that (Tt)t>0 is a contraction semigroup on L1(X) (see Remark 2.1(10)), we conclude

‖Dcu‖(X) ≤ lim inf
t→0+

∫
X

|DTtu| dµ ≤ lim inf
t→0+

lim inf
j→∞

∫
X

|DTtfj| dµ

≤ lim inf
t→0+

lim inf
j→∞

e−Kt
∫
X

Tt|Dfj| dµ

≤ lim inf
t→0+

lim inf
j→∞

e−Kt
∫
X

|Dfj| dµ = ‖Dcu‖(X),

and hence the proof is complete. �

In conclusion, we note that by the analog of both the De Giorgi characterization
and the Ledoux characterization of functions of bounded variation demonstrated in this
paper, even in the general metric measure space setting (with the measure doubling and
supporting a 1-Poincaré inequality), the behavior of sets of finite perimeter is intimately
connected to the heat semigroup.
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6. Appendix

In this appendix we gather together properties associated with the Bakry–Émery
condition in Section 5. In the metric setting a related condition, guaranteed by the log-
arithmic Sobolev inequality, was first studied in [KRS]. The results in this appendix are
from [S] adapted to our purposes. Given that we have access to the Cheeger differential
structure related to the Dirichlet form, some of the arguments in [S] are simplified in
our setting.

In the sequel, the following Pazy convolution operator will play an important role:

βεf =
1

ε

∫ ∞
0

Tsf%(s/ε) ds.

Here % ∈ C∞c (0,∞) is a nonnegative convolution kernel with
∫∞

0
%(s) ds = 1. We also

define the measure operator A∗ by setting

D(A∗) =
{
f ∈ N1,2(X) : there exists ν ∈M(X) such that

E(f, v) = −
∫
X

v dν for all v ∈ Lipc(X)
}
,

and denote by A∗f the measure ν. HereM(X) denotes the set of finite Borel measures
on X. The integration by parts formula∫

X

Df ·Dϕdµ = −
∫
X

ϕdA∗f

can be extended from functions ϕ ∈ Lipc(X) to functions ϕ ∈ N1,2(X) ∩ L∞(X) if
on the right hand side we consider the representative ϕ̃ ∈ N1,2(X) of ϕ, since A∗f
does not charge sets of zero Sobolev 2-capacity. We refer to [MMS] for more details.
Since µ is doubling and supports a 2-Poincaré inequality, and because X is assumed
to be complete, it follows that Lipschitz functions with compact support form a dense
subclass of N1,2(X) (see [Sh] for example).

We consider the function class

D∞ = {f ∈ D(A) ∩ Lipb(X) : Af ∈ N1,2(X)};
as we shall see in Proposition 6.1, if f ∈ D∞, then |Df |2 ∈ D(A∗). We shall denote by
Γ∗2(f) the measure

Γ∗2(f) =
1

2
A∗|Df |2 − (Df ·DAf)µ = Γ⊥2 (f) + γ2(f)µ,

where Γ⊥2 (f) ⊥ µ is the singular part of the measure Γ∗2(f) and γ2(f) its absolute
continuous component.

We list in the following proposition the main properties of functions in D∞ needed in
the proof of Proposition 5.2. We refer to [S] for the details of the proof, but we provide
a sketch of the proof for the convenience of the reader.

Proposition 6.1. Suppose that f ∈ D∞ and that E satisfies the BE(K,∞) condition.
Then

(1) |Df |2 ∈ N1,2(X);
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(2) |Df |2 ∈ D(A∗) and for any nonnegative ϕ ∈ Lipc(X),

1

2

∫
X

ϕdA∗|Df |2 dµ−
∫
X

ϕDf ·DAf dµ ≥ K

∫
X

ϕ|Df |2 dµ;

(3) we have ∫
X

ϕ|D|Df |2|2 dµ ≤ 4

∫
X

ϕ
(
γ2(f)−K|Df |2

)
dµ

for any nonnegative ϕ ∈ Lipc(X).

Proof. Let us prove (1). Since f ∈ D∞, condition BE(K,∞) implies that∫
X

|Df |2Aϕdµ ≥ 2

∫
X

(K|Df |2 +Df ·DAf)ϕdµ

for any positive ϕ ∈ D(A). Then, by setting u = |Df |2 and uε = βεu, taking into
account the fact that for any ϕ ∈ D(A), since A commutes with the Pazy convolution
βε, there holds ∫

X

uεAϕdµ =

∫
X

uAβεϕdµ.

We obtain ∫
X

|Duε|2 dµ =−
∫
X

uεAuε dµ = −
∫
X

uAβεuε dµ

≤− 2

∫
X

(K|Df |2 +Df ·DAf)βεuε dµ.

Passing to the limit as ε→ 0, we arrive at the conclusion that |Df |2 ∈ N1,2(X) with∫
X

|D|Df |2|2 dµ ≤ −2

∫
X

(K|Df |2 +Df ·DAf)|Df |2 dµ.

