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Ectonucleotidases are extracellular enzymes with a pivotal role in inflammation that
hydrolyse extracellular purine and pyrimidine nucleotides, e.g., ATP, UTP, ADP, UDP,
AMP and NAD+. Ectonucleotidases, expressed by virtually all cell types, immune cells
included, either as plasma membrane-associated or secreted enzymes, are classified
into four main families: 1) nucleoside triphosphate diphosphohydrolases (NTPDases), 2)
nicotinamide adenine dinucleotide glycohydrolase (NAD glycohydrolase/ADP-ribosyl
cyclase/cyclic ADP-ribose hydrolase 1), 3) ecto-5′-nucleotidase (NT5E), and 4) ecto-
nucleotide pyrophosphatase/phosphodiesterases (NPPs). Concentration of ATP, UTP
and NAD+ can be increased in the extracellular space thanks to un-regulated, e.g., cell
damage or cell death, or regulated processes. Regulated processes include secretory
exocytosis, connexin or pannexin hemichannels, ATP binding cassette (ABC)
transporters, calcium homeostasis modulator (CALMH) channels, the ATP-gated
P2X7 receptor, maxi-anion channels (MACs) and volume regulated ion channels
(VRACs). Hydrolysis of extracellular purine nucleotides generates adenosine, an
important immunosuppressant. Extracellular nucleotides and nucleosides initiate or
dampen inflammation via P2 and P1 receptors, respectively. All these agents,
depending on their level of expression or activation and on the agonist concentration,
are potent modulators of inflammation and key promoters of host defences, immune
cells activation, pathogen clearance, tissue repair and regeneration. Thus, their
knowledge is of great importance for a full understanding of the pathophysiology of
acute and chronic inflammatory diseases. A selection of these pathologies will be briefly
discussed here.
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INTRODUCTION

It is thought that ATP might be the most ancient extracellular messenger used by primordial cells to
send messages to their neighbours, or simply as a passive signal of danger or distress (Verkhratsky
et al., 2020). Every messenger system requires the messenger (i.e. ATP), antennae that recognize and
decode the messenger (i.e. purinergic receptors), and a mechanism to stop the signal and prevent
over-stimulation or receptor desensitization (i.e. nucleotidases). Therefore, it is likely that
ectonucleotidases appeared early in evolution as close cell-to-cell communication partners of
ATP and the early purinergic receptors, likely of the P2X subtype (Verkhratsky et al., 2020).
Now ectonucleotidases are found in virtually all mammalian tissues, and homologues have been even
identified in platyhelmints (Schistosoma mansoni), where they exhibit a similar enzyme activity,
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i.e. ATP and possibly NAD+ hydrolysis, as the mammalian
enzymes (Ferrero et al., 2019). Thus, ectonucleotidases are an
indispensable enzyme system and an appealing target of
innovative therapy.

ECTONUCLEOTIDASES SET
EXTRACELLULAR NUCLEOTIDE AND
NUCLEOSIDE LEVELS
Ectonucleotidases are enzymes designated to hydrolyse
extracellular nucleotides, mainly ATP, UTP, and NAD+, which
generate metabolites relevant to immune and inflammatory
responses. They are expressed at high level by cells of the
immune system, mainly at the cell surface, and classified into four
major families: ecto-nucleoside triphosphate diphosphohydrolases
(NTPDases) (EC 3.6.1.5), nicotinamide adenine dinucleotide
glycohydrolase (NAD glycohydrolase/ADP-rybosil cyclase/cyclic

ADP-ribose hydrolase 1)- ecto-5′-nucleotidase (NT5E/CD73)
(EC 3.1.3.5), and ecto-nucleotide pyrophosphatase/
phosphodiesterases (NPPs) (Zimmermann et al., 2012; Linden
et al., 2019) (Table 1) (Figure 1). In addition, nucleoside
diphosphate kinase (NDPK), adenylate kinase (AK) and ecto-
F1-F0 ATP synthase also participate in the control of extracellular
nucleotide levels (Moser et al., 2001).

NTPDases, basically expressed in all tissues (Robson et al.,
2006; Yegutkin, 2008; Kukulski et al., 2011b), hydrolyse
nucleoside triphosphates and diphosphates producing
nucleoside monophosphates (Table 1). Eight members of this
family have been identified so far in mammals. Of these,
NTPDase1/CD39, NTPDase2/CD39L1, NTPDase3/CD39L3,
and NTPDase8/hATPDase are expressed on the cell surface,
NTPDases 4–7 are present in intracellular organelles, while
NTPDases 5 and 6 are also found as secreted forms (Robson
et al., 2006; Knowles, 2011). The NTPDases are very likely the
most important extracellular nucleotide-hydrolysing enzymes.

TABLE 1 | Main ectonucleotidases and ecto-enzymes involved in regulation of purinergic signalling.

Ecto-enzyme Substrates Products Expression Function Ref

NTPDase1/CD39 ATP, ADP ADP, AMP Monocytes, DCs, NK cells,
Treg cells, ECs

Converts ATP/ADP to AMP Mizumoto et al. (2002); Deaglio et al. (2007);
Deaglio and Robson (2011); Kishore et al. (2018)

NAD glycohydrolase/
CD38

NAD+, cADPR cADPR,
AMP

Activated T and B cells,
plasma cells, DCs

Converts NAD+ to cADP ribose Linden et al. (2019)

NPP1 ATP,
ADP, NAD+

AMP Inflammatory cells Production of AMP starting
from different substrates

Wang et al. (2018a)

NPP2 LPC, ATP LPA, AMP Inflammatory and tumor
cells

Converts LPC to LPA Sevastou et al. (2013)

NT5E/CD73 AMP Adenosine Follicular DCs, ECs, T and
B lymphocytes

Converts AMP to adenosine Thomson et al. (1990); Bono et al. (2015); Antonioli
et al. (2016)

ADA Adenosine Inosine DCs and lymphocytes Converts adenosine to inosine Franco et al. (1998); Desrosiers et al. (2007)

LPC, Lysophosphatidylcholine; LPA, lysophosphatidic acid; ECs, endothelial cells; DCs, dendritic cells; ADA, adenosine deaminase.

FIGURE 1 | Schematic rendition of the basic elements of the purinergic signalling. Ectonucleotidases, NTPDase1/CD39, NAD glycohydrolase/CD38, NPPs and
NT5E/CD73, hydrolyse extracellular ATP and NAD+, generating ADP, AMP, and adenosine (ADO). Extracellular ATP and ADP activate different P2X ionotropic and/or
P2Ymetabotropic receptors, leading to changes in the intracellular ion and/or cAMP concentration. Extracellular ADO stimulates P1 receptors responsible of modulation
of adenylate cyclase (AC) activity and leading to changes in cAMP and Ca2+ concentration.
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Optimal activity requires millimolar concentrations of Ca2+ or
Mg2+ and a pH in the 7–8 range. The NTPDases expressed on the
plasma membrane, i.e. NTPDases 1, 2, 3, and 8, hydrolyse both
nucleoside triphosphates and diphosphates, while the other
members of the family show a more restricted substrate
selectivity. Thus, extracellular ATP, UTP, ADP, and UDP are
hydrolysed to AMP and UMP. NTPDase1/CD39 is the best
characterized ectonucleotidase, widely expressed on different
immune cell types, e.g., monocytes, dendritic cells (DCs), T
regulatory (Treg) cells and natural killer (NK) cells, besides
vascular endothelial cells (Mizumoto et al., 2002; Deaglio
et al., 2007; Deaglio and Robson, 2011; Kishore et al., 2018).
NTPDase activity has been found in blood circulating
microparticles (MPs) (Jiang et al., 2014). MPs, produced and
released by different cell types, act at intercellular level as vehicles
for cell-to-cell transfer of enzymes, receptors and miRNAs. MP-
associated NTPDase activity was found to dampen endothelial
cell activation by modulating exchange of regulatory signals
between leucocytes and vascular cells (Banz et al., 2008).

The NAD glycohydrolase/CD38, a cell surface glycoprotein
expressed in thymocytes, activated peripheral blood T and B cells,
plasma cells, and DCs, hydrolyses NAD+ to cyclic-ADP ribose
(cADPR) (Table 1). Since it can be released in a soluble form or
can be internalized, NAD glycohydrolase/CD38 has likely both an
extracellular and an intracellular function. In fact, cADPR is an
intracellular messenger triggering Ca2+ release from intracellular
stores. Extracellular cADPR on the contrary is converted to AMP
by the NAD glycohydrolase/CD38 itself, or by NPP1. AMP is
eventually degraded to adenosine by NT5E/CD73. In mice, NAD
glycohydrolase/CD38 is necessary formigration of mature DCs to
secondary lymphoid tissues, and accordingly NAD
glycohydrolase/CD38 deficiency results in impairment of
soluble immunity to T cell–dependent antigens (Wykes et al.,
2004). Dysregulation of NAD glycohydrolase/CD38 has been
implicated in several inflammatory pathologies such as
diabetes, heart disease, asthma and cancer (Linden et al.,
2019). The combined NAD glycohydrolase/CD38-NT5E/CD73
activity is very important for the generation of
immunosuppressive adenosine at inflammatory sites and in
the tumor microenvironment (TME). Hydrolysis of
extracellular NAD+ affects the immune response in multiple
ways, including a protective activity on Treg and NK cells
(Linden et al., 2019). By removing extracellular NAD+, NAD
glycohydrolase/CD38 inhibits ADP-ribosyltransferase 2.2
(ART2.2), an ectoenzyme that transfers ADP-ribose from
NAD+ to the P2X7 receptor (P2X7R), thus lowering the
activation threshold of this receptor by extracellular ATP and
facilitating apoptosis (Adriouch et al., 2008; Scheuplein et al.,
2009; Schwarz et al., 2009). This mechanism, however, is only
active in mice as human T lymphocytes lack ART2.2.

