

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Measurements of Absolute Hadronic Branching Fractions of the Λ_{c}^ {+} Baryon M. Ablikim *et al.* (BESIII Collaboration) Phys. Rev. Lett. **116**, 052001 — Published 5 February 2016

DOI: 10.1103/PhysRevLett.116.052001

Measurements of absolute hadronic branching fractions of the Λ_c^+ baryon

M. Ablikim¹, M. N. Achasov^{9,e}, X. C. Ai¹, O. Albayrak⁵, M. Albrecht⁴, D. J. Ambrose⁴⁴, A. Amoroso^{49,A,49C}, F. F. An¹, Q. An^{46,a}, J. Z. Bai¹, R. Baldini Ferroli^{20,A}, Y. Ban³¹, D. W. Bennett¹⁹, J. V. Bennett⁵, M. Bertani^{20,A}, D. Bettoni^{21,A}, J. M. Bian⁴³, F. Bianchi^{49,A,49C}, E. Boger^{23,c}, I. Boyko²³, R. A. Briere⁵, H. Cai⁵¹, X. Cai^{1,a}, O. Cakir^{40,A}, A. Calcaterra^{20,A}, G. F. Cao¹, S. A. Cetin^{40,B}, J. F. Chang^{1,a}, G. Chelkov^{23,c,d}, G. Chen¹, H. S. Chen¹, H. Y. Chen², J. C. Chen¹, M. L. Chen^{1,a}, S. J. Chen², X. Chen^{1,a}, X. R. Chen²⁶, Y. B. Chen^{1,a}, H. P. Cheng¹⁷, X. K. Chu³¹, G. Cibinetto^{21,A}, H. L. Dai^{1,a}, J. P. Dai³⁴, A. Dbeyssi¹⁴, D. Dedovich²³, Z. Y. Deng¹, A. Denig²², I. Denysenko²³, M. Destefanis^{49,A,49C}, F. De Mori^{49,A,49C}, Y. Ding²⁷, C. Dong³⁰, J. Dong^{1,a}, L. Y. Dong¹, M. Y. Dong^{1,a}, Z. L. Dou²⁹, S. X. Du⁵³, P. F. Duan¹,
E. E. Fren^{40B}, J. Z. Fan³⁹, J. Fang^{1,a}, S. S. Fang⁴, X. Fang^{46,a}, Y. Fang¹, R. Farinelli^{21,A,21B}, L. Fava^{49,B,49C}, O. Fedorov²³, F. Feldbauer²², G. Felici^{20A}, C. Q. Feng^{46,a}, E. Fioravanti^{21A}, M. Fritsch^{14,22}, C. D. Fu¹, Q. Gao¹, X. L. Gao^{46,a}, X. Y. Gao², Y. Gao³⁹, Z. Gao^{46,a}, I. Garzia^{21A}, K. Goetzen¹⁰, L. Gong³⁰, W. X. Gong^{1,a}, W. Gradl²², M. Grecc^{49,A,49C}, M. H. Gu^{1,a}, Y. T. Gu¹², Y. H. Guan¹, A. Q. Guo¹, L. B. Guo²⁸, Y. Guo³, Y. P. Guo²², Z. Haddadi²⁵, A. Hafner²², S. Han⁵¹, X. Q. Hao¹⁵, F. A. Harris⁴², K. L. He¹, T. Held⁴, Y. K. Heng^{1,a}, Z. L. Hou¹, C. Hu²⁸, H. M. Hu¹, J. F. Hu^{49A,49C}, T. Hu^{1,a}, Y. Hu¹, G. S. Huang^{46,a}, J. S. Huang³⁰, J. B. Jiao³³, Z. Jiao¹⁷, D. P. Jin^{1,a}, S. Jin¹, T. Johansson⁵⁰, A. Julin⁴³, N. Kalantar-Nayestanaki²⁵, X. L. Kang³, X. S. Kang³⁰, M. Kavatsyuk⁵⁵, B. C. Ke⁶, P. Kiese²², R. Kliemt¹⁴, B. Kloss²², O. B. Kolcu^{40,B,h}, B. Kopf⁴, M. Krnice⁴², W. Kuehn²⁴, A. Kupsc⁵⁰, J. S. Lange^{24,a}, M. Lara¹⁹, q X. C. Lou^{1,a,g}, H. J. Lu¹⁷, J. G. Lu^{1,a}, Y. Lu¹, Y. P. Lu^{1,a}, C. L. Luo²⁸, M. X. Luo⁵², T. Luo⁴², X. L. Luo^{1,a}, X. R. Lyu⁴¹, X. C. Lou^{1,a,g}, H. J. Lu¹⁷, J. G. Lu^{1,a}, Y. Lu¹, Y. P. Lu^{1,a}, C. L. Luo²⁸, M. X. Luo⁵², T. Luo⁴², X. L. Luo^{1,a}, X. R. Lyu⁴¹, F. C. Ma²⁷, H. L. Ma¹, L. L. Ma³³, Q. M. Ma¹, T. Ma¹, X. N. Ma³⁰, X. Y. Ma^{1,a}, Y. M. Ma³³, F. E. Maas¹⁴, M. Maggiora^{49A,49C}, Y. J. Mao³¹, Z. P. Mao¹, S. Marcello^{49A,49C}, J. G. Messchendorp²⁵, J. Min^{1,a}, R. E. Mitchell¹⁹, X. H. Mo^{1,a}, Y. J. Mo⁶, C. Morales Morales¹⁴, N. Yu. Muchnoi^{9,e}, H. Muramatsu⁴³, Y. Nefedov²³, F. Nerling¹⁴, I. B. Nikolaev^{9,e}, Z. Ning^{1,a}, S. Nisar⁸, S. L. Niu^{1,a}, X. Y. Niu¹, S. L. Olsen³², Q. Ouyang^{1,a}, S. Pacetti^{20B}, Y. Pan^{46,a}, P. Patteri^{20A}, M. Pelizaeus⁴, H. P. Peng^{46,a}, K. Peters¹⁰, J. Pettersson⁵⁰, J. L. Ping²⁸, R. G. Ping¹, R. Poling⁴³, V. Prasad¹, H. R. Qi², M. Qi²⁹, S. Qian^{1,a}, C. F. Qiao⁴¹, L. Q. Qin³³, N. Qin⁵¹, X. S. Qin¹, Z. H. Qin^{1,a}, J. F. Qiu¹, K. H. Rashid⁴⁸, C. F. Redmer²², M. Ripka²², G. Rong¹, Ch. Rosner¹⁴, X. D. Ruan¹², V. Santoro^{21A}, A. Sarantsev^{23,f}, M. Savrié^{21B}, K. Schogning⁵⁰, S. Schogn³⁰, S. Schogn³¹, M. Shog^{46,a}, C. P. Shog³⁰, P. S. Shog³¹, H. S. Song¹, K. Schoenning⁵⁰, S. Schumann²², W. Shan³¹, M. Shao^{46,a}, C. P. Shen², P. X. Shen³⁰, X. Y. Shen¹, H. Y. Shen²¹,
