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There are approximately 1 billion prediabetic people worldwide, and the global cost for diabetes mellitus
(DM) is estimated to be $825 billion. In regard to Type 1 DM, transplanting a whole pancreas or its islets
has gained the attention of researchers in the last few decades. Recent studies showed that islet trans-
plantation (ILT) containing insulin-producing B cells is the most notable advancement cure for Type 1 DM.
However, this procedure has been hindered by shortage and lack of sufficient islet donors and the need
for long-term immunosuppression of any potential graft rejection. The strategy of encapsulation may
avoid the rejection of stem-cell-derived allogeneic islets or xenogeneic islets. This review article describes
various biotechnology features in encapsulation-of-islet-cell therapy for humans, including the use of bile
acids.

Lay abstract: The global cost for diabetes mellitus (DM) is estimated to be $825 billion. With regard to
Type 1 DM, transplanting pancreas whole/islets have gained the attention of researchers in the last few
decades. Recent studies have demonstrated that islet transplants containing insulin-producing g cells is
the most notable advancement cure for Type 1 DM. However, this procedure has been hampered by islet
donor shortage and the need for long-term immunosuppressive therapy. An encapsulation strategy could
overcome these shortcomings. Here, we discuss various biotechnology features in the encapsulation of
islet cell therapy for humans including the use of bile acids.
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According to the World Health Organization, diabetes occurs when the pancreas produces too little insulin
for the body’s requirements, or when the body cannot use insulin effectively. Chronic diabetic complications
impair the metabolic processing of fats, carbohydrates and electrolytes, which disrupts the vascular system [1].
Examples of microvascular complications are myocardial infarction and retinopathy (e.g., blindness), and for
vascular complications are nephropathy and neuropathy (e.g., foot amputation). Type 2 diabetes mellitus (T2DM)
is the most prevalent (~85%), and it occurs due to tissue resistance or lack of insulin. These issues can be managed
by lifestyle changes (physical exercise + diet), insulin, oral antidiabetic drugs and noninsulin injections. Patients
suffering from T1DM are insulin-dependent, and rely on insulin injection.

The number of diabetic patients dramatically increased from 1980 to 2014, from 108 to 422 million [2] and
between 2012 and 2015, there were 3.8 million diabetes-related deaths. That number could increase greatly, as
there are now approximately one billion pre-diabetic people. The diagnosis and treatment of T1IDM is more costly
than T2DM, and the global cost for DM is estimated to be $825 billion [3,4.

Despite ongoing research in multiple laboratories worldwide, islet transplantation (ILT) remains confined to
clinical trials rather than common practice, using robust commercially available therapeutics. The latest studies
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on transplanting the pancreas (whole organ or islets) in patients with TIDM with severe glycemic variability
found it possible to restore the endocrine functions of the pancreas [5). Combining total pancreatectomy with
islet autotransplantation was another strategy (6. The application of bile acids (BAs) in islet encapsulation and
transplantation has gained interest, and laboratory results show significant promise, not only in maintaining high
cellular viability but also rejuvenation postencapsulation, cell bioenergetics, insulin release and cell-cell interaction
necessary for acceptable performance, short and long term [7,8].

Recent advancements in the treatment/management of T1DB also include encapsulated pancreatic islets and
encapsulated mesenchymal stem (MSCs), as shown in Figure 1.

Pancreatic cell transplantation compared with whole-pancreas transplantation

Pancreas transplantation

Transplanting the whole pancreas from a healthy donor to a diabetic patient requires major surgery. The process
is invasive, and over the past 30 years, research activity has led to some standardized protocols to achieve this
process without increasing the rate of hypoglycemic events in the recipient [9-12]. Since 1966, the rate of implant
postsurgery survival has been well maintained at 76% after 1 year, 62% after 3 years and 50—-70% after 5 years [13].
Over the last decade, the number of solitary operations has remained stable with a steady rate of graft failure,
especially in the last 5 years [14].

Limitations of pancreatic transplantation

According to Ramesh & Brayman, the procedure of pancreatic transplantation (PCT), which is generally performed
concurrently with kidney transplantation, includes some surgical and postsurgical complications. The major
complications involve graft pancreatitis/thrombosis, and formation of pseudocysts and pancreatic fistulae [15].
Finding a donor is another issue.