A key role in purinergic signalling is played by NT5E/CD73,
the main enzyme producing extracellular adenosine from AMP.
Although in several tissues phosphatases contribute to conversion
of AMP to adenosine, NT5E/CD73 is the dominant adenosine-
generating enzyme. NT5E/CD73 has been described both as a
Zn2+-binding glycosylphosphatidylinositol (GPI)-anchored,
extracellularly oriented, homo-dimeric protein, and as a

soluble form (Airas et al., 1997; Yegutkin et al., 2000). The
two 70-kD subunits host binding sites for catalytic ions at the
N-terminal domain, and an AMP binding site at the C-terminal
domain. NT5E/CD73 is expressed by stromal cells, follicular DCs,
endothelial cells, neutrophils, macrophages and by
subpopulations of human T lymphocytes (Bono et al., 2015)
(Table 1). Soluble NT5E/CD73, mainly shed from endothelial
cells and lymphocytes, is present both in serum and lymph in
healthy conditions (Yegutkin et al., 2015), but its concentration
increases during inflammation (Schneider et al., 2019). NT5E/
CD73 hydrolyzes both ribo- and deoxyribo-nucleoside 5′-
monophosphates, among which AMP with high affinity, and
CMP, UMP, IMP, and GMP with low affinity. ADP binds to the
catalytic site of NT5E/CD73 but is not hydrolysed, therefore
acting as competitive inhibitor (Naito and Lowenstein, 1981).
ADP generated from released ATP inhibits NT5E/CD73 and
delays adenosine formation, ultimately promoting inflammation
(Vieira et al., 2014). Hydrolysis of extracellular ADP by other
ectonucleotidases is therefore needed to prevent NT5E/CD73
inhibition.

NPPs are ecto-enzymes that hydrolyse a wide range of
substrates (Table 1). The NPP family includes seven
members, NPP1–7, according to their order of cloning.
NPP1–3 hydrolyse pyrophosphate or phosphodiester bonds
in a wide variety of substrates, e.g., nucleoside triphosphates
and diphosphates, NAD+, FAD, UDP-sugars, and di-
nucleoside polyphosphates (Stefan et al., 2006). NPP2, also
named autotaxin, hydrolyses phospholipids more efficiently
than nucleotides, acting as a lysophospholipase D, to generate
the bioactive phospholipid mediators lysophosphatidic acid
(LPA) and sphingosine-1-phosphate (S1P) (Umezu-Goto
et al., 2002). LPA and S1P promote a variety of cell
responses, among which migration, proliferation, tumor cell
survival and angiogenesis (Valdes-Rives and Gonzalez-Arenas,
2017). The NPP2–LPA axis has been implicated in various
physiological and pathological pathways, including chronic
inflammatory diseases such as multiple sclerosis, rheumatoid
arthritis, hepatitis and pulmonary fibrosis (Sevastou et al.,
2013). NPP6 and 7 hydrolytic activity is restricted to
phospholipids, whereas catalytic properties of NPP4 and 5
remain unknown.

In addition to adenosine-producing ecto-enzymes, an
important component of the extracellular purine-inactivating
chain is adenosine deaminase (ADA) which catalyses the
deamination of adenosine to inosine (Table 1). ADA is widely
expressed in different tissues such as thymus, spleen, intestine
and other non-lymphoid tissues (Moriwaki et al., 1999; Spychala,
2000), and is also present as an ecto-enzyme on the plasma
membrane of DCs (Desrosiers et al., 2007) and lymphocytes
(Franco et al., 1998).

Extracellular ATP is sequentially hydrolysed to ADP and AMP
by NTPDase1/CD39, or can be directly hydrolysed to AMP by
NPPs. AMP can be also generated from NAD+ via sequential
activity of NAD glycohydrolase/CD38 and NPP1 (Linden et al.,
2019), and is catabolized to adenosine by NT5E/CD73. In
conclusion, ectonucleotidases regulate the extracellular
concentration of ATP, NAD+ and other nucleotides, and their
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conversion into several bioactive metabolites (Giuliani et al.,
2018; Boison and Yegutkin, 2019).

THE DIFFERENT PATHWAYS
RESPONSIBLE FOR NUCLEOTIDE
RELEASE
ATP, UTP, ADP, and NAD+ are released into the extracellular
space via either un-regulated, e.g., cell damage or death, or
regulated mechanisms (Lazarowski et al., 2011; Burnstock,
2012). The mechanisms responsible for controlled release
include secretory exocytosis, connexin or pannexin
hemichannels (Lohman and Isakson, 2014; Dahl, 2015), ATP
binding cassette (ABC) transporters, calcium homeostasis
modulator (CALMH) channels, the ATP-gated P2X7R
(Pellegatti et al., 2005; Suadicani et al., 2006) and two classes
of channels relevant for maintenance of normal intracellular
osmolarity, i.e. maxi-anion channels (MACs) and volume
regulated ion channels (VRACs) (Taruno, 2018) (Figure 2).

Regulated exocytosis is a main mechanism driving ATP
release from intact cells (Imura et al., 2013). ATP storage
inside exocytotic vesicles is due to a vesicular nucleotide
transporter (VNUT) localized on the membrane of secretory
vesicles (Sawada et al., 2008; Miyaji et al., 2011). VNUT
accumulates ATP into the lumen exploiting the proton-
dependent electrochemical gradient established by a vacuolar-
ATPase (v-ATPase) (Nelson et al., 2000). Fusion of the exocytotic
vesicles with the plasma membrane by the soluble
N-ethylmaleimide-sensitive factor attachment protein receptor
(SNARE)-mediated route (Sudhof and Rothman, 2009)
ultimately allows the release of nucleotides into the
extracellular space (Martens and McMahon, 2008; Moriyama
et al., 2017).

Intercellular exchange of ions and small molecules occurs via
gap-junction channels formed by innexins in invertebrates and
connexins in vertebrates. Vertebrates also express innexin

homologs, e.g., the pannexins, which make channels, usually
hemi-channels. Although connexins and pannexins have no
significant sequence homology, they share similarities in
quaternary structure and in membrane topology (Beyer and
Berthoud, 2018). The N- and C-terminal domains are
localized on the cytoplasmic side of the plasma membrane,
four stretches span the plasma membrane, and two loop
domains are present on the cytoplasmic and the extracellular
side (D’Hondt et al., 2009; Scemes et al., 2009). While pannexins
only form hemichannels, connexins can assemble as both gap
junctions and hemichannels (Sosinsky et al., 2011; Lohman and
Isakson, 2014; Dahl, 2015). The hexameric membrane structures
formed by assembly of connexins or pannexins, respectively
named connexons and pannexons, allow small cation (e.g.,
Na+ and Ca2+) influx (Baroja-Mazo et al., 2013; Penuela et al.,
2013), as well as transit of molecules of MW up to 1–2 kDa, such
as ATP, glutamate and prostaglandins (Bao et al., 2004; Kang
et al., 2008). Connexin-43 and pannexin-1 are thought to be the
main gap junction-like channels involved in ATP release (Junger,
2011).

Connexins participate in intercellular communication in
various physiological and pathological settings such as cell
growth and differentiation, endocrine and exocrine secretion,
immune response, inflammation and tumors (Mese et al., 2007;
Herve and Derangeon, 2013; Leybaert et al., 2017; Villanelo et al.,
2017; Wong et al., 2017; Cocozzelli and White, 2019). Connexins
are classified according to theMWof their basic subunit, of which
21 isoforms are known in humans (Kar et al., 2012). Gap
junctions established by connexons allow direct
communication between the cytoplasm of adjacent cells, while
undocked connexin hemichannels allow release of low MW
cytoplasmic components into the extracellular milieu (Begandt
et al., 2017; Belousov et al., 2017; Leybaert et al., 2017). Connexin
hemichannels are very likely to be in the closed state in resting
cells, transitioning to an open state in response to different
stimulating agents (Wang et al., 2013a). Connexin-43, -37, -26
and -36 have been shown to support ATP release (Wang et al.,

FIGURE 2 | Schematic rendition of the different pathways for regulated nucleotide release. ATP generated inside the cell by glycolysis and oxidative
phosphorylation (OXPHOS) can be released through vesicular exocytosis, connexin or pannexin channels, specific ATP binding cassette (ABC) transporters, calcium
homeostasis modulators (CALHM) channels, the P2X7 receptor, maxi-anion channels (MACs) or through volume regulated ion channels (VRACs). These different
pathways variably participate in ATP release in various cell types depending on the given patho-physiological context.
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2013b), but a preeminent role is played by connexin-43 activated
by increases in the intracellular Ca2+ concentration, plasma
membrane depolarization, reactive oxygen species (ROS) or
nitric oxide (NO). Connexin-43 can also be activated upon
interaction of monocyte/macrophage Toll like receptor (TLR)
2 or TLR4 with the chemotactic factor N-formyl Met-Leu-Phe
(fMLP) or lipopolysaccharide (LPS), respectively (Eltzschig et al.,
2006; Wang et al., 2017).