W. M. Song¹, X. Y. Song¹, S. Sosio^{49A,49C}, S. Spataro^{49A,49C}, G. X. Sun¹, J. F. Sun¹⁵, S. S. Sun¹, Y. J. Sun^{46,a}, Y. Z. Sun¹,
Z. J. Sun^{1,a}, Z. T. Sun¹⁹, C. J. Tang³⁶, X. Tang¹, I. Tapan^{40C}, E. H. Thorndike⁴⁴, M. Tiemens²⁵, M. Ullrich²⁴, I. Uman^{40D}, Z. J. Sun^{1,a}, Z. T. Sun^{1,9}, C. J. Tang³⁰, X. Tang¹, I. Tapan^{40C}, E. H. Thorndike⁴⁴, M. Tiemens²⁵, M. Ullrich²⁴, I. Uman^{40D}, G. S. Varner⁴², B. Wang³⁰, B. L. Wang⁴¹, D. Wang³¹, D. Y. Wang³¹, K. Wang^{1,a}, L. L. Wang¹, L. S. Wang¹, M. Wang³³, P. Wang¹, P. L. Wang¹, S. G. Wang³¹, W. Wang^{1,a}, W. P. Wang^{46,a}, X. F. Wang³⁹, Y. D. Wang¹⁴, Y. F. Wang^{1,a}, Y. Q. Wang²², Z. Wang^{1,a}, Z. G. Wang^{1,a}, Z. H. Wang^{46,a}, Z. Y. Wang¹, T. Weber²², D. H. Wei¹¹, J. B. Wei³¹, P. Weidenkaff²², S. P. Wen¹, U. Wiedner⁴, M. Wolke⁵⁰, L. H. Wu¹, Z. Wu^{1,a}, L. Xia^{46,a}, L. G. Xia³⁹, Y. Xia¹⁸, D. Xiao¹, H. Xiao⁴⁷, Z. J. Xiao²⁸, Y. G. Xie^{1,a}, Q. L. Xiu^{1,a}, G. F. Xu¹, L. Xu¹, Q. J. Xu¹³, Q. N. Xu⁴¹, X. P. Xu³⁷, L. Yan^{49A,49C}, W. B. Yan^{46,a}, W. C. Yan^{46,a}, Y. H. Yan¹⁸, H. J. Yang³⁴, H. X. Yang¹, L. Yang⁵¹, Y. X. Yang¹¹, M. Ye^{1,a}, M. H. Ye⁷, J. H. Yin¹, B. X. Yu^{1,a}, C. X. Yu³⁰, J. S. Yu²⁶, C. Z. Yuan¹, W. L. Yuan²⁹, Y. Yuan¹, A. Yuncu^{40B,b}, A. A. Zafar⁴⁸, A. Zallo^{20A}, Y. Zeng¹⁸, Z. Zeng^{46,a}, B. X. Zhang¹, B. Y. Zhang^{1,a}, L. Xang^{1,a}, L. Y. Zhang¹, L. Zhang¹, K. Tapan³, H. Y. Zhang^{1,a}, L. Zhang¹, L. Zhang¹, K. Zhang¹, L. Zhang¹, L. Zhang^{1,a}, L. Zhang¹ H. Y. Zhang^{1,a}, J. J. Zhang¹, J. L. Zhang¹, J. Q. Zhang¹, J. W. Zhang^{1,a}, J. Y. Zhang¹, J. Z. Zhang¹, K. Zhang¹, L. Zhang¹, X. Y. Zhang⁴, J. J. Zhang⁴, J. E. Zhang⁵, J. Q. Zhang⁴, J. W. Zhang⁴, J. T. Zhang⁴, J. Z. Zhang⁶, K. Zhang⁴, E. Zhang⁴, X. Y. Zhang³³, Y. Zhang¹, Y. H. Zhang^{1,a}, Y. N. Zhang⁴¹, Y. T. Zhang^{46,a}, Yu Zhang⁴¹, Z. H. Zhang⁶, Z. P. Zhang⁴⁶, Z. Y. Zhang⁵¹, G. Zhao¹, J. W. Zhao^{1,a}, J. Y. Zhao¹, J. Z. Zhao^{1,a}, Lei Zhao^{46,a}, Ling Zhao¹, M. G. Zhao³⁰, Q. Zhao¹, Q. W. Zhao¹, S. J. Zhao⁵³, T. C. Zhao¹, Y. B. Zhao^{1,a}, Z. G. Zhao^{46,a}, A. Zhemchugov^{23,c}, B. Zheng⁴⁷, J. P. Zheng^{1,a}, W. J. Zheng³³, Y. H. Zheng⁴¹, B. Zhong²⁸, L. Zhou^{1,a}, X. Zhou⁵¹, X. K. Zhou^{46,a}, X. R. Zhou^{46,a}, X. Y. Zhou¹, K. Zhu¹, K. J. Zhu^{1,a}, S. Zhu¹, S. H. Zhu⁴⁵, X. L. Zhu³⁹, Y. C. Zhu^{46,a}, Y. S. Zhu¹, Z. A. Zhu¹, J. Zhuang^{1,a}, L. Zotti^{49A,49C}, B. S. Zou^1 , J. H. Zou^1 (BESIII Collaboration) ¹ Institute of High Energy Physics, Beijing 100049, People's Republic of China ² Beihang University, Beijing 100191, People's Republic of China ³ Beijing Institute of Petrochemical Technology, Beijing 102617, People's Republic of China ⁴ Bochum Ruhr-University, D-44780 Bochum, Germany ⁵ Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA ⁶ Central China Normal University, Wuhan 430079, People's Republic of China ⁷ China Center of Advanced Science and Technology, Beijing 100190, People's Republic of China ⁸ COMSATS Institute of Information Technology, Lahore, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan ⁹ G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia ¹⁰ GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany ¹¹ Guangxi Normal University, Guilin 541004, People's Republic of China ¹² GuangXi University, Nanning 530004, People's Republic of China