Islet transplantation

ILT comes as an alternative, and is considered as an upgraded way to treat T1IDM, in contrast to injection with
insulin or whole-pancreas transplantation. It requires approximately 2% (w/w) of the total pancreas (endocrine
part) that contains § cells in a healthy person to be transplanted into a diabetic person with reasonable success. ILT
can be infused using a catheter through the portal venous access, which represents a minimally invasive process
and is also associated with marginal or no complications [16]. Another positive aspect of ILT is that it can deliver
glycemic control without the risk of hypoglycemia and the use of exogenous insulin. For instance, Shapiro has
explored ILT and its potential use, and has demonstrated that ILT does possess the ability and validity to correct
HbA1c concentrations to certain values that may reverse the secondary consequences of diabetes [17], while insulin
administration via pump or similar set-ups may result in fewer or attenuated effects on concentrations of the
diabetic biomarker HbA1C [18]. Thompson ez a/. found that ILTs are more effective in decreasing the progression
of microvascular diseases (e.g., retinopathy) and vascular diseases (e.g., nephropathy) related to diabetes than is
rigorous medical therapy [19]. Although this method is effective, seems simpler and less invasive, it does have some
limitations.
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A recent study of the Clinical Islet Transplantation (CIT) Consortium protocol 07 (CIT-07) has shown the
results in 48 adults with T1D for more than 5 years [20-22]. Patients were suffering from severe hypoglycemic events
(SHESs) and impaired awareness of hypoglycemia (IAH). Purified human pancreatic islets (PHPI) were transplanted
at eight centres in North America, and each patient had been administered an immunosuppressive and PHPI. The
median HbAlc level was 5.6% at 1-2 years with no death or disability noted [21]. The overall effectiveness of the
CIT-07 trial [20,22] has been further demonstrated by the results by Foster ez al., showing that we can potendially
maintain blood glucose control without experiencing severe cases of hypoglycemia, and hence improved quality
of life via successful ILT that is safe and robust [21]. Of note, large decreases in diabetes-related distress and fear
of hypoglycemia were observed. Furthermore, quality of life and functional health status did not worsen, despite
ongoing immunosuppression. General measurements of health status, such as Short Form 36 Health Survey (SE-
36) and mental summary score (MCS), demonstrated statistically significant differences from baseline status. The
CIT-07 result gives a new perspective on ILT: a prospective assessment of health utility and health status outcomes
among transplant recipients in a Phase-III study.

Limitations of ILT
Long-term causes of graft loss can be listed as:

Immunosuppression-associated factors

Patients with ILT are normally prescribed immune-suppressive medications (systematic immunosuppressive treat-
ment) to avoid allogeneic rejections. Immunosuppressive medication should be taken in optimized doses to avert
graft loss. However, even the optimized medications can be directly toxic to the ILT or cause dysfunction of other
tissue organs after long-term usage [23]. In addition, systemic immune-suppressive medications such as cyclosporine
and tacrolimus may also increase the patient’s risk of developing cancer, organ damage or infection. Histological
studies found that ILT triggers recurrent autoimmune effects that can result in cell destruction [24,25]. The use of
a specific antigen to inhibit the immune response through the initiation of regulatory T cells, has shown some
promising results in avoiding the development of the response [26]. However, in the USA from 1999 to 2007, less
than 400 ILTs were performed out of ~1.25 M cases nationwide, and that was linked to the high risk of chronic
immunosuppression which presently outweighs the potential benefits of ILT [27,28].

Nonimmunosuppression-associated factors

ILTs are engrafted in the liver through the portal system, and the process may encounter islet-graft loss due to
hypoxia and/or instant blood-mediated inflammatory factors INMIR), which may lead to reduced islet mass and
poor islet quality and function.

e Hypoxia [29]
Islet cells are damaged due to hypoxia, as the process of isolation causes de-vascularization in the islet cells.
Also, islets are implanted into the liver in low oxygen tension (Carlsson ¢z al.). There is the indirect effect of
the hypoxic environment stimulating the innate immune system, resulting in the release of the inflammatory
cytokines interferon (IFN), IL-1 and TNF 30).

o Instant blood-mediated inflammatory reaction (IBMIR) [31]
IBMIR causes activation of the coagulation system, resulting in serious problems by disruption [32] and destruction
of 60% of transplanted islets (33]. In general, poor clinical outcomes of ILT are frequently related to high
IBMIR 30].