The human pannexin family is comprised of three members,
pannexin-1, -2 and -3 (Wang et al., 2013b). Pannexin-1 and -3 are
widely expressed in different tissues while pannexin-2 is almost
exclusively present in the brain (Penuela et al., 2013). In resting
cells, pannexin channels are in a closed state, very likely due to the
C-terminal tail that blocks the pore from the intracellular side
(Dourado et al., 2014). In fact, C-terminal cleavage by caspase-3,
-7 or -11 allows pannexin-1 channel opening (Sandilos et al.,
2012; Yang et al., 2015). Thereafter, channel size progressively
increases thanks to addition of further C-terminal tail-cleaved
pannexin-1 subunits. Thanks to pannexons-induced increased
permeability, molecules of size larger than ions, i.e. nucleotides,
can cross the plasma membrane (Chiu et al., 2017). Various
stimuli, such as intracellular calcium increase (Locovei et al.,
2006), redox potential changes (Retamal, 2014), mechanical stress
(Bao et al., 2004) and activation of the P2X7R (Iglesias et al., 2008;
Pelegrin and Surprenant, 2009) can trigger pannexin-1 channel
opening. An additional mode of pannexin-1 regulation is
represented by internalization of the pannexin-1 channel itself,
in an autocrine negative feedback loop driven by ATP-induced
P2X7R activation (Boyce and Swayne, 2017). ATP and UTP
released from apoptotic cells through pannexin-1 (Qu et al.,
2011) promote monocyte recruitment (Elliott et al., 2009) and
support NLRP3 inflammasome-driven IL-1β release in
monocytes/macrophages (Ayna et al., 2012).

ABC transporters are integral membrane proteins that allow
ATP-dependent movement across the plasma membrane of
various molecules, among which cholesterol, lipids and both
hydrophobic and hydrophilic drugs (Lohman et al., 2012). The
multiple drug resistance (MDR1) gene product P-glycoprotein is
the ABC transporter most consistently implicated in ATP release
in the past (Abraham et al., 1993).

The calcium homeostasis modulators (CALHM) family
includes six members two of which (CALHM1 and 3) have
been recently identified as relevant for ATP release (Taruno,
2018). CALHM1, a plasma membrane voltage-gated ion channel
showing structural and functional similarities with connexins and
pannexins (Siebert et al., 2013), is expressed in many different
tissues such as brain (Ma et al., 2012), taste buds (Taruno et al.,
2013; Taruno et al., 2017), airway epithelia (Workman et al.,
2017), and bladder (Sana-Ur-Rehman et al., 2017). In addition,
CALMH1/CALMH3 hexameric fast voltage-gated ATP-release
channels have been recently identified in type II taste bud cells
(Ma et al., 2018).

ATP release can also occur through a receptor for extracellular
ATP belonging to the P2XR family, i.e. the P2X7R (Pellegatti
et al., 2005; Suadicani et al., 2006), especially when this receptor is
over-stimulated and the associated large conductance pore (the
macropore) fully opened, thus allowing transit of molecules up to

900 Da (Ohshima et al., 2010; Brandao-Burch et al., 2012;
Karasawa et al., 2017). Although participation of accessory
molecules to the formation of the P2X7R macropore has long
been debated (Pelegrin and Surprenant, 2006; Locovei et al.,
2007), it is now generally thought that the macropore is
intrinsic to the P2X7R (Karasawa et al., 2017; Di Virgilio
et al., 2018c). This hypothesis is further supported by the
recent finding that a truncated P2X7R form lacking both
amino and carboxyl termini, and therefore in principle with a
low chance of interaction with other intracellular components, is
able to generate the macropore (Karasawa et al., 2017).

Maxi-anion channels (MACs) are ubiquitous, ATP-
permeable, large conductance anion-selective channels with
pharmacological properties distinct from those of other anion
channels (Sabirov et al., 2016). Their molecular identity has
remained unknown until the recent finding that solute carrier
organic anion transporter family member 2A1 (SLCO2A1) is the
MAC core subunit (Sabirov et al., 2017). Very recently, gene
silencing study showed that four annexin family members are
involved in regulation of MACs activity (Islam et al., 2020).
MACs, inactive in resting cells, undergo activation in presence
of various stimuli such as high glucose (Best, 2002), ischemia and/
or hypoxia (Dutta et al., 2004; Liu et al., 2008). Participation of
MACs to ATP release is supported by the finding that hypotonic
cell swelling-induced ATP release is significantly reduced by RNA
interference of SLCO2A1 in mouse mammary epithelial C127
cells, and, on the contrary, potentiated when SLCO2A1 is
heterologously expressed in human embryonic HEK293
fibroblasts which lack endogenous SLCO2A1 expression
(Sabirov et al., 2017). However, despite this evidence, ATP
currents through reconstituted MACs have yet to be
demonstrated. MACs have been proposed as pathways for
ATP release in some tissues such as macula densa (Bell et al.,
2003), ischemic astrocytes (Liu et al., 2008) and ischemic-re-
perfused heart (Dutta et al., 2004; Sabirov et al., 2017; Okada et al.,
2019).

Volume regulated ion channels (VRACs) are ubiquitous
channels (Nilius et al., 1994) important for maintenance of
intracellular osmotic balance. VRACs are activated in response
to hypotonic cell swelling to restore normal cellular volume by
allowing efflux of organic and inorganic anionic osmolytes.
VRAC subunits have been recently identified as leucine-rich-
repeat-containing 8A protein (LRRC8A) and other LRRC8
members (B, C, D, E) that aggregate to form heteromers. Each
individual VRAC may be formed by three or more different
LRRC8 subunits (Gaitan-Penas et al., 2016; Lutter et al., 2017).
LRRC8 subunit composition determines substrate selectivity
(Planells-Cases et al., 2015; Schober et al., 2017), inactivation
kinetics (Voss et al., 2014), and conductance (Syeda et al., 2016).
LRRC8 subunits have four membrane-spanning domains with
cytosolic amino- and carboxyl-termini (Voss et al., 2014) and
high sequence homology with pannexin-1, suggesting that also
LRRC8 subunits may form hetero-hexameric channels (Abascal
and Zardoya, 2012; Konig and Stauber, 2019). It is likely that
different LRRC8 combinations and variable stoichiometry form
different VRACs channels. Finally, additional component(s),
beside LRRC8 subunits, have been suggested to intervene in
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VRAC channels formation (Okada et al., 2017). Currently, while
direct electrophysiological measurement of ATP currents
through VRACs has not been reported, release of ATP has
been demonstrated with the luciferine-luciferase assay in
Xenopus oocytes injected with cDNAs of LRRC8 subunits and
exposed to hypotonic stress (Gaitan-Penas et al., 2016).

RECEPTORS FOR EXTRACELLULAR
NUCLEOTIDES AND NUCLEOSIDES

Receptors for extracellular nucleotides and for adenosine are P2
receptors (P2Rs) and P1 receptors (P1Rs), respectively
(Burnstock and Knight, 2004) (Figure 1). Seven ionotropic
(P2XR1-7) and eight metabotropic (P2YR1,2,4,6,11–14) receptors
for nucleotides and four adenosine receptors (A1, A2A, A2B, A3)
have been identified and cloned in humans.

The P2XRs that are gated exclusively by ATP, form channels
allowing Na+ and Ca2+ influx, and K+ efflux (North, 2002; 2016).
At least three P2X subunits assemble to form hetero- (e.g., P2X2/3
and P2X1/5) or homo-trimeric (P2X7) channels (North, 2002).
Each P2X subunit is characterised by two membrane-spanning
domains (TM1 and TM2), a large ecto-domain and intracellular
N- and C-termini (Di Virgilio et al., 2017). To trigger channel
opening all the three ATP-binding sites present in the P2XR
trimer need to be occupied (Bean, 1990). Among P2XRs, the
P2X7R has a special place in inflammation since its stimulation
promotes NLRP3 inflammasome and the associated IL-1β
maturation and secretion (Giuliani et al., 2017; Adinolfi et al.,
2018). The majority of P2X7R-dependent pro-inflammatory
responses, among which extracellular ATP release, are due to
the opening of the plasma membrane pore (macropore) that
allows the non-selective passage of aqueous molecules of MW up
to 900 Da. The macropore is now thought to be intrinsic to the
P2X7R (Karasawa et al., 2017; Di Virgilio et al., 2018c), and
potentially gated also by ligands other than ATP (Di Virgilio et al.,
2018a). NAD+ is the best characterized non-ATP P2X7R agonist
in mouse T lymphocytes. In these cells, NAD+ serves as an ADP-
ribose donor to ADP-ribosylate the P2X7R at arginine 125, close
to the ATP-binding pocket (Seman et al., 2003). This reaction,
catalysed by the plasma membrane enzyme ART2.2 causes long-
lasting activation of mouse P2X7R. Since increased NAD+

content characterizes inflammatory sites (Adriouch et al.,
2007), it is suggested that NAD+ has a role in the
pathophysiological mechanism of P2X7R activation. Very
recently, P2X7R was also found in circulation in a shed form
(sP2X7R) associated to MPs (Giuliani et al., 2019). Although
sP2X7R function has not been assessed yet, a link to
inflammation is witnessed by its correlation with serum levels
of the acute phase reactant C-reactive protein (CRP) (Giuliani
et al., 2019).