62	Hangzhou Normal University, Hangzhou 310036, People's Republic of China
63	¹⁴ Helmholtz Institute Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
64	¹⁵ Henan Normal University, Xinxiang 453007, People's Republic of China
65	¹⁶ Henan University of Science and Technology, Luoyang 471003, People's Republic of China
66	¹⁷ Huangshan College, Huangshan 245000, People's Republic of China
67	¹⁸ Hunan University, Changsha 410082, People's Republic of China
68	¹⁹ Indiana University, Bloominaton, Indiana 47405, USA
60	²⁰ (A)INEN Laboratori Nazionali di Erascati L0004, Frascati Italy: (B)INEN and University of Perugia L06100 Perugia
70	India
70	21 (A)INEN Carriero di Emmano I (1100 Emmano Italia (D)Universita di Emmano I (1100 Emmano Italia
71	(A)INFN Sectore at Pertura, 1-44122, Pertura, Hudg; (B)Oniversity of Pertura, 1-44122, Pertura, 1000
72	Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
73	Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
74	²⁴ Justus Liebig University Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
75	²⁵ KVI-CART, University of Groningen, NL-9747 AA Groningen, The Netherlands
76	²⁶ Lanzhou University, Lanzhou 730000, People's Republic of China
77	²⁷ Liaoning University, Shenyang 110036, People's Republic of China
78	²⁸ Nanjing Normal University, Nanjing 210023, People's Republic of China
79	²⁹ Naniina University, Naniina 210093, People's Republic of China
80	³⁰ Nankai University Tianiin 300071 People's Republic of China
00	³¹ Peking University Beijing 100871 People's Republic of Ching
00	³² Secol National University Secol 151 7/7 Korea
02	³³ Shandong University, Jinan 250100 Boonle's Remultin of China
83	³⁴ Chamabai Liao Tana University, Shan 250100, 1 eople's Republic Of Ohima
84	Shanghai Jiao Tong University, Shanghai 200200 , Feople's Republic of China
85	36 General University, Taiyuan Osoboo, People's Republic of China
86	³⁷ Sichuan University, Chengau billood, People's Republic of China
87	Sochow University, Suzhou 215006, People's Republic of China
88	³⁰ Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
89	³⁹ Tsinghua University, Beijing 100084, People's Republic of China
90	⁴⁰ (A)Ankara University, 06100 Tandogan, Ankara, Turkey; (B)Istanbul Bilgi University, 34060 Eyup, Istanbul, Turkey;
91	(C)Uludag University, 16059 Bursa, Turkey; (D)Near East University, Nicosia, North Cyprus, Mersin 10, Turkey
92	⁴¹ University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
93	⁴² University of Hawaii, Honolulu, Hawaii 96822, USA
94	⁴³ University of Minnesota, Minneapolis, Minnesota 55455, USA
95	⁴⁴ University of Rochester, Rochester, New York 14627, USA
96	⁴⁵ University of Science and Technology Liaoning, Anshan 114051, People's Republic of China
97	⁴⁶ University of Science and Technology of China, Hefei 230026, People's Republic of China
98	⁴⁷ University of South China, Hengyang 421001, People's Republic of China
99	⁴⁸ University of the Puniab, Labore-54590, Pakistan
100	⁴⁹ (A) University of Turin, I-10125, Turin, Italy: (B) University of Eastern Piedmont, I-15121, Alessandria, Italy: (C) INFN
101	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
102	⁵⁰ Unnsala University Box 516 SE-75120 Unnsala Sweden
102	⁵¹ Washam University, Waham 130079 People's Remultic of China
103	⁵² Theijang University, Hangshoy 210027, Poonle's Republic of China
104	2 Aborgether University, Then achery (50001, Teople's Republic of China
105	Znengzhoù University, Znengzhoù 450001, Feople's Republic of China
106	^a Also at State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People's Republic of
107	China
108	^b Also at Bogazici University, 34342 Istanbul, Turkey
109	^c Also at the Moscow Institute of Physics and Technologu. Moscow 141700. Russia
110	^d Also at the Functional Electronics Laboratory, Tomsk State University, Tomsk, 634050, Russia
111	^e Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
112	^f Also at the NRC "Kurchatov Institute". PNPI. 188300. Gatchina. Russia
113	^g Also at University of Texas at Dallas, Richardson, Texas 75083, USA
114	^h Also at Istanbul Arel University, 3/295 Istanbul, Turkey
'	

 We report the first measurement of absolute hadronic branching fractions of Λ_c^+ baryon at the $\Lambda_c^+ \overline{\Lambda}_c^-$ production threshold, in the 30 years since the Λ_c^+ discovery. In total, twelve Cabibbo-favored Λ_c^+ hadronic decay modes are analyzed with a double-tag technique, based on a sample of 567 pb⁻¹ of e^+e^- collisions at $\sqrt{s} = 4.599 \,\text{GeV}$ recorded with the BESIII detector. A global least-squares

fitter is utilized to improve the measured precision. Among the measurements for twelve Λ_c^+ decay modes, the branching fraction for $\Lambda_c^+ \to pK^-\pi^+$ is determined to be $(5.84 \pm 0.27 \pm 0.23)\%$, where the first uncertainty is statistical and the second is systematic. In addition, the measurements of the branching fractions of the other eleven Cabibbo-favored hadronic decay modes are significantly improved.

126 PACS numb

PACS numbers: 14.20.Lq, 13.30.Eg, 13.66.Bc

Charmed baryon decays provide crucial information₁₇₅ 127 for the study of both strong and weak interactions.176 128 Hadronic decays of Λ_c^+ , the lightest charmed baryon₁₇₇ 129 with quark configuration udc, provide important input 130 to Λ_b physics as Λ_b decays dominantly to Λ_c^+ [1, 2]. 131 Improved measurements of the Λ_c^+ hadronic decays can₁₇₈ 132 be used to constrain fragmentation functions of $\operatorname{charm}_{179}$ 133 and bottom quarks by counting inclusive heavy flavor₁₈₀ 134 baryons [3]. Most Λ_c^+ branching fractions (BF) have until₁₈₁ 135 now been obtained by combining measurements of ratios 136 with a single branching fraction of the golden reference 137 mode $\Lambda_c^+ \to p K^- \pi^+$, thus introducing strong correla-138 tions and compounding uncertainties. The experimen-139 tally averaged BF, $\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+) = (5.0 \pm 1.3)\%$ [4]. 140 has large uncertainty due to the introduction of mod-141 el assumptions on Λ_c^+ inclusive decays in these mea-142 surements [5]. Recently, the Belle experiment reported $\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+) = (6.84 \pm 0.24^{+0.21}_{-0.27})\%$ with a preci-sion improved by a factor of 5 over previous results [6]. However, most hadronic BEs still have peor precision [4]. 143 144 145 However, most hadronic BFs still have poor precision [4] 146 In this Letter, we present the first simultaneous determi-147 190 nation of multiple Λ_c^+ absolute BFs. 148