The expertise in both ILT and pancreas transplantation is not widely available. This issue renders problematic
any decision in regard to therapy, based on the pros and cons of islet versus pancreas transplantation. As a result,
diagnosis and management of patients with clinical diabetic symptoms has been guided mostly by local expertise [s].
Recently, Maffi and Secchi, have proposed a protocol based on Shapiro ez al. 34] to define when to carry out islet
or pancreas transplantation and in many scenarios, there was a degree of overlap. Pros and cons for pancreas versus
ILT are summarized in Table 1.

In summary, they suggest that ILT is preferred for patients with:

o Severe glycemic problems that cannot be controlled using insulin therapy
e Unstable Type 1 diabetes
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Table 1. Comparison between the pros and cons of whole-pancreas transplantation versus islet transplantation.

Islet transplantation Pancreas transplantation
Biological cost (organ consumption) Needs several donors Needs one donor
Biological cost (technical complications during No major complications (~3.1%) Major complications (~10%): bleeding, thrombosis,

follow-up)

Insulin-independence

Surgical complications

morbidity and duodenal leaks

Delayed process (months-years). 44% is achieved at Speedy process. 61% is achieved at 3 years
3years
No risk High risk (e.g., pre-existing of cardiovascular disease)

e Hypoglycemia unawareness
e Cardiovascular disease

The most notable advancement cure for TIDM is ILT containing insulin-producing § cells (35,36]. ILT has shown
the potential to be one of the most promising solutions for the treatment of TIDM, and that has encouraged many
ILT Centres to start license applications for clinical allogeneic ILT. The inflammation of pancreatic § cells and the
paucity of cell viability after ILT are the biggest challenges to researchers [37-39).

Total pancreatectomy & islet autotransplantation

Another potential possible therapeutic approach could be islet autotransplantation which considers only patients
with chronic pancreatitis (CP), and is usually preceded by total removal of pancreas (pancreatectomy) [6]. Recent
observations by Berman ez al. show that diabetic candidates with severe painful CP are valid candidates for
pancreatectomy [40]. This observation is of paramount significance, especially among candidates and patients with
autogenous pancreatic islet transplantation (TP-IAT), in that it has not been readily accessible until recent years
before which patients were reported to transplant centres during later stages of their disease. While there has been
a growing utilization of TP-IAT for patients with refractory CP over many years, there remains a lack of consensus
clinical guidelines to inform the counselling and management of patients undergoing TP-IAT and its eventual
utilization as a valuable method to control diabetes and glycemia.

As highlighted recently by Al-Sofiani et al., there is a need to develop uniform practice guidelines and to
standardize clinical measurement protocols on how to assess patients before and after surgery; moreover, future
research should improve islet isolation and engraftment techniques, and validate new biomarkers and imaging tools
able to monitor the function, viability and location of the islet cells after engraftment (6,41]). The future could be
even more promising in a similar scenario with encapsulated ILT, avoiding immunosuppressive drug treatment
(non-systematic immune-suppressive treatment).

Nonsystematic immune-suppressive treatment

Nonsystematic immunosuppressive (NSI) treatment uses different approaches to reduce local inflammation and
generate immune-privileged sites, for example by engineering materials that release factors (prostaglandins [PGE2],
IL-10, transforming growth factor-b, SDF and chemokine MCP1) to reduce inflammation (42-44). This approach
also includes stem cell (autologous B cells), immunomodulation (antigen-specific T cells), immune-protective
devices, coatings and capsules [45-47). Immunoprotection using engineered materials such as encapsulation of ILT
has received the greatest consideration.