The P2YRs are G protein-coupled metabotropic receptors
triggering downstream effector signalling pathways leading to
changes in the intracellular Ca2+ or cyclic adenosine
monophosphate (cAMP) concentration, or both (von Kugelgen
and Harden, 2011). Eight P2YRs have been identified and
characterized so far in mammals: P2YR1-2, P2YR4, P2YR6,

P2YR11–14. Preferred agonists are ATP (P2YR11), ADP
(P2YR1, P2YR12 and P2YR13), UTP (P2YR2 and P2YR4), UDP
(P2YR6), UDP-glucose and UDP-galactose (P2YR14). P2YR1,
P2YR2, P2YR4, and P2YR6 activate Gq and phospholipase C-β
(PLC-β), thus leading to inositol 1,4,5-trisphosphate (IP3) and
diacylglycerol (DAG) generation from phosphatidylinositol 4,5-
bisphosphate (PI[4,5]P2). IP3 triggers Ca2+ release from
intracellular stores, therefore increasing its cytoplasmic
concentration, while DAG activates protein kinase C (PKC)
(Zimmermann, 2016). Gi/o protein activation by P2YR12–14

inhibits adenylyl cyclase (AC), thus reducing intracellular
cAMP levels. P2YR11 stimulation induces increase of
intracellular Ca2+ and cAMP via activation of both Gq and
Gs. Other recently identified P2YRs-engaged intracellular
signalling pathways include activation of phosphatidylinositol-
4,5-bisphosphate 3-kinase γ (PI3K-γ), phospholipase C-β2 and
-β3, inward rectifying K+ (GIRK) channels, G protein-coupled
receptor (GPCR) kinases 2 and 3, Rho, and mitogen activated
protein kinases (MAPKs) (von Kugelgen and Harden, 2011; Erb
and Weisman, 2012).

Affinity of P2YRs for their ligands is variable, from high
nanomolar to low micromolar, while P2XR affinity ranges
from the low micromolar to the near millimolar level.
Therefore, purinergic signalling is endowed with the ability to
finely tune a multiplicity of cell functions depending on the cell
type, the receptor subtype expressed and extracellular agonists
concentration.

The P1R family includes four adenosine receptors (A1, A2A,
A2B, and A3) (Carpenter and Lebon, 2017; Antonioli et al., 2018;
Camici et al., 2018) coupled to changes in cAMP and Ca2+ levels
(Wang et al., 2004; Borea et al., 2018). A1 and A3 receptors are
coupled to G proteins of the Gi, Gq, and G0 family and drive Ca2+

release from intracellular stores. A2A and A2B receptors are
coupled to Gs or Gq resulting in AC or PLC activation,
respectively. In addition, all P1Rs stimulate the MAPK
pathway, i.e. extracellular signal regulated kinase 1 (ERK1),
ERK2, Jun N-terminal kinase (JNK), and p38-MAPK.
Extracellular adenosine can also be internalised by all cells
through two types of transporters, the equilibrative nucleoside
transporters (ENTs) and the concentrative nucleoside
transporters (CNTs) (Young, 2016; Pastor-Anglada and Perez-
Torras, 2018) to stimulate various intracellular pathways, AMP-
activated protein kinase, adenosine kinase and S-adenosyl
homocysteine hydrolase included (Antonioli et al., 2013).
Although it may depend on the concentration and the given
P1R subtype engaged, on the whole adenosine mainly activates
anti-inflammatory and immune suppressive responses, with
prevalence of those addressed to restore tissue homeostasis
(Antonioli et al., 2013). The immunosuppressant activity of
adenosine relies on the inhibition of virtually all immune cell
populations, such as T and B lymphocytes, NK cells, DCs,
granulocytes, monocytes, and macrophages (Le Vraux et al.,
1993; Nemeth et al., 2003; Ben Addi et al., 2008; Barletta
et al., 2012).

In conclusion, extracellular ATP, UTP, NAD and their
hydrolysis products, primarily ADP and UDP, play a well-
established role as pro-inflammatory mediators acting at
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P2YRs and P2XRs, while the terminal, NT5E/CD73-generated,
product adenosine acts at P1Rs to mainly suppress immunity.

EXPRESSION AND ACTIVITY OF
ECTONUCLEOTIDASES ON IMMUNE
CELLS
Extracellular ATP is a ubiquitous damage-associated molecular
pattern (DAMP), and thus a key inflammatory mediator
(Pandolfi et al., 2016; Di Virgilio et al., 2018c; Denning et al.,
2019). The extracellular ATP concentration at inflammatory sites
is in the hundred micromolar range of concentration, vs. the low
nanomolar levels found in healthy tissues (Pellegatti et al., 2008;
Wilhelm et al., 2010; Barbera-Cremades et al., 2012).
Ectonucleotidases play a fundamental role in setting the
concentration of extracellular ATP and NAD+, and of their
metabolites, thus tightly controlling the biochemical
composition of the inflammatory environment. Therefore, it is
not surprising that ectonucleotidases are expressed virtually by all
immune cells in a cell- and tissue-dependent fashion (Resta et al.,
1998). In addition, their expression can be modulated following
exposure to stress, hypoxia or inflammatory cytokines (Ryzhov
et al., 2014; Longhi et al., 2017).

Neutrophils release ATP via pannexin-1 in response to
inflammatory stimuli (Chen et al., 2015). Extracellular ATP in
turn triggers IL-8 production from human neutrophils and
neutrophil-like HL60 cells (Figure 3A). In LPS-stimulated
human neutrophils, IL-8 release is markedly increased
following NTPDase1/CD39 inhibition (Kukulski et al., 2011a).
P2Y2R knockdown in HL60 cells decreases LPS-induced IL-8
production, suggesting a role for this receptor in neutrophil-
driven inflammation. A role for NTPDase1/CD39 and NT5E/
CD73 in attenuating in vivo neutrophil trafficking into the lungs

during LPS-induced lung injury has been previously described
(Reutershan et al., 2009).

A number of monocyte/macrophage functions are regulated
by extracellular nucleotides and nucleosides. Extracellular ATP
and UTP released from apoptotic cells mediate monocyte
recruitment (Elliott et al., 2009), modulate phagocytosis (Soni
et al., 2019; Zumerle et al., 2019), and support
NLRP3 inflammasome-mediated IL-1β release (Ayna et al.,
2012) (Figure 3B). Both NTPDase1/CD39 and NT5E/CD73
are expressed to high level in macrophages where they play a
key role in the control of P2X7R-dependent responses and in the
generation of adenosine (Levesque et al., 2010). Macrophage P1R
stimulation by adenosine induces a regulatory state characterized
by reduced release of inflammatory cytokines and enhanced
secretion of anti-inflammatory cytokines and growth factors.
The main function of this homeostatic system is to keep a
transient macrophage activation state and prevent possible
adverse effects due to prolonged macrophage activation. This
balance can be tilted towards an activated state, for example to
initiate and support a more vigorous adaptive immune response,
by treating macrophages with IFN-γ, a stimulus that makes these
cells less sensitive to the adenosine regulatory effects
(Hamidzadeh and Mosser, 2016) (Figure 3B). Other cells
present at inflammatory sites that express high
ectonucleotidase levels, e.g., NTPDase1/CD39, such as
mesenchymal stem cells (MSCs), also contribute to adenosine-
based immunosuppressive mechanisms (de Oliveira Bravo et al.,
2016). MSCs participate to the generation of an
immunosuppressive microenvironment also by releasing
NTPDase1/CD39-expressing extracellular vesicles (EVs).
Macrophage phagocytosis is inhibited by MSC-derived EVs, an
effect reverted by EVs pre-incubation with ectonucleotidases
inhibitors (Katsuda et al., 2013). In addition, a soluble form of
NT5E/CD73, which can be released from the plasma membrane

FIGURE 3 | Schematic exemplification of purinergic receptor/ectonucleotidase cooperation in the activation/inhibition of the innate immune response. (A) ATP
released via pannexin-1 (panx-1) from human neutrophils exposed to inflammatory stimuli triggers IL-8 production acting at the P2Y2R. NTPDase1/CD39 and
NT5E/CD73 sequentially degrade extracellular ATP and limit neutrophil recruitment. (B) Extracellular nucleotides, firstly ATP, acting at the P2X7R, promote monocyte
recruitment, modulate phagocytosis and support NLRP3 inflammasome-mediated IL-1β release. NTPDase1/CD39 and NT5E/CD73, expressed to high level on
the macrophage plasma membrane, generate adenosine (ADO) and support a feed-back regulatory mechanism. Adenosine-mediated P1R stimulation generates an
anti-inflammatory environment characterized by down-modulation of inflammatory cytokines release and enhanced secretion of anti-inflammatory cytokines and growth
factors. This balance can be tilted towards an activated state, e.g., to support amore vigorous adaptive immune response, by IFN-γ, a stimulus that makesmacrophages
less sensitive to adenosine inhibition.
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by cleavage of its GPI anchor, can exert a remote control on the
inflammatory microenvironment (Vieira et al., 2014).