Our analysis is based on a data sample with an in-149 tegrated luminosity of $567 \,\mathrm{pb^{-1}}$ [7] collected with the 150 BESIII detector [8] at the center-of-mass energy of \sqrt{s} = 151 4.599 GeV. At this energy, no additional hadrons accom-152 panying the $\Lambda_c^+ \overline{\Lambda}_c^-$ pairs are produced. Previously, the 153 Mark III collaboration measured D hadronic BFs at the₁₉₃ 154 $D\bar{D}$ threshold using a double-tag technique, which re-lies on fully reconstructing both D and \bar{D} decays [9].¹⁹⁴ 155 156 This technique obviates the need for knowledge of the 157 We emluminosity or the production cross section. 158 luminosity or the production cross section. We cm⁻¹⁹⁷ ploy a similar technique [10] using BESIII data near the $\Lambda_c^+ \overline{\Lambda}_c^-$ threshold, resulting in improved measure-ments of charge-averaged BFs for twelve Cabibbo-favored hadronic decay modes: $\Lambda_c^+ \to p K_S^0$, $p K^- \pi^+$, $p K_S^0 \pi^0$,²⁰⁰ $p K_S^0 \pi^+ \pi^-$, $p K^- \pi^+ \pi^0$, $\Lambda \pi^+$, $\Lambda \pi^+ \pi^0$, $\Lambda \pi^+ \pi^- \pi^+$, $\Sigma^0 \pi^+$,²⁰² $\Sigma^+ \pi^0$, $\Sigma^+ \pi^+ \pi^-$, and $\Sigma^+ \omega$ [11]. Throughout the Letter,²⁰³ 159 160 161 162 163 164 charge-conjugate modes are implicitly assumed, unless 165 otherwise stated. 166

¹⁶⁶ otherwise stated. ¹⁶⁷ To identify the $\Lambda_c^+ \overline{\Lambda}_c^-$ signal candidates, we first recon-²⁰⁵ ¹⁶⁸ struct one $\overline{\Lambda}_c^-$ baryon [called a single tag (ST)] through²⁰⁷ ¹⁶⁹ the final states of any of the twelve modes. For a given²⁰⁸ ¹⁷⁰ decay mode *j*, the ST yield is determined to be²⁰⁹

$$N_j^{\rm ST} = N_{\Lambda_c^+ \overline{\Lambda_c^-}} \cdot \mathcal{B}_j \cdot \varepsilon_j, \qquad (1)^{210}$$

where $N_{\Lambda_c^+ \overline{\Lambda_c^-}}$ is the total number of produced $\Lambda_c^+ \overline{\Lambda_c^-}_{212}$ pairs and ε_j is the corresponding efficiency. Then we₂₁₃ define double-tag (DT) events as those where the partner₂₁₄ Λ_c^+ recoiling against the $\overline{\Lambda_c^-}$ is reconstructed in one of the₂₁₅ twelve modes. That is, in DT events, the $\Lambda_c^+ \overline{\Lambda}_c^-$ event is fully reconstructed. The DT yield with $\Lambda_c^+ \to i$ (signal mode) and $\overline{\Lambda}_c^- \to j$ (tagging mode) is

$$N_{ij}^{\rm DT} = N_{\Lambda_c^+ \overline{\Lambda}_c^-} \cdot \mathcal{B}_i \cdot \mathcal{B}_j \cdot \varepsilon_{ij}, \qquad (2)$$

where ε_{ij} is the efficiency for simultaneously reconstructing modes *i* and *j*. Hence, the ratio of the DT yield (N_{ij}^{DT}) and ST yield (N_j^{ST}) provides an absolute measurement of the BF:

$$\mathcal{B}_{i} = \frac{N_{ij}^{\rm DT}}{N_{j}^{\rm ST}} \frac{\varepsilon_{j}}{\varepsilon_{ij}}.$$
(3)

Because of the large acceptance of the BESIII detector and the low multiplicities of Λ_c hadronic decays, $\varepsilon_{ij} \approx \varepsilon_i \varepsilon_j$. Hence, the ratio $\varepsilon_j / \varepsilon_{ij}$ is insensitive to most systematic effects associated with the decay mode j, and a signal BF \mathcal{B}_i obtained using this procedure is nearly independent of the efficiency of the tagging mode. Therefore, \mathcal{B}_i is sensitive to the signal mode efficiency (ε_i) , whose uncertainties dominate the contribution to the systematic error from the efficiencies. According to Eqs. (1) and (2), the total DT yield with $\Lambda_c^+ \to i$ (signal mode) over the twelve ST modes is determined to be

$$N_{i-}^{\rm DT} = N_{\Lambda_c^+ \overline{\Lambda_c^-}} \cdot \sum_j \mathcal{B}_i \cdot \mathcal{B}_j \cdot \varepsilon_{i-}^{\rm DT}, \qquad (4)$$

where $\varepsilon_{i-}^{\text{DT}} \equiv \frac{\sum_{j} (\mathcal{B}_{j} \cdot \varepsilon_{ij})}{\sum_{j} \mathcal{B}_{j}}$ is the average DT efficiency weighted over the twelve modes.

The BESIII detector is an approximately cylindrically symmetric detector with 93% coverage of the solid angle around the e^+e^- interaction point (IP). The components of the apparatus, ordered by distance from the IP, are a 43-layer small-cell main drift chamber (MDC), a time-of-flight (TOF) system based on plastic scintillators with two layers in the barrel region and one layer in the end-cap region, a 6240-cell CsI(Tl) crystal electromagnetic calorimeter (EMC), a superconducting solenoid magnet providing a 1.0 T magnetic field aligned with the beam axis, and resistive-plate muon-counter layers interleaved with steel. The momentum resolution for charged tracks in the MDC is 0.5% for a transverse momentum of $1 \,\text{GeV}/c$. The energy resolution in the EMC is 2.5% in the barrel region and 5.0% in the end-cap region for 1 GeV photons. Particle identification (PID) for charged tracks combines measurements of the energy deposit dE/dx in MDC and flight time in TOF and forms likelihoods $\mathcal{L}(h)$ $(h = p, K, \pi)$ for a hadron h hypothesis. More details about the BESIII detector are provided elsewhere [8].