Bio-nano- & micro-encapsulation of pancreatic islets

Encapsulation of cells is one way to protect these viable cells from the host immune system, post-transplantation.
Islet bio-nano- and micro-encapsulation can be carried out by encapsulating the viable, living and functional
components within various forms of semipermeable cases/membranes [48-51]. Encapsulation is the ability of the
capsule to envelop the cells/islets and protect them from being recognized/identified by the body’s own immune
system. Entrapment of pancreatic ILT has been widely researched and aimed to protect the pancreatic islets from
the environment and to reduce B cells inflammation and death [52,53]. Encapsulation embraces the approach of
isolation and shielding of the islet-grafts from the recipient’s immune system, which is different to the conventional
strategy of ongoing immunosuppressive treatments. That potentially represents a suitable approach for effectively
supporting graft functionality and survival [54].
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However, it is obvious that implanting and/or encapsulating biomaterial may still trigger a foreign-body reaction,
and may affect the safety of the implanted device. This caveat can considerably impact the short-/long-term tissue
responses comprising proteins, cells and other biological components used in regenerative medicine or tissue
engineering. Anderson ez a/. [55] have studied the mechanism of foreign-body reaction and the effect of adherent
macrophages on the overall inflammatory response to biomaterials. They found that surface chemistry can influence
the behavior of macrophages such as cytokine secretion, adhesion, fusion and apoptosis.

In order to encapsulate viable cells or biologically active components including organoids, specialized biomaterials
are needed. These biomaterials need to provide supportas well as biocompatibility to the encapsulated active moieties
including pancreatic islets. The biomaterials need to exhibit a wide range of features including:

m Being porous enough to faciliate and allow nutrients and oxygen permeation into the graft, and also allow waste
to leave the graft

m Having the capacity to encapsulate high concentrations of the target molecule

m Acting as an immunostatic or biological barrier to control its core active moieties, while protecting the function-

ality and performance of the graft

Being available and from a reliable source, ready for scale-up production

Having good physical and mechanical stability and regularity

Not allowing fibrotic growth and subsequent graft failure

Maintaining long-term cell viability

Scharp and Marchetti have published a detailed review article on the encapsulation of ILT. The review article
comprises different types of capsules/materials and devices [47).

Preparation of macro-/micro-capsules

The most common size and shape for islet entrapment and encapsulation are in the form of disks or tablets,
beads or, less commonly, fibers. Gel microcapsules are the most commonly used form of islet encapsulation,
since nano-capsules would ultimately provide a huge surface area and more islet interaction with the outside
microenvironment. The tiny micro- and nanocapsules can be fabricated by a wide range of technologies such
as the Innotech Encapsulator, ionic-gelation methods, Vibrational Jet-Flow Technology, dripping and interphase
technique method [56-58]. The Buchi-supported systems have the advantage of strong and comprehensive control
over various encapsulating parameters including production rate, being 50-3000 beads/second, based on the blend
of rheological and non-Newtonian parameters [59].

Biopolymers commonly researched for islet encapsulation

Hydrogels & water-soluble polymers

There is a wide range of various biomaterials and biopolymers currently available for encapsulation of biomolecules,
including hydrogels such as alginate, chitosan, cellulose, hyaluronic acid (HA), collagen and carrageenan [60-75].