T cells are important and active players in purinergic
signalling. T-cell receptor (TCR) engagement promotes
localization of pannexin-1 channels and P2XRs at the immune
synapse. Autocrine ATP release triggers P2XRs activation,
increases MAPK signalling and drives T cell activation
(Schenk et al., 2008) (Figure 4A). On the contrary, P2XR-
mediated signalling inhibits Treg cells generation and function
(Schenk et al., 2011) (Figure 4B). Ectonucleotidases by setting
extracellular ATP levels play a central role in the modulation of
T cell responses. NTPDase1/CD39 and NT5E/CD73, both
expressed on the surface of human FoxP3+ Tregs (9, 157),
catalyse the generation of large amounts of adenosine that acts
at A2A and A2B receptors to inhibit T cells responses (158). In
addition, adenosine increases expression of both Foxp3 and
NTPDase1/CD39, leading to Treg cells stabilization (Bao et al.,
2016), and to the activation of an adenosine-producing positive

feed-back loop (Ohta et al., 2012). Low expression of NT5E/CD73
on FoxP3+ Tregs might contribute to a dysregulated immune
response in autoimmune diseases (Oliveira et al., 2015). Lastly,
NTPDase1/CD39 and NT5E/CD73, by extracellular ATP
scavenging, protect Treg cells from P2X7R-mediated apoptosis
(Figure 4B).

Th17 cell responses are also tightly regulated by levels of
extracellular nucleotides and nucleosides, and therefore by
NTPDase1/CD39 and NT5E/CD73 activity (Doherty et al.,
2012; Longhi et al., 2014) (Figure 4C). Th17 cells are classified
into subpopulations that differ in their pathogenicity and ability
to release cytokines and growth factors. Pathogenic Th17 cells
secrete GM-CSF (El-Behi et al., 2011; Lee et al., 2012), while IL-6-
and TGF-β-stimulated, non-pathogenic, Th17 cells secrete IL-10
and express NTPDase1/CD39 and NT5E/CD73 (Chalmin et al.,
2012), therefore showing the typical Th17 suppressor (SupTh17)
phenotype (Fernandez et al., 2016). NTPDase1/CD39 expression
is enhanced following exposure to aryl hydrocarbon receptor

FIGURE 4 | Schematic exemplification of purinergic receptor/ectonucleotidase cooperation in the activation/inhibition of the adaptive immune response. ATP can
be released into the extracellular space via both regulated and non-regulated mechanisms. (A) In T cells, pannexin-1 (panx-1) and P2XRs localize at the immune synapse
following T-cell receptor (TCR) engagement. ATP released via panx-1 triggers P2XRs activation leading to increased MAPK signalling and T cell activation. (B) Treg
Foxp3+ cells generation and function are inhibited by ATP-mediated P2XRs signalling. Adenosine (ADO) formed by Treg NTPDase1/CD39 and NT5E/CD73 activity
causes Treg cells stabilization, by increasing expression of Foxp3 and NTPDase1/CD39, and inhibits T cells responses acting at A2A and A2B adenosine receptors.
Finally, Tregs are protected from P2X7R-mediated apoptosis thanks to extracellular ATP scavenging by NTPDase1/CD39 and NT5E/CD73. (C) Non-pathogenic Th17
cells express NTPDase1/CD39 and NT5E/CD73, and, following IL-6 and TGF-β stimulation, secrete IL-10, thus showing the typical Th17 suppressor cell (SupTh17)
phenotype. NTPDase1/CD39 expression by Th17 lymphocytes is enhanced following exposure to aryl hydrocarbon receptor (AhR) agonists, such as unconjugated
bilirubin (UCB). Enhanced SupTh17 adenosine deaminase (ADA) activity accelerates conversion of adenosine to inosine (INO), which activates the A3 adenosine receptor
on mast cells, thus causing degranulation and release of macrophage chemotactic factors. (D)Human peripheral B cells co-express NTPDase1/CD39 and NT5E/CD73.
In vitro activation of B lymphocytes co-cultured with T lymphocytes down-regulates NT5E/CD73 expression and inhibits T cell proliferation and T cell-dependent cytokine
release. Extracellular adenosine contributes to immunoglobulin (Ig) class switch recombination in human naïve and IgM memory B cells.
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(AhR) agonists, such as unconjugated bilirubin (UCB), with a
known immune activity (Longhi et al., 2017). On the other hand,
SupTh17 cells are resistant to the effects of adenosine as result of
low expression of the A2A adenosine receptor and accelerated
adenosine catalysis by ADA (Longhi et al., 2014). High ADA
activity of SupTh17 cells accelerates hydrolysis of adenosine to
inosine, a pro-inflammatory nucleoside able to cause, via A3

adenosine receptor activation, mast cell degranulation (Jin et al.,
1997) and the associated macrophage chemotaxis (Joos et al.,
2017) (Figure 4C).

Human peripheral B cells co-express NTPDase1/CD39 and
NT5E/CD73 and hydrolyse extracellular ATP to AMP and
adenosine (Saze et al., 2013). Resting B cells in co-culture with
T cells upregulate CD4+ and CD8+ T cells functions, while in
vitro-activated B cells down-regulate NT5E/CD73 expression and
inhibit T cell proliferation and T cell-dependent cytokine release,
thus preventing the potentially harmful effects of activated T cells
(Saze et al., 2013). In addition, extracellular adenosine critically
contributes to immunoglobulin class switch recombination in
human naive and IgM memory B cells, an essential process for
mounting a protective humoral immune response (Schena et al.,
2013) (Figure 4D).

ANTI-BACTERIAL ACUTE INFLAMMATORY
RESPONSES

Extracellular ATP is a DAMP released during sterile and septic
inflammation to recruit specialized cells at inflammatory sites,
thus ectonucleotidases have an important function to allow
efficient pathogen clearance at septic foci. Extracellular
adenosine produced by NT5E/CD73 suppresses macrophage
antibacterial responses, thus impairing innate immune
response against infectious agents (Costales et al., 2018). On
the contrary, low NT5E/CD73 activity supports macrophage
phagocytosis and an efficient clearance of internalized bacteria.
NT5E/CD73 down-regulation or inhibition during Salmonella
infection enhances production of pro-inflammatory cytokines
and NO from macrophages and improves intracellular killing
(Costales et al., 2018).

Neutrophil recruitment and activation are crucial for host
defense in lung infection sustained by Streptococcus pneumoniae.
However, in the late phases of the infection, neutrophil
antimicrobial activity declines. This progressive exhaustion
correlates with reduced NT5E/CD73 expression (Siwapornchai
et al., 2020). Extracellular adenosine has an important role in S.
pneumoniae killing as its production dramatically increases
resistance to S. pneumoniae lung infection in mice;
accordingly, NT5E/CD73-inhibition inhibits in vitro and in
vivo S. pneumoniae killing by neutrophils (Bou Ghanem et al.,
2015). Enhanced susceptibility of CD73−/−mice to S. pneumoniae
is reversed by neutrophil depletion, pointing to this cell type as
the target of adenosine activity. It is apparently paradoxical that
reduced NT5E/CD73 activity, which lowers extracellular
adenosine levels, causes inhibition of neutrophil functions.
This seems to be due to up-regulation of IL-10 release in the
absence of NT5E/CD73 (Siwapornchai et al., 2020). In fact,

pneumococcal infection up-regulates IL-10 production in
CD73−/− but not in WT mice (Siwapornchai et al., 2020).

Transgenic mice overexpressing human NTPDase1/CD39,
under the control of the airway-specific Clara cell 10-kDa
protein gene promoter, do not develop spontaneous lung
inflammation, and following intra-tracheal instillation of LPS
undergo accelerated recruitment of neutrophils and CD8+ T
lymphocytes and B lymphocytes to the airways and delayed
macrophage clearance. These transgenic mice show increased
lung recruitment of neutrophils and macrophages upon
Pseudomonas aeruginosa infection, and clear the bacterial
infection with high efficiency (Theatre et al., 2012).
Therefore, constant elevated NTPDase1/CD39 activity in
lung epithelia does not cause inflammation but improves
host response to acute LPS or P. aeruginosa exposure
(Theatre et al., 2012).

NTPDase1/CD39 and NT5E/CD73 may also affect
antibacterial response by modulating Treg activity (Vieyra-
Lobato et al., 2018; Alam et al., 2020), while NTPDase1/
CD39 is upregulated on both CD4+ and CD8+ Teff cells at
sites of acute inflammation thus attenuating responses to
bacterial infections (Raczkowski et al., 2018). NTPDase1/
CD39, due to its ATP-scavenging activity, strongly modulates
P2X7R-mediated pro-inflammatory responses. Therefore, while
NTPDase1/CD39 expression limits P2X7R-mediated
inflammation and attenuates sepsis-induced liver injury,
NTPDase1/CD39 genetic deletion exacerbates sepsis-induced
liver injury (Savio et al., 2017). Combination of a P2X7R
antagonist and A2A adenosine receptor agonist is hepato-
protective in abdominal sepsis (Savio et al., 2017). P2X7R
deletion or pharmacological P2X7R blockade, or extracellular
ATP scavenging, in LPS-primed macrophages attenuated
inflammation, largely preventing increased cytokine secretion
and tissue damage (Li et al., 2017; Savio et al., 2017).