High-statistics Monte Carlo (MC) simulations of e^+e^- 216 annihilations are used to understand backgrounds and to 217 estimate detection efficiencies. The simulation includes 218 the beam-energy spread and initial-state radiation (ISR) 219 of the e^+e^- collisions as simulated with KKMC [12]. 220 The inclusive MC sample consists of $\Lambda_c^+ \overline{\Lambda}_c^-$ events, $D_{(s)}$ 221 production [13], ISR return to lower-mass ψ states, and 222 continuum processes $e^+e^- \rightarrow q\bar{q} \ (q = u, d, s)$. Decay 223 modes as specified in the Particle Data Group summary 224 (PDG) [4] are modeled with EVTGEN [14]. For the MC 225 production of $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda_c^-}$, the observed cross sec-226 tions are taken into account, and phase-space-generated 227 Λ_c^+ decays are reweighted according to the observed be-228 haviors in data. All final tracks and photons are fed into 229 a GEANT4-based [15] detector simulation package. 230

Charged tracks detected in the MDC must satisfy 231 $|\cos\theta| < 0.93$ (where θ is the polar angle with respect 232 to the beam direction) and have a distance of closest ap-233 proach to the IP of less than 10 cm along the beam axis 234 and less than 1 cm in the perpendicular plane, except for 235 those used for reconstructing K_S^0 and Λ decays. Tracks 236 are identified as protons when the PID determines this 237 hypothesis to have the greatest likelihood $(\mathcal{L}(p) > \mathcal{L}(K))$ 238 and $\mathcal{L}(p) > \mathcal{L}(\pi)$, while charged kaons and pions are dis-239 criminated based on comparing the likelihoods for these 240 two hypotheses $(\mathcal{L}(K) > \mathcal{L}(\pi) \text{ or } \mathcal{L}(\pi) > \mathcal{L}(K)).$ 241 274

Showers in the EMC not associated with any $charged_{275}$ 242 track are identified as photon candidates after fulfill-276 243 ing the following requirements. The deposited ener-277 244 gy is required to be larger than 25 MeV in the bar-278 245 rel ($|\cos\theta| < 0.8$) region and 50 MeV in the end-cap₂₇₉ 246 region $(0.84 < |\cos \theta| < 0.92)$. To suppress electronic₂₈₀ 247 noise and showers unrelated to the event, the EMC time₂₈₁ 248 deviation from the event start time is required to be with-282 249 in (0, 700) ns. The π^0 candidates are reconstructed from₂₈₃ 250 photon pairs, and their invariant masses are required to₂₈₄ 251 satisfy $115 < M(\gamma \gamma) < 150 \,\mathrm{MeV}/c^2$. To improve momen-₂₈₅ 252 tum resolution, a mass-constrained fit to the π^0 nominal₂₈₆ 253 mass is applied to the photon pairs and the resulting₂₈₇ 254 energy and momentum of the π^0 are used for further₂₈₈ 255 analysis. 256

Candidates for K_S^0 and Λ are formed by combining²⁹⁰ 257 two oppositely charged tracks into the final states $\pi^+\pi^-_{291}$ 258 and $p\pi^{-}$. For these two tracks, their distances of clos-292 259 est approaches to the IP must be within $\pm 20 \,\mathrm{cm}$ along²⁹³ 260 the beam direction. No distance constraints in the trans-294 261 verse plane are required. The charged π is not subject-295 262 ed to the PID requirements described above, while pro-296 263 ton PID is implemented in order to improve signal sig-297 264 nificance. The two daughter tracks are constrained to₂₉₈ 265 originate from a common decay vertex by requiring the₂₉₉ 266 χ^2 of the vertex fit to be less than 100. Furthermore,₃₀₀ 267 the decay vertex is required to be separated from the₃₀₁ 268 IP by a distance of at least twice the fitted vertex res-302 269 olution. The fitted momenta of the $\pi^+\pi^-$ and $p\pi^-$ are₃₀₃ 270 used in the further analysis. We impose requirements₃₀₄ 271 487 < $M(\pi^+\pi^-)$ < 511 MeV/ c^2 and 1111 < $M(p\pi^-)$ <₃₀₅ 1121 MeV/ c^2 to select K_S^0 and Λ signal candidates, re-₃₀₆ 272 273

FIG. 1. Fits to the ST $M_{\rm BC}$ distributions in data for the different decay modes. Points with error bars are data, solid lines are the sum of the fit functions, and dashed lines are the background shapes.

spectively, which are within about 3 standard deviations from their nominal masses. To form Σ^0 , Σ^+ and ω candidates, requirements on the invariant masses of $1179 < M(\Lambda\gamma) < 1203 \,\mathrm{MeV}/c^2$, $1176 < M(p\pi^0) < 1200 \,\mathrm{MeV}/c^2$ and $760 < M(\pi^+\pi^-\pi^0) < 800 \,\mathrm{MeV}/c^2$, are imposed.

When we reconstruct the decay modes $pK_S^0\pi^0$, $pK_S^0\pi^+\pi^-$ and $\Sigma^+\pi^+\pi^-$, possible backgrounds from $\Lambda \rightarrow p\pi^-$ in the final states are rejected by requiring $M(p\pi^-)$ outside the range (1110, 1120) MeV/ c^2 . In addition, for the mode $pK_S^0\pi^0$, candidate events within the range 1170 $< M(p\pi^0) < 1200 \text{ MeV}/c^2$ are excluded to suppress Σ^+ backgrounds. To remove K_S^0 candidates in the modes $\Lambda\pi^+\pi^-\pi^+$, $\Sigma^+\pi^0$ and $\Sigma^+\pi^+\pi^-$, masses of any pairs of $\pi^+\pi^-$ and $\pi^0\pi^0$ are not allowed to fall in the range (480, 520) MeV/ c^2 .

To discriminate Λ_c candidates from background, two variables reflecting energy and momentum conservation are used. First, we calculate the energy difference. $\Delta E \equiv E - E_{\text{beam}}$, where E is the total measured energy of the Λ_c candidate and E_{beam} is the average value of the e^+ and e^- beam energies. For each tag mode, candidates are rejected if they fail the ΔE requirements in Table I, which correspond to about 3 times the resolutions. Second, we define the beam-constrained mass $M_{\rm BC}$ of the Λ_c candidates by substituting the beamenergy E_{beam} for the energy E of the Λ_c candidates, $M_{\text{BC}}c^2 \equiv \sqrt{E_{\text{beam}}^2 - p^2c^2}$, where p is the measured Λ_c momentum in the center-of-mass system of the e^+e^- collision. Figure 1 shows the $M_{\rm BC}$ distributions for the ST samples, where evident Λ_c signals peak at the nominal Λ_c mass position (2286.46 \pm 0.14) MeV/ c^{2} [4]. The MC simulations show that peaking backgrounds and cross feeds among the twelve ST modes are negligible.