Let us then prove (2). Using the BE(K,∞) condition and by approximating any
Lipc(X) function with functions in D(A), we can deduce that∫

X

Auεϕdµ ≥ −
∫
X

gβεϕdµ = −
∫
X

βεgϕ dµ

for any ϕ ∈ Lipc(X), where we have defined

g = −2(K|Df |2 +Df ·DAf).

Passing to the limit as ε→ 0, we define

Lf (ϕ) := −
∫
X

D|Df |2 ·Dϕdµ+

∫
X

gϕ dµ

which is a positive linear functional defined on Lipc(X). If in the estimate

0 ≤
∫
X

(Auε + βεg)ϕdµ
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we take an increasing sequence of Lipschitz functions ϕn such that 0 ≤ ϕn ≤ 1, ϕn ≡ 1
on Bn(x0) and ϕn ≡ 0 on X\Bn+1(x0) for a fixed point x0, by the dominated convergence
theorem,

0 ≤
∫
X

(Auε + βεg)ϕn dµ ≤
∫
X

(Auε + βεg) dµ =

∫
X

βεgdµ =

∫
X

g dµ.

Note that ∫
X

Auε dµ =

∫
X

χXAuε dµ = −
∫
X

Du ·DχXdµ = 0

since DχX = 0. We also note that

|Auε| ≤
1

ε

∫ Sε

sε

|ATs(u)|ρ(s/ε) ds ≤ Cε

∫ Sε

sε

|ATs(u)| ds,

and, therefore, Auε is in L1(X).
We have obtained

|Lf (ϕ)| ≤ ‖ϕ‖∞
∫
X

g dµ,

and then Lf can be represented by a positive measure λ ∈ M(X). This proves that
|Df |2 ∈ D(A∗) with

A∗|Df |2 = λ− gµ.
The positivity of the measure

1

2
A∗|Df |2 − (Df ·DAf +K|Df |2)µ

follows by the positivity of λ.
The proof of (3) is rather technical and does not simplify in our setting, so we refer

to [S, Theorem 3.4]. �

The Bakry–Émery condition in Definition 5.1 has equivalent formulations, we refer to
[W] for the Riemannian case and to [AGS, S] for the metric space setting. We recall
here some of those equivalent formulations that we shall use.

Proposition 6.2. The following are equivalent:

(1) E satisfies the BE(K,∞) condition;
(2) for any f ∈ N1,2(X), any t > 0, and for every nonnegative ϕ ∈ Lipc(X)

(6.1)

∫
X

ϕ|DTtf |2 dµ ≤ e−2Kt

∫
X

ϕTt|Df |2 dµ;

(3) for any f ∈ L2(X), any t > 0, and for every nonnegative ϕ ∈ Lipc(X)

(6.2)
e2Kt − 1

K

∫
X

ϕ|DTtf |2 dµ ≤
∫
X

ϕ(Ttf
2 − (Ttf)2) dµ.

Proof. Let us show that (1) implies (2). Let f ∈ N1,2(X) and ϕ ∈ D(A) ∩ L∞(X) such
that Aϕ ∈ L∞(X) and ϕ ≥ 0 be fixed. We define

Gϕ(s) =

∫
X

Tsϕ|DTt−sf |2 dµ.



24 MAROLA, MIRANDA JR., AND SHANMUGALINGAM

Taking derivatives, and by BE(K,∞), we get

G′ϕ(s) =

∫
X

ATsϕ|DTt−sf |2 dµ− 2

∫
X

TsϕDTt−sf ·DATt−sf dµ

≥2K

∫
X

Tsϕ|DTt−sf |2 dµ = 2KGϕ(s).

If for some s > 0, Gϕ(s) = 0, then if ϕ is not identically zero, Tsϕ > 0 and we must have
|DTt−sf | = 0 at µ-a.e. Hence Tt−sf is constant and thus f is also constant. In this case
(2) is trivially satisfied. On the other hand, if Gϕ(s) > 0, we can integrate and conclude
that

Gϕ(t) ≥ Gϕ(0)e2Kt,

which is condition (2).
Let us show that (2) implies (3). By introducing the function

Gϕ(s) =

∫
X

Tsϕ(Tt−sf)2 dµ,

taking derivatives, and taking into account (2), we obtain

G′ϕ(s) =

∫
X

ATsϕ(Tt−sf)2 dµ− 2

∫
X

TsϕTt−sfATt−sf dµ = 2

∫
X

ϕTs|DTt−sf |2 dµ

≥ 2e2Ks

∫
X

ϕ|DTsTt−sf |2 dµ = 2e2Ks

∫
X

ϕ|DTtf |2 dµ.

By integrating with respect to s, we obtain condition (3).
Let us now assume (3) and let us take f ∈ D(A) such that Af ∈ N1,2(X) and ϕ ∈
D(A) ∩ L∞(X) with Aϕ ∈ L∞. We can define the function

Fϕ(t) =

∫
X

ϕ(Ttf
2 − (Ttf)2) dµ.