Overall, experiments with CD73−/− mice, in which poly-
microbial sepsis was induced following cecal ligation and
puncture, support the view that adenosine is protective in
sepsis (Hasko et al., 2011).

Sepsis is also characterized by increased platelet activation
and formation of platelet-neutrophil aggregates that become
trapped in the microvasculature. These events are not currently
manageable by effective therapeutic strategies, therefore it has
been proposed that targeting platelet NTPDase1/CD39 might
prevent micro-thrombi formation. To this aim, a recombinant
fusion protein (targ-CD39) was made consisting of a single-
chain antibody against activated glycoprotein IIb/IIIa and the
extracellular domain of NTPDase1/CD39 (Granja et al., 2019).
Targ-CD39 efficiently decreased platelet-leukocyte-
endothelium interaction, pro-inflammatory cytokines
transcription, microvascular platelet-neutrophil aggregate
sequestration, expression of activation markers on platelets
and neutrophils, leukocyte extravasation, and organ damage
(Granja et al., 2019). Targ-CD39 caused a stronger
improvement of survival in an experimental model of sepsis
compared to the NTPDase1/CD39 extracellular domain fused
to a non-functional antibody (nontarg-CD39) (Granja et al.,
2019).
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CHRONIC INFLAMMATORY AND
AUTOIMMUNE DISEASES

Chronic inflammatory diseases are characterized by varieties of
immune system dysfunctions, many of them resulting in auto-
aggressive responses. Among them, rheumatoid arthritis,
systemic lupus erythematosus, inflammatory bowel diseases
and type 2 diabetes are very common and burdened by high
morbidity and mortality. The pathogenesis of these diseases
mainly depends on dysfunctional responses of monocyte/
macrophages, Treg, Th17 and B lymphocytes. Purinergic
signalling and ectonucleotidase activity might also be implicated.

Rheumatoid Arthritis
Rheumatoid arthritis (RA) is an autoimmune chronic disease
characterized by inflammation and damage to different organs
and tissues, particularly the peripheral joints. Joint inflammation
and synovial hyperplasia, eventually progressing to cartilage and
bone damage with deformity and disability, are a feature of RA.
Purinergic signalling has been implicated in several joint diseases,
RA included (Corciulo and Cronstein, 2019), but targeting
different components of the purinergic system has provided
variable results. It is known that overall adenosine
accumulation is protective, although in some pathological
conditions excess adenosine may cause tissue injury due to
activation of low affinity A2B adenosine receptors (Pinto-
Cardoso et al., 2020). Therefore, enhanced ectonucleotidase
and reduced ADA activity are in principle beneficial. Direct
targeting of adenosine A2A receptors is a current appealing
therapeutic option for the treatment of rheumatic diseases
(Cronstein and Sitkovsky, 2017). NT5E/CD73-deficient mice
are significantly more susceptible to type II collagen (CII)-
induced arthritis than WT mice, show increased accumulation
of pro-inflammatory cytokines in the joints, increased Th1 cell
responses, and marked joint damage (Chrobak et al., 2015).
Peripheral blood lymphocytes from RA patients express
increased NTPDase and decreased ADA activity, a finding that
might be interpreted as a compensatory mechanism to preserve a
safe level of immunosuppressive adenosine (Dos Santos Jaques
et al., 2013). Accordingly, peripheral blood mononuclear cells
from RA patients show enhanced A2A or A3 adenosine receptors
expression that inversely correlated with disease activity score.
A2A and A3 agonists inhibit matrix metalloproteinase-1 (MMP-1)
and MMP-3 release (Varani et al., 2011; Ravani et al., 2017).

Foxp3+CD39+CD25+ T-cells showing high NTPDase1/CD39
and low NT5E/CD73 levels are recruited to the joints of RA
patients, but they seem to be unable to dampen inflammation.
These cells suppress IFN-γ and TNF-α production, but fail to
control IL-17A secretion by Teff cells (Herrath et al., 2014).

A deregulated macrophage-T cell interaction is suggested to
play a role in RA pathogenesis. T cell activity is differently affected
by macrophages stimulated with either macrophage colony-
stimulating factor (M-CSF/CSF-1) or granulocyte-macrophage
colony-stimulating factor (GM-CSF/CSF-2) (Ohradanova-Repic
et al., 2018). GM-CSF-stimulated macrophages show a typical M1
profile with elevated pro-inflammatory activity, while M-CSF-
stimulated macrophages show an M2 immunosuppressive

phenotype largely due to the expression of ectonucleotidases.
In addition, various local stimuli further contribute to shaping
macrophage phenotype. Pro-inflammatory Th1 cytokines, such
as IFN-γ, or TLR ligands skewmacrophages to the M1 phenotype
with enhanced microbicidal and tumoricidal activity, while the
Th2 cytokines IL-4 and IL-13 drive M2 macrophage
differentiation. Stimulation with IL-10, transforming growth
factor-β (TGF-β) or glucocorticoids generates highly
immunosuppressive “M2-like” macrophages (Mantovani et al.,
2004; Biswas and Mantovani, 2010; Murray and Wynn, 2011;
Ohradanova-Repic et al., 2018). An unbalance towards the M1
phenotype is found in human and murine arthritic joints
(Ohradanova-Repic et al., 2018). It has been suggested that
targeted delivery of methotrexate (MTX) to the
immunosuppressive NTPDase1/CD39+- and NT5E/CD73+-
high macrophages might give better results in treating RA
than the administration of MTX as such (Ohradanova-Repic
et al., 2018). MTX is one of the most effective treatments for RA
thanks to its ability to inhibit several enzymes involved in
nucleotide metabolism, and to promote release into the
extracellular space of both adenosine and ATP, which is then
converted to adenosine (Cronstein and Sitkovsky, 2017;
Cronstein and Aune, 2020). MTX non-responder patients
expressed lower NTPDase1/CD39 levels than responders
(Peres et al., 2018) and low NTPDase1/CD39 expression on
Treg cells was proposed as a biomarker for resistance to MTX
therapy in RA (Peres et al., 2015).

Systemic Lupus Erythematosus
Systemic lupus erythematosus (SLE) is a systemic autoimmune
disease characterized by multiple tissue and organ damage and
inflammation as result of impaired immune tolerance, auto-
antibody production, immune complex (IC) formation and
deposition. Although SLE pathogenesis remains obscure, it is
well known that both innate and adaptive immunity play a major
role. Macrophages from SLE patients are defective in their ability
to clear apoptotic cell debris, thus prolonging exposure of
potential autoantigens to immune cells (Byrne et al., 2012). In
addition, macrophage-mediated IC clearance, TLR-mediated
nucleic acid recognition, and IFN-dependent signalling are
defective (Byrne et al., 2012). Among auto-reactive antibodies
produced in SLE, a relevant role is played by anti-double strand
(dsDNA) antibodies, which bind monocyte/macrophage TLR4,
and activate the NLRP3 inflammasome, with production of ROS
(Zhang et al., 2016). T cells also play an important function by
amplifying the immune response and by contributing to organ
damage (Comte et al., 2015; Tsokos et al., 2016). Dysregulated
B cell responses have been reported (Wang et al., 2018b), in
particular with the expansion of B cell subsets showing up-
modulation of chemokine receptors, consistent with migration
to target tissues and correlated with defined clinical
manifestations (Wang et al., 2019).

Increased circulating ATP levels have been measured in SLE
patients (Becker et al., 2019b). Lymphocytes from SLE patients
show increased NTPDase expression and activity and enhanced
ADA activity, while on the contrary NT5E/CD73 expression is
unchanged (Becker et al., 2019a). Increased NTPDase1/CD39

Frontiers in Pharmacology | www.frontiersin.org February 2021 | Volume 11 | Article 61945810

Giuliani et al. Ecto-Nucleotidases Regulate Inflammation

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


expression might be a compensatory mechanism to down-
modulate inflammation in the presence of high ATP blood
concentrations as those detected in SLE patients (Becker et al.,
2019a). On the other side, elevated ADA activity might contribute
to SLE pathogenesis by reducing the levels of immunosuppressive
adenosine (Becker et al., 2019a). Down regulation of ADA activity
is associated with increased anti-inflammatory Th2 response,
whereas its up-regulation may promote Th1-dependent pro-
inflammatory response. Compared to healthy control subjects,
SLE patients present significantly higher levels of IL-6, IL-17, IL-
12, and IL-23 (Talaat et al., 2015; Furini et al., 2019), which
correlate positively and significantly with SLE disease activity
index (SLEDAI) score (Talaat et al., 2015). Treg cells from SLE
patients express lower levels of NTPDase1/CD39 than Tregs from
control subjects, and nearly absent adenosine-dependent Treg-
mediated suppression. Therefore functional Treg defects, rather
than reduced Treg number, seem to be relevant for loss of
peripheral tolerance in SLE (Loza et al., 2011).