TABLE I. Requirement on ΔE , ST yields, DT yields and detection efficiencies for each of the decay modes. The uncertainties are statistical only. The quoted efficiencies do not include any subleading BFs.

Mode	$\Delta E \ (MeV)$	N_j^{ST}	$\varepsilon_j(\%)$	N_{i-}^{DT}	$\varepsilon_{i-}^{\mathrm{DT}}(\%)$
pK_S^0	(-20, 20)	1243 ± 37	55.9	97 ± 10	16.6
$pK^{-}\pi^{+}$	(-20, 20)	6308 ± 88	51.2	420 ± 22	14.1
$pK_S^0\pi^0$	(-30, 20)	558 ± 33	20.6	47 ± 8	6.8
$pK_S^0\pi^+\pi^-$	(-20, 20)	485 ± 29	21.4	34 ± 6	6.4
$pK^-\pi^+\pi^0$	(-30, 20)	1849 ± 71	19.6	176 ± 14	7.6
$\Lambda \pi^+$	(-20, 20)	706 ± 27	42.2	60 ± 8	12.7
$\Lambda \pi^+ \pi^0$	(-30, 20)	1497 ± 52	15.7	101 ± 13	5.4
$\Lambda \pi^+ \pi^- \pi^+$	(-20, 20)	609 ± 31	12.0	53 ± 7	3.6
$\Sigma^0 \pi^+$	(-20, 20)	522 ± 27	29.9	38 ± 6	9.9
$\Sigma^+ \pi^0$	(-50, 30)	309 ± 24	23.8	25 ± 5	8.0
$\Sigma^+ \pi^+ \pi^-$	(-30, 20)	1156 ± 49	24.2	80 ± 9	8.1
$\Sigma^+ \omega$	(-30, 20)	157 ± 22	9.9	13 ± 3	3.8

We perform unbinned extended maximum likelihood 307 fits to the $M_{\rm BC}$ distributions to obtain the ST yields, 308 as illustrated in Fig. 1. In each fit, the signal shape 309 is derived from MC simulations of the signal ST modes 310 convolved with a Gaussian function to account for imper-311 fect modeling of the detector resolution and beam-energy 312 spread. The parameters of the Gaussians are allowed to 313 vary in the fits. Backgrounds for each mode are described 314 with the ARGUS function [16]. The resultant ST yields 315 in the signal region $2276 < M_{\rm BC} < 2300 \,{\rm MeV}/c^2$ and the 316 corresponding detection efficiencies are listed in Table I. 317 In the signal candidates of the twelve ST modes, a spe-318 cific mode $\Lambda_c^+ \to i$ is formed from the remaining tracks 319 and showers recoiling against the ST $\overline{\Lambda}_c^-$. We combine 320 the DT signal candidates over the twelve ST modes and 321 plot the distributions of the $M_{\rm BC}$ variable in Fig. 2. We 322 follow the same fit strategy as in the ST samples to es-323 timate the total DT yield N_{i-}^{DT} in Eq. (4), except that 324 the DT signal shapes are derived from the DT signal MC 325 samples and convolved with the Gaussian function. The 326 parameters of the Gaussians are also allowed to vary in 327 the fits. The extracted DT yields are listed in Table I. 328 The 12 \times 12 DT efficiencies ε_{ij} are evaluated based on₃₄₄ 329 the DT signal MC samples, in order to extract the BFs.₃₄₅ 330 Main sources of systematic uncertainties related to the346 331 measurement of BFs include tracking, PID, reconstruc-347 332 tion of intermediate states and intermediate BFs. For348 333 the ΔE and $M_{\rm BC}$ requirements, the uncertainties are³⁴⁹ 334 negligible, as we correct resolutions in MC samples to³⁵⁰ 335 accord with those in data. Uncertainties associated with³⁵¹ 336 the efficiencies of the tracking and PID of charged par-352 337

ticles are estimated by studying a set of control sam-³⁵³ ples of $e^+e^- \rightarrow \pi^+\pi^+\pi^-\pi^-$, $K^+K^-\pi^+\pi^-$ and $p\bar{p}\pi^+\pi^-$ ³⁵⁴ based on data taken at energies above $\sqrt{s} = 4.0 \,\text{GeV}$.³⁵⁵ An uncertainty of 1.0% is assigned to each π^0 due to the³⁵⁶ reconstruction efficiency. The uncertainties of detecting³⁵⁷ K_S^0 and Λ are determined to be 1.2% and 2.5%, respec-³⁵⁸

FIG. 2. Fits to the DT $M_{\rm BC}$ distributions in data for different signal modes. Points with error bars are data, solid lines are the sum of fit functions, and dashed lines are background shapes.

TABLE II. Summary of systematic uncertainties, in percent. The total numbers are derived from the least-squares fit, by taking into account correlations among different modes.

Source	Tracking	PID	K^0_{π}	Δ	π^0	Signal	MC	Quoted	Total
Source	macking	1 1D	ns	11	Л	model	stat.	BFs	10041
pK_S^0	1.3	0.3	1.2			0.2	0.4	0.1	2.0
$pK^{-}\pi^{+}$	2.5	3.2					0.2		3.9
$pK_S^0\pi^0$	1.1	1.6	1.2		1.0	1.0	0.5	0.1	2.7
$pK_S^0\pi^+\pi^-$	2.8	5.4	1.2			0.5	0.5	0.1	5.9
$pK^-\pi^+\pi^0$	3.3	5.8			1.0	2.0	0.5		6.6
$\Lambda \pi^+$	1.0	1.0		2.5		0.5	0.5	0.8	2.4
$\Lambda \pi^+ \pi^0$	1.0	1.0		2.5	1.0	0.6	0.6	0.8	2.7
$\Lambda \pi^+ \pi^- \pi^+$	3.0	3.0		2.5		0.8	0.8	0.8	4.7
$\Sigma^0 \pi^+$	1.0	1.0		2.5		1.7	0.7	0.8	2.4
$\Sigma^+ \pi^0$	1.3	0.3			2.0	1.7	0.8	0.1	2.5
$\Sigma^+\pi^+\pi^-$	3.0	3.7			1.0	0.8	0.4	0.1	4.7
$\Sigma^+ \omega$	3.0	3.2			2.0	7.1	1.0	0.8	4.5

tively. Reweighting factors for the twelve signal models are varied within their statistical uncertainties obtained from the ST data samples. Deviations of the resultant efficiencies are taken into account in systematic uncertainties. Systematic uncertainties due to limited statistics in MC samples are included. Uncertainties on the BFs of intermediate state decays from the PDG [4] are also included. A summary of systematic uncertainties are given in Table II.