Alginate-based capsules
Amongall these hydrogels, alginate has been dominating, and is the most commonly used hydrogel for encapsulation
of ILT due to its low cost, high availability and durability, nontoxicity to host organisms and its mechanism for
encapsulation is well-established (76-78). Multiple polymers such as alginates and the like have the appropriate
properties to form suitable matrices when multivalent cations such as Ca®* in aqueous medium are present [57,79].
Encapsulation of cells using alginate has been proven to be efficient [80]. For example, Ludwig ez a/. and Prochorov
et al. have introduced heterologous islets without the use of immunosuppressive drug protocols [81,82]. The main
message from these data is the importance of cell viability in the islet graft, which greatly influences the outcomes of
the procedure. In particular, the proposed device by Ludwig ez al. couples an alginate immune-isolated preparation
with an oxygenated chamber system. Oxygenation is pivotal for cell survival and correct cell metabolism: in
fact, the graft was effective and well-tolerated without immunosuppression. This contribution demonstrates that
encapsulation with regulated/controlled oxygenation (avoiding hypoxia at the level of the encapsulated cells) could
be a viable option to improve the efficacy of encapsulated ILT without the use of immunosuppressive drugs. It is
worth noting that the use of this oxygenated alginate-encapsulation strategy was applied to allogeneic human ILT
in humans for the first time by Ludwig ez a/. (82).
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In another example by Jacobson-Tulleneers-Thevissen ez a/., they implanted alginate-encapsulated human islet
cells into the peritoneal cavity of mice. The results showed that intraperitoneal transplantation had a better result
compared with the free implants under the kidney capsule [83]. Free-floating capsules in the peritoneum, without
direct contact with host tissue or metabolic correction, and immediately corrected hyperglycemia, were maintained
until the end of the study. Recovered floating capsules demonstrated excellent cell viability and secretion, without
signs of inflammation/fibrosis in the recipient rodents. These results prompted the authors to translate the concept
in a pilot study run on one T1D patient: the main goal of this study was to assess the survival and function of
P cells in the encapsulated environment transplanted in the peritoneum. The function and efficacy were confirmed
(as in the rodent study), but signs of fibrosis were present, and most of the capsules were found together in large
clumps, sticking to the abdominal wall (83).

However, alginate micro- or nanocapsules alone, without any additives, do not seem to act as good-quality micro-
and nano-capsules, given their weak physical stability and loss of the mechanical resistance to shear force over long
periods of time, that is required and expected post-transplantation (59,84,85]. This is possibly due to alginate’s poor
ability to adhere to the crosslinking processes and not having sufficient interactive force to form a solid surface
resistant to damage or stress [86]. The literature also suggests that alginate gels are not stable in various types of
buffers (87], and like other seaweeds, they are susceptible to fibrotic overgrowth when used iz vivo, resulting in
necrosis of the encapsulated cells and pre-mature graft failure (78,88-90]. Many modifications have been made to
improve alginate capsules such as ultra-purification, co-encapsulation and surface treatment, but the final results
are not yet satisfactory enough to be used at the clinical level (77,89,91-93].

HA-based capsules

HA, on the other hand, and especially HA-based hydrogels, have shown to be very suitable for cell-therapy applica-
tions and tissue engineering because of their distinctive biological and mechanical properties [94-96]. Formulations
based on HA and other polymers, such as denatured collagen (DCOL), have been found to be durable, with a
high shear strength of up to 3500 Pa. A commercial version of HA-DCOL is known as HyStem-C, and it has been
used 772 vivo to repair osteochondral defects in rabbits and myocardial infarcts in SCID mice (97-991. HA is used as a
replacement for alginate for the encapsulation of ILT, especially to address graft failure associated with fibrosis [8s].

Biomimetics of transplantable materials

Biomimetic materials are hybrids/composites of natural materials (e.g., peptides, amino acids, saccharides and
proteins) developed using motivation from nature. They have a lower probability of inducing fibrotic growth and
higher biocompatibility, which make them suitable for cell encapsulation [100,101). Unfortunately, these advanced
biomimetic materials have low durability and a high degradation rate, which make them unsuitable for ILT.

BAs as anti-inflammatory compounds

BAs formed from cholesterol catabolism and are metabolically active compounds. The process of bile-acid synthesis
involves two main biological pathways and the metabolic and enzymatic activation of approximately 17 hepatic
enzymes [102]. After cholesterol catabolism in the liver and their synthesis, BAs are metabolized by the gut microbiota.
In the liver, they are conjugated with taurine or glycine amino acids, and the corresponding sodium or potassium
salts are known as bile salts. Bile salts are usually stored in the gallbladder and secreted postprandially. Once in the
gut, BAs and salts are metabolized further by the gut microbiome, to produce secondary BAs which undergo further
re-absorption in a process known as enterohepatic recirculation. The types of BAs and salts exceed one hundred,
including deoxycholic acid (DCA), ursodeoxycholic acid (UDCA) and lithocholic acid (LCA). They facilitate the
gut uptake of many dietary lipids by their surfactant-like effects [103].