Increasing evidence indicates that adenosine and its receptors
are protective in SLE. In MRL/lpr mice, a murine model of lupus
nephritis, treatment with A2A adenosine receptor agonists
significantly reduces proteinuria, blood urea and creatinine as
well as serum level of anti-dsDNA antibodies. Moreover, kidney
histology is improved following treatment with A2A adenosine
receptor agonists, which decreases infiltration of macrophages
and T-cells expressing lower MCP-1, IFN-γ and MHC-II levels,
and reduces IC deposition (Zhang et al., 2011). Evidence that
adenosine might be beneficial in lupus nephritis is supported by
the finding that CD39−/− or CD73−/− mice are more sensitive to
pristane-induced lupus-like nephritis compared to WT mice
(Knight et al., 2018). Expansion of activated B and plasma
cells is found in CD73−/− mice, while expansion of Th17 cells
is present in mice deficient of either ecto-enzymes. CD39−/− and
CD73−/− mice also exhibit endothelial dysfunction and
exaggerated release of extracellular traps (NETs) from
neutrophils, while CD73−/− mice have higher levels of
circulating cell-free DNA (Knight et al., 2018).

In SLE patients, defective NTPDase1/CD39 expression and
impaired Treg functions (Loza et al., 2011) are associated with
A2A adenosine receptor upregulation in peripheral lymphocytes.
A2A adenosine receptor expression directly correlates with
SLEDAI index (Bortoluzzi et al., 2016). A2A adenosine
receptor agonists lower blood levels of inflammatory cytokines
(IFN-α, TNF-α, IL-2, IL-6, IL-1β) and potentiates release of the
anti-inflammatory IL-10 (Bortoluzzi et al., 2016). Thus, the use of
A2A adenosine receptor agonists might be of therapeutic
relevance in SLE (Bortoluzzi et al., 2016).

Inflammatory Bowel Diseases
Inflammatory bowel diseases (IBD) are a group of chronic
inflammatory intestinal disorders including Crohn’s disease
(CD), that affect the whole digestive system, mainly the small
intestine, and ulcerative colitis (UC), that mainly affects colon
and rectum. In IBD, gut wall is heavily infiltrated by immune cells
promoting inflammation and tissue damage. IBD etio-
pathogenesis is largely unknown, but dysregulated interaction
between digestive mucosa and microbiota, together with

individual and genetically-determined susceptibility, are
invoked to explain disease onset and perpetuation. An
imbalance between cellular and humoral immunity to
microbiota, characterized by loss of mucosal T-cell-mediated
barrier immunity and uncontrolled antibody response, has
been recently described (Noble et al., 2019). IBD predisposes
to a wide range of complications such as thrombophilia and
chronic debility, as well as bowel, lymphatic, and liver cancers.
CD and UC show distinct purine gene dysregulation signatures
associated with inflammation-related signalling pathways, a
finding potentially relevant for the design of novel specific
therapeutic approaches (Rybaczyk et al., 2009).

Key players in IBD are type 1 regulatory T (Tr1) and Th17
lymphocytes. Th17 cell maturation and function in the small
intestine is controlled by luminal ATP level, which in turn is set
by NTPDase7 expressed on mucosal epithelial cells, as
demonstrated by increased number of Th17 cells in the small
intestinal lamina propria in Entpd7 −/−mice (Kusu et al., 2013). In
the gut, UCB may act as a potent immune modulator since its
binding to AhR upregulates NTPDase1/CD39 expression thus
leading to immunosuppression (Jangi et al., 2013). Expansion of
NTPDase1/CD39+ regulatory-type T helper 17 (SupTh17) cells as
well as Tr1 cells, which express high levels of IL-10, might be
promoted by AhR activation. Reduced NTPDase1/CD39
expression levels and/or dysfunction of AhR abrogate the
protective effects of UCB in experimental colitis in mice and
in IBD patients. Promising strategies to overcome Th17
dysfunction in IBD might be represented by use of the
natural/endogenous AhR ligands to improve
immunosuppressive signalling via increased NTPDase1/CD39
expression. A protective role of NTPDase1/CD39 in CD is
suggested by evidence originating from patients and from
experimental models of colitis in mice. In humans,
NTPDase1/CD39 expression by peripheral blood Treg cells is
lower in patients with active IBD than in healthy subjects (Gibson
et al., 2015). NTPDase1/CD39 expression by Treg cells increased
significantly after pharmacological treatment in patients
responsive to therapy with clinical and endoscopic remission
of the disease (Gibson et al., 2015). In addition, a single nucleotide
polymorphism associated with low levels of NTPDase1/CD39
expression is associated with increased susceptibility to CD in a
case-control cohort (Friedman et al., 2009). In a murine
(CD45RB) T-cell transfer model of colitis, Treg cells with
genetic deletion of NTPDase1/CD39 showed reduced ability to
suppress intestinal inflammation compared to WT Treg cells
(Gibson et al., 2015). Finally, CD39−/−mice, compared toWT, are
highly susceptible to dextran sodium sulphate (DSS) injury, an
experimental model of colitis, while heterozygous mice showed
an intermediate phenotype (Friedman et al., 2009). The role of
NTPDase1/CD39 in IBD is solid and further confirmed by the
finding that NTPDase1/CD39 polymorphisms are associated
with IBD in humans and that NTPDase1/CD39 deficiency
exacerbates murine colitis (Friedman et al., 2009). On the other
hand, despite evidence showing that MTX and sulfasalazine, two
drugs currently used to treat IBD, act by stimulating NT5E/CD73-
dependent adenosine production (Ochoa-Cortes et al., 2014), the
role of NT5E/CD73 is still unclear.
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An increased number of NT5E/CD73+ CD4+ T cells is found
in the peripheral blood and in the intestinal lamina propria of
patients with active IBD, especially during active inflammation.
These peripheral NT5E/CD73+ CD4+ T cells predominantly
express CD45RO, are enriched with IL-17A+ cells and express
high levels of IL-17A and TNF (Doherty et al., 2012). NT5E/
CD73 expression is increased by TNF-α and decreased by anti-
TNF-α monoclonal antibody. NT5E/CD73+ CD4+ T cells might
represent a novel memory-effector cell population, particularly
enriched with Th-17+ cells, which could be used to monitor IBD
activity during treatment (Doherty et al., 2012).

In chronic DSS-induced colitis, adoptive transfer of GM-CSF
activated monocytes (GMaM) leads to substantial clinical
improvement, as demonstrated by reduction of weight loss,
inflammatory infiltration, ulceration, and colon shrinkage.
Compared with control monocytes, GMaM express higher
levels of NTPDase1/CD39 and NT5E/CD73, migrate faster
and persist longer in the inflamed intestine, thus inducing a
more efficient Treg cells generation (Weinhage et al., 2015).
While NTPDase1/CD39 expression on Treg cells behaves as a
heritable trait shaping adaptive immune response (Roederer et al.,
2015), altered Treg NT5E/CD73 expression seems to be more
extensively affected by environmental factors such as pathogens,
diet or microbiome components (Mangino et al., 2017).
Considering the immunosuppressive effect of adenosine, the
use of P1R agonists might be a reasonable approach to IBD
therapy. Agonists of the A2A adenosine receptor suppress the
production of pro-inflammatory cytokines such as IL-2, IFN-γ,
and TNF-α, but not the anti-inflammatory cytokines IL-10 and
TGF-β, and attenuate experimental colitis in mice (Naganuma
et al., 2006). In addition, A2A adenosine receptor activation by
endogenously generated adenosine from stimulated myenteric
neurons results in a tonic facilitator effect in the gastrointestinal
tract (Vieira et al., 2009) likely modulating IBD progression.

In a different animal model of IBD, i.e. post-inflammatory
ileitis following 2,4,6-trinitrobenzenesulfonic acid (TNBS)-
treatment, lack of adenosine increase following ATP release
into the inflamed tissue is hypothesised to be at least partially
due to feed-forward inhibition of muscle-bound NT5E/CD73 by
excess ATP/ADP (Vieira et al., 2014; Vieira et al., 2017).

In the intestinal mucosa of patients with active UC, expression
of genes involved in purine metabolism is modified and
associated with up-modulation of group 3 innate lymphoid
cell (ILC3)-IL-22 gene pathway. In this context, the NTPDase-
mediated ATP/adenosine balance is suggested to regulate ILC3
cell function as a protection against intestinal injury (Crittenden
et al., 2018).