We use a least-squares fitter, which considers statistical and systematic correlations among the different hadronic modes, to obtain the BFs of the twelve Λ_c^+ decay modes globally. Details of this fitter are discussed in Ref. [17]. In the fitter, the precisions of the twelve BFs are constrained to a common variable, $N_{\Lambda_c^+ \overline{\Lambda_c^-}}$, according to Eqs. (1) and

TABLE III. Comparison of the measured BFs in this work³⁷⁵ with previous results from PDG [4]. For our results, the first³⁸⁰ uncertainties are statistical and the second are systematic.³⁸¹

383

384

385

386

387

388

389

390

391

392

393

394

305

396

433

$\begin{array}{ccccc} pK_S^0 & 1.52 \pm 0.08 \pm 0.03 & 1.15 \pm 0.30 \\ pK^-\pi^+ & 5.84 \pm 0.27 \pm 0.23 & 5.0 \pm 1.3 \\ pK_S^0\pi^0 & 1.87 \pm 0.13 \pm 0.05 & 1.65 \pm 0.50 \\ pK_S^0\pi^+\pi^- & 1.53 \pm 0.11 \pm 0.09 & 1.30 \pm 0.35 \\ pK^-\pi^+\pi^0 & 4.53 \pm 0.23 \pm 0.30 & 3.4 \pm 1.0 \\ \Lambda\pi^+ & 1.24 \pm 0.07 \pm 0.03 & 1.07 \pm 0.28 \\ \Lambda\pi^+\pi^0 & 7.01 \pm 0.37 \pm 0.19 & 3.6 \pm 1.3 \\ \Lambda\pi^+\pi^0 & 7.01 \pm 0.37 \pm 0.31 & 0.37 \pm 0.31 \\ \Lambda\pi^+\pi^0 & 7.01 \pm 0.37 \pm 0.31 & 0.31 \\ \Lambda\pi^+\pi^0 & 7.01 \pm 0.31 & 0.31 & 0.31 \\ \Lambda\pi^+\pi^0 & 7.01 \pm 0.31 & 0.31 & 0.31 \\ \Lambda\pi^+\pi^0 & 7.01 \pm 0.31 & 0.31 & 0.31 \\ \Lambda\pi^+\pi^0 & 7.01 & 0.31 & 0.31 & 0.31 \\ \Lambda\pi^+\pi^0 & 7.01 & 0.31 & 0.31 & 0.31 \\ \Lambda\pi^+\pi^0 & 7.01 & 0.31 & 0.31 & 0.31 \\ \Lambda\pi^+\pi^0 & 7.01 & 0.31 & 0.31 & 0.31 \\ \Lambda\pi^+\pi^0 & 7.01 & 0.31 & 0.31 & 0.31 \\ \Lambda\pi^+\pi^0 & 7.01 & 0.31 & 0.31 & 0.31 \\ \Lambda\pi^+\pi^0 & 7.01 & 0.31 & 0.31 & 0.31 \\ \Lambda\pi^+\pi^0 & 7.01 & 0.31 & 0.31 & 0.31 \\ \Lambda\pi^+\pi^0 & 7.01 & 0.31 & 0.31 & 0.31 \\ \Lambda\pi^+\pi^0 & 7.01 & 0.31 & 0.31 & 0.31 \\ \Lambda\pi^+\pi^0 & 7.01 & 0.31 & 0.31 & 0.31 \\ \Lambda\pi^+\pi^0 & 7.01 & 0.31 & 0.31 & 0.31 \\ \Lambda\pi^+\pi^0 & 7.01 & 0.31 & 0.31 & 0.31 \\ \Lambda\pi^+\pi^0 & 7.01 & 0.31 & 0.31 & 0.31 \\ \Lambda\pi$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c} pK_S^0\pi^0 \\ pK_S^0\pi^+\pi^- \\ pK^-\pi^+\pi^0 \\ \Lambda\pi^+ \\ \Lambda\pi^+\pi^0 \\ $
$\begin{array}{l} pK_{S}^{0}\pi^{+}\pi^{-} \\ pK^{-}\pi^{+}\pi^{0} \\ \Lambda\pi^{+} \\ \Lambda\pi^{+} \\ \Lambda\pi^{+}\pi^{0} \\ \Lambda\pi^{+$
$\begin{array}{ccc} pK^{-}\pi^{+}\pi^{0} & 4.53 \pm 0.23 \pm 0.30 \\ \Lambda\pi^{+} & 1.24 \pm 0.07 \pm 0.03 \\ \Lambda\pi^{+}\pi^{0} & 7.01 \pm 0.37 \pm 0.19 \\ \Lambda\pi^{+}\pi^{0} & 3.6 \pm 1.3 \\ \Lambda\pi^{+}\pi^{0} & 7.01 \pm 0.37 \pm 0.19 \\ \Lambda\pi^{+}\pi^{0} & 3.6 \pm 0.7 \\ \Lambda\pi^{+}\pi^{0} & \Lambda\pi^{+}\pi^{0} \\ \Lambda\pi^{+}\pi^{+}\pi^{0} \\ \Lambda\pi^{+}$
$\begin{array}{c c} \Lambda \pi^{+} & 1.24 \pm 0.07 \pm 0.03 \\ \Lambda \pi^{+} \pi^{0} & 7.01 \pm 0.37 \pm 0.19 \\ \Lambda \pi^{+} \pi^{-} & 2.81 \pm 0.24 \pm 0.18 \\ \Lambda \pi^{+} & -2.81 \pm 0.24 \pm 0.24 \\ \Lambda \pi^{+} & -2.81 \pm 0.24 \pm 0.24 \\ \Lambda \pi^{+} & -2.81 \pm 0.24 \pm 0.24 \\ \Lambda \pi^{+} & -2.81 \pm 0.24 \pm 0.24 \\ \Lambda \pi^{+} & -2.81 \pm 0.24 \pm 0.24 \\ \Lambda \pi^{+} & -2.81 \pm 0.24 \pm 0.24 \\ \Lambda \pi^{+} & -2.81 \pm 0.24 \pm 0.24 \\ \Lambda \pi^{+} & -2.81 \pm 0.24 \pm 0.24 \\ \Lambda \pi^{+} & -2.81 \pm 0.24 \pm 0.24 \\ \Lambda \pi^{+} & -2.81 \pm 0.24 \\$
$\Lambda \pi^+ \pi^0$ 7.01 ± 0.37 ± 0.19 3.6 ± 1.3
$A = \pm = \pm 2.91 \pm 0.94 \pm 0.18 \pm 0.61 \pm 0.7$
$\Lambda \pi^+ \pi^- \pi^+ [3.81 \pm 0.24 \pm 0.18] 2.0 \pm 0.7$
$\Sigma^0 \pi^+$ 1.27 ± 0.08 ± 0.03 1.05 ± 0.28
$\Sigma^+ \pi^0$ 1.18 ± 0.10 ± 0.03 1.00 ± 0.34
$\Sigma^+ \pi^+ \pi^-$ 4.25 ± 0.24 ± 0.20 3.6 ± 1.0
$\Sigma^+\omega$ 1.56 ± 0.20 ± 0.07 2.7 ± 1.0

(4). In total, there are thirteen free parameters (twelve $\mathcal{B}_{i_{397}}$ and $N_{\Lambda_c^+ \overline{\Lambda}_c^-}$) to be estimated. As peaking backgrounds in₃₉₈ ST modes and cross feeds among the twelve ST modes are₃₉₉ suppressed to a negligible level, they are not considered₄₀₀ in the fit.