BAs are known to produce various biochemical and biological effects in the body, such as removal of cholesterol
and bilirubin, emulsification and solubilization of lipid-soluble vitamins, facilitating their gut and oral uptake [104].
About 0.6 g of BAs/salts are metabolized and produced daily to replace lost BAs excreted in the feces. Among
commonly researched BAs is the secondary BA, UDCA, which has been used for many centuries by traditional
Chinese therapies [105]. UDCA is currently prescribed for cholestasis and liver cirrhosis [106]. UDCA’s mechanism
of action and pharmacology are anticipated to be because of its anti-inflammatory and cytoprotective effects [107].
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Figure 2. Sources of stem/progenitor cells. Umbilical cord blood can generate ECFCs; human blastocytes can
generate hESCs; somatic cells can generate iPSCs; bone marrow can generate bone-marrow-derived mesenchymal
stem cells; adipose tissue can generate adipose-derived mesenchymal stem cells.

ECFC: Endothelial colony forming cell; hESC: Human embryonic stem cell; iPSC: Induced pluripotent stem cell; MSC:
Mesenchymal stem cell.

Encapsulation of stem cells

Encapsulation of stem cells (SC) is the latest advancement in encapsulation technology. SCs would be a resolution
to our distressing deficiency of donated organs. However, encapsulating SCs is a fairly novel area of research, and
this is explains why there are so few studies on encapsulated islets based on SCs for the adjustment of diabetes [108].
Researchers have used embryonic and adult SCs to provide islets for cell-replacement therapy. The ethical issues of
using SCs for cell replacement have been widely discussed in the review article by Street ez al. [109].

Isolated islets in combination with mesenchymal SCs (MSCs), also known as adult SCs, can be isolated from
different tissues such as bone marrow, somatic cells and adipose tissue (Figure 2). Isolated islets-co-MSCs have been
explored by Shafiee ¢t al. due to their potential to differentiate into different cell types. It was found that MSCs
have the potential to produce paracrine factors promoting the function and growth of neighbouring cells. Pathak
et al. have suggested bone marrow and adipocytes, as effective sources of MSCs, to be good options for allogenic
MSC cotransplantation with isolated islets [110]. Micro-capsules of co-transplantations of islets with MSCs have
been successful in mice, improving islet grafting (111]. This has encouraged many authors in the encapsulation of
stem cells [112-114].

Conclusion

Management of T1D using daily insulin injection might fail to achieve optimum glycemic control, and result
in acute complications. Transplantations of whole pancreases or islets are presently considered potential options.
Some authors have proposed protocols to define when to carry out islet or pancreas transplantation, and, in many
scenarios, there is a degree of overlap. However, both methods have their pros and cons. Out of the two scenarios,
ILT is considered the future and the more promising solution, therefore many strategies, including the encapsulation
of islets andthe use of BAs or stem cells, are under investigation to overcome the limitations associated with ILT.
Encapsulation of stem cells (SC) is the latest advancement in encapsulation technology in the past few years, and
it seems to be encouraging, albeit still at the mouse level.

Future perspective

ILT to treat diabetes have been widely researched for many years, and despite innovative ideas and dedicated
researchers, no commercialable widely available product has made it to the market. The source of viable functional
suitable islets remain challenging, and an appropriate matrices remain to be developed. Future perspective needs to
focus on revolutionizing our approach to consider avenues of cell reprogramming, cell differentiation, bio-printing,
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gene editing, bio-nanotechnological scalable procedures that build on synthetic, semisynthetic and endogenously
produced BAs and other compounds, and patient-specific approaches to enable the success of ILTs and wide
applications in the clinic. Future studies need to focus on improved delivery systems and matrices that better
resemble the human pancreas.

Executive summary

e Islet transplantation remains limited to Phase1/2 clinical trials with no widely used commercially available
products.

e Main challenges to islet transplantation include body immune rejection and lack of appropriate delivery matrices.

e Bile acids have recently been proposed to complement matrices, suitable for islet transplantation.

e Bile acids are endogenously produced in humans and many are considered safe.
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