Type 2 Diabetes
Chronic inflammation is an important determinant of insulin
resistance, one of the fundamental features of type 2 diabetes
(T2D). T2D is a complex disease typical of aged, obese, people,
affected by metabolic syndrome. T2D that involves β-cells in
pancreatic islets, adipocytes, hepatocytes, muscle cells and many
other tissues, arises subtly becoming manifest when insulin
resistance is accompanied by impaired insulin secretion.
Stimulated and inflamed adipocytes are shown to release ATP

(Tozzi et al., 2020), and the increased extracellular ATP
concentration is suggested to impair functions of β-cells in
pancreatic islets. In β-cells, signalling activated by P2YRs and
P2XRs engagement has been implicated in insulin secretion.
However, it is not clear whether high ATP levels impair β-cell
function directly, e.g., via interaction with P2YRs or P2XRs, or
through excessive systemic cytokine release. P2XRs, notably
P2X7R, are suggested to play a relevant role in T2D
pathogenesis due to their ability to trigger inflammasomes
activation and release of inflammatory cytokines (Novak and
Solini, 2018; Solini and Novak, 2019). In addition, impaired
glucose tolerance and decreased insulin sensitivity is associated
with higher plasma insulin levels and altered hepatic glucose
metabolism in CD39−/− mice (Enjyoji et al., 2008; Chia et al.,
2012). The same effects are obtained by administration of either
exogenous ATP or ectonucleotidase inhibitors to WT mice, and
by in vitro exposure of hepatocytes to ATP (Enjyoji et al., 2008).
These findings further support the pro-inflammatory effect of the
increased extracellular ATP levels that accumulate in absence of
NTPDase1/CD39. Increased expression of NTPDase1/CD39 and
decreased expression of NT5E/CD73 is found in different
lymphocyte subpopulations from T2D obese patients
compared to healthy subjects. In addition, NT5E/CD73 blood
levels negatively correlate with age, body mass index (BMI),
fasting plasma glucose (FPG), glycated haemoglobin (HbAc1),
triglycerides and cholesterol (Guzman-Flores et al., 2015). In
T2D, a role has been proposed also for Th17 cells that are usually
suppressed by NTPDase1/CD39+ Treg cells.

In T2D obese patients significantly lower blood level of
NTPDase1/CD39+ Treg cells and a negative correlation
between NTPDase1/CD39+ Treg cells, weight and BMI is
found (Cortez-Espinosa et al., 2015). On the other hand, low
levels of CD4+ IL-17+ cells in overweight and obese T2D
patients positively correlates with glucose and HbA1c
(Cortez-Espinosa et al., 2015), whereas a subpopulation of
SupTh17 NTPDase1/CD39+ cells negatively correlates with
glycemia and HbA1c. On the whole, these findings indicate a
relationship between NTPDase1/CD39 expression on both Treg
and CD4+ IL-17+ cells and hyper-glycemia, overweight and
obesity (Cortez-Espinosa et al., 2015). Finally, it is an
established fact that adenosine receptor blockade reverses
insulin resistance in skeletal muscle from diabetic rats
(Challis et al., 1984), and pharmacological manipulation of
the adenosinergic system is proposed as an approach to
manage T2D and associated complications (Antonioli et al.,
2015; Deb et al., 2019).

TUMOR INFLAMMATORY ENVIRONMENT

Ectonucleotidases regulate inflammation in different
pathophysiological contexts, but on the other hand, the
inflammatory environment can influence ectonucleotidases
expression and function. It is well established that
inflammation is a feature of the TME and that purinergic
signalling and ectonucleotidase products play a role in cancer
growth and tumor-host interactions (Adinolfi et al., 2015; Di
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Virgilio and Adinolfi, 2016; Allard et al., 2019). In the TME,
extracellular ATP levels are increased (Pellegatti et al., 2008; Di
Virgilio et al., 2018b) likely promoting inflammation and anti-
tumor immune response, whereas adenosine is chiefly
responsible of dysregulation of immune cell infiltrate resulting
in tumor progression and metastatic spreading (Young et al.,
2014; Mittal et al., 2016; Sitkovsky, 2020).

Among ATP receptors, the P2X7R is the subtype most
convincingly associated to tumor growth (Adinolfi et al.,
2012; Giuliani et al., 2014; Amoroso et al., 2016), and at the
same time involved in the modulation of NTPDase1/CD39 and
NT5E/CD73 expression in the TME (De Marchi et al., 2019).
The immune infiltrate in B16F10 mouse melanoma tumors
growing in the syngeneic P2x7−/− host shows clear-cut
immunosuppressive features, which are absent in the
immune infiltrate from same tumors growing in WT mice.
CD8+ cells are decreased while Treg cells are increased and
overexpress the fitness markers OX40 and PD-1 (De Marchi
et al., 2019). Tregs overexpress NT5E/CD73 while Teff cells
overexpress both NT5E/CD73 and NTPDase1/CD39.
Increased NT5E/CD73 in P2x7−/− mice is paralleled by a
decrease in the TME ATP concentration. The
immunosuppressive signature is confirmed by the faster
growth of tumors implanted in the P2x7−/− host compared
to WT (De Marchi et al., 2019). An increase in NT5E/CD73
expression is also found in Tregs from the spleen of P2x7−/−

tumor-bearing mice. The immunosuppressive signature in
P2x7−/− is confirmed by the switch of systemic cytokines to
an anti-inflammatory profile characterized by increased TGF-β
and decreased IL-1β, TNF-α, and IFN-γ plasma levels (De
Marchi et al., 2019). Systemic administration of a P2X7R
antagonist to tumor-bearing WT mice reduces tumor growth
and upsets the immune infiltrate causing on one hand an
increase in CD4+ and Teff cells, and on the other a down-
modulation of both NTPDase1/CD39 and NT5E/CD73
expressed by CD8+ Treg cells (De Marchi et al., 2019).

Another relevant player in the TME are tumor-associated
macrophages (TAMs). TAM NTPDase1/CD39 expression is
increased by AhR recruitment via glioblastoma cells
products, such as kynurenine. Adenosine produced in
cooperation with NT5E/CD73 promotes CD8+ T cell
dysfunction (Takenaka et al., 2019). Human grade 4 gliomas
indeed show highest AhR and NTPDase1/CD39 expression and
elevated AhR expression level is associated with poor prognosis
(Takenaka et al., 2019).

Anti- NTPDase1/CD39 antibodies inhibiting conversion of
extracellular ATP to AMP show potent anti-tumor activity since
they do not only reduce adenosine concentration but also trigger
the ATP-P2X7R-NLRP3 inflammasome-IL-18 axis. Active IL-18
release facilitates expansion of intra-tumor effector T cells
whereas intra-tumor macrophages are reduced (Li et al., 2019).
Anti-NTPDase1/CD39 antibodies facilitate intra-tumor T cell
infiltration overcoming resistance to PD-1 blockade, therefore
showing potentially useful activity in the adoptive T-cell transfer
therapy (Li et al., 2019).

In models of tumor metastases, NTPDase1/CD39 is
expressed on tumor-infiltrating Treg cells, myeloid cells and

some NK cell subtypes. NK cell number and function is
increased in NTPDase1/CD39-deficient mice, as well as in
WT mice treated with the NTPDase inhibitor sodium
polyoxotungstate (POM-1). POM-1 is an effective inhibitor
of experimental and spontaneous metastases in several
different tumor models, and its action is fully abrogated in
mice with NK cells depletion, IFN-γ neutralization or deficient
NTPDase1/CD39 expression in bone marrow-derived cells
(Zhang et al., 2019). The development of NTPDase1/CD39-
based therapies appears particularly relevant in the perspective
to inhibiting the NTPDase1/CD39 pathway and the related NK
cell-mediated anti-tumor immunity suppression (Zhang et al.,
2019). Since high levels of NT5E/CD73 expression on tumor
cells are significantly associated with reduced disease free
survival (DFS) and overall survival (OS), and negatively
correlate with tumor infiltration by immune cells, NT5E/
CD73 targeting could be a promising strategy to reprogram
the TME (Buisseret et al., 2018).

A combination of drugs targeting NT5E/CD73 and the A2A

adenosine receptor has been shown to potentiate anti-tumor
immune responses decreasing tumor growth and metastatic
spreading (Young et al., 2016). To promote an in vivo optimal
therapeutic response, effector lymphocytes, IFN-γ and anti-
NT5E/CD73 antibodies engaging activating Fc receptors are
required. Fc receptor binding indeed augment the production
of proinflammatory cytokines that potentiates the immune
response (Young et al., 2016).

On the basis of these observations, extracellular adenosine can
be considered a bona fide "immune checkpoint mediator" (Allard
et al., 2017; Boison and Yegutkin, 2019). Targeting NTPDase1/
CD39, NT5E/CD73, adenosine or adenosine receptors is
increasingly recognized as a promising intervention in anti-
cancer therapy (Young et al., 2016; Allard et al., 2017).

CONCLUSION

As any homeostatic process, inflammation must be tightly
controlled to fulfil its scope, i.e. removal of endogenous and
exogenous injurious agents to restore tissue integrity.
Regulation of acute and chronic inflammatory responses is
thus critical to preserve good health. Ectonucleotidases play a
major role by setting the balance between pro-inflammatory
nucleotides and anti-inflammatory adenosine. The main
mechanism responsible for the accumulation of ATP into
the extracellular space is transport across the plasma
membrane, therefore the different transport pathways
involved also play a crucial role in regulating
ectonucleotidases activity. Virtually, responses of all immune
cells, e.g., neutrophils, monocytes/macrophages, various T
lymphocyte subsets and B lymphocytes, are affected to a
larger or smaller extent by NTPDase1/CD39 and NT5E/
CD73. The different acute and chronic inflammatory
conditions, tumor-related inflammation included, briefly
explored in this review with particular attention to more
recent findings, demonstrate the relevant role of the
ectonucleotidases in inflammatory homeostasis.
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