The second order Taylor expansion formula implies

Fϕ(t) = 2t

∫
X

ϕ|Df |2 dµ+ t2
(∫

X

|Df |2Aϕdµ+ 2

∫
X

ϕDf ·DAf dµ
)

+ o(t2).

In the same way, we obtain that

Gϕ(t) =
e2Kt − 1

K

∫
X

ϕ|DTtf |2 dµ

= 2t

∫
X

ϕ|Df |2dµ+ 2t2
(
K

∫
X

ϕ|Df |2 dµ+ 2

∫
X

ϕDf ·DAf dµ
)

+ o(t2).

Then, since

0 ≤Fϕ(t)−Gϕ(t)

=2t2
(∫

X

Aϕ|Df |2 dµ− 2

∫
X

ϕDf ·DAf dµ− 2K

∫
X

ϕ|Df | dµ
)

+ o(t2)

we obtain condition (1). �
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Under the above hypotheses, we can prove the following self-improving result of
the Bakry–Émery condition. The result is essentially contained in a monograph by
Bakry [Bakry], see also Deuschel and Strook [DS, Lemma 6.2.39], in the Riemannian

setting. The self-improvement of the Bakry–Émery condition has also been obtained by
Savaré in [S, Corollary 3.5] in very general setting. We provide a proof here for the sake
of completeness.

Proposition 6.3. Suppose that a Dirichlet form E compatible with the differentiable
structure satisfies the BE(K,∞) condition for some K ∈ R. Then for any f ∈ N1,2(X),
any t > 0, and every nonnegative ϕ ∈ Lipc(X), we have∫

X

ϕ|DTtf | dµ ≤ e−Kt
∫
X

ϕTt|Df | dµ.

Proof. We start by considering f ∈ D∞; we point out that by (6.2), D∞ is dense in
N1,2(X). Indeed, Lipb(X) is dense in N1,2(X) and taking approximations of functions
f ∈ N1,2(X) ∩ Lipb(X) in terms of the semigroup, we get that Ttf ∈ D∞ for any t > 0
by (6.2) and

ATtf = Tt/2ATt/2f ∈ D(A) ⊂ N1,2(X).

Here we also used the fact that by the Bakry–Émery condition (6.2), if f ∈ Lipb(X)
then Ttf ∈ Lipb(X).

Let us fix δ > 0 and set

(6.3) uδt (x) :=
√
|DTtf(x)|2 + δ2 − δ.

We also fix a nonnegative function ϕ ∈ N1,2(X) ∩ L∞(X) and introduce the function

Gδ(s) =

∫
X

Tsϕu
δ
t−s dµ.

If we take the derivative, we obtain:

G′δ(s) =

∫
X

ATsϕu
δ
t−s dµ−

∫
X

Tsϕ

uδt−s + δ
DTt−sf ·DATt−sf dµ

= −
∫
X

1

2(uδt−s + δ)
DTsϕ ·D|DTt−sf |2 dµ−

∫
X

Tsϕ

uδt−s + δ
DTt−sf ·DATt−sf dµ

=

∫
X

Tsϕ

2(uδt−s + δ)
dA∗|DTt−sf |2 −

1

4

∫
X

Tsϕ

(uδt−s + δ)3
|D|DTt−sf |2|2 dµ

−
∫
X

Tsϕ

uδt−s + δ
DTt−sf ·DATt−sf dµ

=

∫
X

Tsϕ

uδt−s + δ
dΓ∗2(Tt−sf)− 1

4

∫
X

Tsϕ

(uδt−s + δ)3
|D|DTt−sf |2|2 dµ

≥
∫
X

Tsϕ

uδt−s + δ
γ2(Tt−sf) dµ

−
∫
X

Tsϕ

(uδt−s + δ)3
|DTt−sf |2

(
γ2(Tt−sf)−K|DTt−sf |2

)
dµ,
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where in the last line we have used the properties contained in Proposition 6.1. We have

G′δ(s) ≥
∫
X

Tsϕ

(uδt−s + δ)3

(
δ2γ2(Tt−sf)−Kδ2|DTt−sf |2

+K|DTt−sf |2(uδt−s + δ)2
)
dµ

≥K
∫
X

Tsϕ

uδt−s + δ
|DTt−sf |2 dµ ≥ K

∫
X

Tsϕu
δ
t−s dµ,

where we used the fact that γ2(f) − K|Df |2 ≥ 0 µ-a.e. by Proposition 6.1. We thus
have G′δ(s) ≥ KGδ(s), and by integrating this over (0, t), we arrive at∫

X

ϕ(
√
|DTtf |2 + δ2 − δ) dµ ≤ e−Kt

∫
X

Ttϕ(
√
|Df |2 + δ2 − δ) dµ.

Passing to the limit δ → 0 and using the fact that the semigroup is self-adjoint, we
finally obtain the desired inequality. �
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