The extracted BFs of Λ_c^+ are listed in Table III;₄₀₂ the correlation matrix is available in the Supplemental₄₀₃ Material [18]. The total number of $\Lambda_c^+ \overline{\Lambda}_c^-$ pairs produced₄₀₄ is obtained to be $N_{\Lambda_c^+ \overline{\Lambda}_c^-} = (105.9 \pm 4.8 \pm 0.5) \times 10^3$. The₄₀₅ goodness-of-fit is evaluated as $\chi^2/\text{ndf} = 9.9/(24 - 13) =_{406}$ 0.9.

To summarize, twelve Cabibbo-favored Λ_c^+ decay rates₄₀₈ 370 are measured by employing a double-tag technique, based₄₀₉ 371 on a sample of threshold data at $\sqrt{s} = 4.599 \,\text{GeV}$ col-410 372 lected at BESIII. This is the first absolute measurement $_{411}$ 373 of the Λ_c^+ decay branching fractions at the $\Lambda_c^+ \overline{\Lambda}_c^-$ pro-412 374 duction threshold, in the 30 years since the Λ_c^+ discov-413 375 ery. A comparison with previous results is presented in₄₁₄ 376 Table III. For the golden mode $\mathcal{B}(pK^{-}\pi^{+})$, our result is₄₁₅ 377 consistent with that in PDG, but lower than Belle's with₄₁₆ 378

a significance of about 2σ . For the branching fractions of the other modes, the precisions are improved by factors of $3 \sim 6$ compared to the world average values.

The BESIII collaboration thanks the staff of BEPCII IHEP computing center for their strong and the This work is supported in part by support. National Key Basic Research Program of China under Contract No. 2015CB856700; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11125525, 11235011, 11275266, 11322544, 11335008, 11425524; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; the CAS Center for Excellence in Particle Physics (CCEPP); the Collaborative Innovation Center for Particles and Interactions (CICPI); Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos. 11179007, U1232201, U1332201; CAS under Contracts Nos. KJCX2-YW-N29, KJCX2-YW-N45; 100 Talents Program of CAS; National 1000 Talents Program of China; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation DFG under Contract No. Collaborative Research Center CRC-1044; Istituto Nazionale di Fisica Nucleare, Italy; Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) under Contract No. 530 -4CDP03; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11405046, U1332103; Russian Foundation for Basic Research under Contract No. 14-07-91152; The Swedish Resarch Council; U. S. Department of Energy under Contracts Nos. DE-FG02-04ER41291, DE-FG02-05ER41374, DE-SC0012069, DESC0010118; U.S. National Science Foundation; University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt; WCU Program of National Research Foundation of Korea under Contract No. R32-2008-000-10155-0.

- ⁴¹⁷ [1] J. L. Rosner, Phys. Rev. D 86, 014017 (2012).
- [2] S. A. Dytman *et al.* [CLEO Collaboration], Phys. Rev.434
 D 66, 091101 (2002).
- [3] P. Abreu *et al.* [DELPHI Collaboration], Eur. Phys. J. C436
 12, 225 (2000); R. Barate *et al.* [ALEPH Collaboration], 437
 Eur. Phys. J. C 16, 597 (2000); R. Aaij *et al.* [LHCb438
 Collaboration], Phys. Rev. D 85, 032008 (2012). 439
- [4] K.A. Olive *et al.* [Particle Data Group], Chin. Phys. C₄₄₀
 38, 090001 (2014).
- 426 [5] D. E. Jaffe *et al.* [CLEO Collaboration], Phys. Rev. D442
 427 62, 072005 (2000).
- 428 [6] A. Zupanc *et al.* [Belle Collaboration], Phys. Rev. Lett.444
 429 113, 042002 (2014). 445
- [7] M. Ablikim *et al.* [BESIII Collaboration], Chin. Phys. C446
 39, no. 9, 093001 (2015)
- 432 [8] M. Ablikim et al. [BESIII Collaboration], Nucl. Instrum.448

Meth. A 614, 345 (2010).

- [9] R.M.Baltrusaitis *et al.* [MARK-III Collaboration], Phys. Rev. Lett. **56**, 2140 (1986); J.Adler *et al.* [MARK-III Collaboration], Phys. Rev. Lett. **60**, 89 (1988).
- [10] M. Ablikim *et al.* [BESIII Collaboration], Phys. Rev. Lett. **115**, 221805 (2015).
- [11] The $\Sigma^+\pi^+\pi^-\pi^0$ mode suffers from huge combinatorial backgrounds. We restrict $\pi^+\pi^-\pi^0$ from ω decays and only measure the resonant component $\Sigma^+\omega$, where the non-resonant final states $\Sigma^+\pi^+\pi^-\pi^0$ are negligible.
- [12] S. Jadach et al., Phys. Rev. D 63, 113009 (2001).
- [13] N. Brambilla *et al.*, Eur. Phys. J. C **71**, 1534 (2011).
- [14] D. J. Lange, Nucl. Instrum. Meth. A 462, 152 (2001);
 R. G. Ping, Chin. Phys. C 32, 599 (2008).
- [15] S. Agostinelli *et al.* [GEANT Collaboration], Nucl. Instrum. Meth. A **506**, 250 (2003); J. Allison *et al.*, IEEE

- ⁴⁴⁹ Trans. Nucl. Sci. **53**, 270 (2006).
- 450 [16] H.Albrecht *et al.* [ARGUS Collaboration], Phys. Rev. 454
 451 Lett. B 241, 278 (1990). 455
- Lett. B 241, 278 (1990).
 [17] Y. Guan, X. R. Lu, Y. Zheng and Y. S. Zhu, Chin. Phys.
- C **37**, 106201 (2013).

[18] See Supplemental Material at [URL will be inserted by publisher] for the correlation matrix of the fit.