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ABSTRACT: Several works reported increased differentiation of
neuronal cells grown on graphene; however, the molecular
mechanism driving axon elongation on this material has remained
elusive. Here, we study the axonal transport of nerve growth factor
(NGF), the neurotrophin supporting development of peripheral
neurons, as a key player in the time course of axonal elongation of :
dorsal root ganglion neurons on graphene. We find that graphene * FluoNGF @ Holes created by

drastically reduces the number of retrogradely transported NGF electronegative cell membrane
vesicles in favor of a stalled population in the first 2 days of culture,

in which the boost of axon elongation is observed. This correlates with a mutual charge redistribution, observed via Raman
spectroscopy and electrophysiological recordings. Furthermore, ultrastructural analysis indicates a reduced microtubule distance and
an elongated axonal topology. Thus, both electrophysiological and structural effects can account for graphene action on neuron
development. Unraveling the molecular players underneath this interplay may open new avenues for axon regeneration applications.

KEYWORDS: Graphene, peripheral dorsal root ganglion neuron, axon elongation, material—neuron interface,
nerve growth factor retrograde transport, membrane-associated periodic skeleton

In the past years, a number of studies have investigated development, have not yet been investigated. A recent study
graphene potential as a conductive neural interface, able to has reported an increased cell firing for hippocampal neurons
enhance adhesion, proliferation, and differentiation of various grown on graphene, probably due to altered membrane ion
cell types, including neural cells.' ™ In the last case, an currents at the material interface.’’ Indeed, several reports
interesting increased neurite sprouting and outgrowth induced described a positive effect of electrical stimulation on axonal
by graphene were reported for hippocampal neurons,’ outgrowth and bramching.?”lz_14 However, such an effect may
differentiated SH-SYSY neuroblastoma cell line,” adrenal not necessarily apply to peripheral neurons on graphene, as it
phaeochromocytoma (PC12) cell line,**” dorsal root ganglion was already reported that DRG neurons respond differently
(DRG) neurons,” and neural stem cells.” Such a feature makes from hippocampal neurons on nanofabricated biomaterial

graphene appealing for application in peripheral nerve
regeneration, where an appropriate scaffold may accelerate
neurite outgrowth.g'10 However, to date, few studies have
examined the interaction of graphene with peripheral neurons.
Thus, the nanoscale mechanisms by which graphene would
promote axon regeneration remain unclear.

To understand the molecular mechanism of axon outgrowth
on graphene, some groups investigated GAP-43, a recognized
marker of developing and regenerating axons. Increased GAP-
43 levels were reported in hippocampal neurons grown on
graphene.! Similarly, increased GAP-43 together with
synaptophysin levels were also reported in PC12 cells grown Received:  February 10, 2020
on aligned silk-graphene hybrid hydrogels,® suggesting that the Revised: ~ March 24, 2020
mechanisms driving neuritogenesis may be shared for central Published: March 25, 2020
and peripheral neurons grown on graphene. However, the
underlying mechanisms for the increased GAP-43 expression
on graphene, together with structure and dynamics of neuron

scaffolds.">'® Importantly, all of the above-cited studies were
carried out on cultures grown from 1 to 3 weeks onto the
substrate. While this strategy is useful to understand the long-
term effects of the material on neuron physiology, it fails to
investigate how the early developmental stage is influenced by
the neuron—material interface. This appears to be an
important issue to address, because the positive effect of
graphene on axonal sprouting and outgrowth was found to be
maximal during the first 2 days of culture and then to decrease
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Figure 1. Increased axonal elongation in DRG neurons grown on graphene. (a) Schematic representation of DRG axonal length quantified on
graphene inside a microfluidic chamber. Top left: Optical image of an assembled device on graphene. Top right: Cartoon showing the microfluidic
chamber with the soma compartment (SC) and axon compartment (AC) connected by microchannels. Bottom: Bright-field images with axons
crossing and filling the microchannels. The same area is reported below with the axons highlighted by dashed blue lines. Scale bars: S0 ym. (b)
Quantification of the axonal length at different DIV on glass and graphene in a microfluidic device. A significant difference was found between
graphene and control according to two-way ANOVA test (P, pare < 0.001, two-way ANOVA, with Holm—Sidak posthoc test, ***p < 0.001). The
number of measured axons was: DIV1, glass n = 42, graphene n = 50; DIV2, glass n = 109, graphene n = 101; DIV3, glass n = 147, graphene n =
119. In box plots: Box between 25th and 75th percentile; horizontal line: median; whiskers: Sth and 9Sth percentiles; square: mean; circles:
outliers.

up to a steady-state level in which axons are slightly longer with This approach allows to selectively apply treatments to
respect to control cultures.' axons and mimics well the physiological NGF stimulation,
In this work, we demonstrate that graphene significantly where the trophic factor is produced by target innervated
stimulates axonal outgrowth during the first 3 days in culture of tissues and is endocyted at the distal axon tips, far from the cell
DRG primary neurons. Hence, we investigate the effect of soma.””’
graphene on the fast axonal transport Properties during the Figure lb reports the axon length distribution measured at
early developmental phase. In detail, the role of nerve growth three time points. We found gradually increasing neurite
factor (NGF), a key neurotrophin involved in neurite lengths both on graphene and glass, with significantly higher
elongation and survival during DRG development,'”'® is values on graphene. Remarkably, in the first 2 days of culture,
investigated by single-molecule fluorescence microscopy. the axons were longer on graphene by 79% and 739%,
Remarkably, we find that axonal elongation on graphene respectively (Table 1). At day 3, reduced although significant
correlates with a significant reduction of NGF vesicles
retrogradely transported to the soma, in favor of a stalled Table 1. Axonal length on microfluidic chamber at different
pool retained locally in developing axons. Patch-clamp DIV*
recordings and ultrastructural analyses concur to show that axonal
profound rearrangements occur in axons developing on length percentage increase on graphene
graphene, which may account for the local accumulation of snifeis LN (m)  sem.  with respect to the control
NGEF resulting in the increased axon elongation. Our results graphene DIV 114.6 8.0 79.3%
provide a broad structural and functional understanding of the glass 63.9 57
impact of graphene on DRG neurons, key information toward graphene  DIV2 305.2 192 73.6%
the development of graphene-based devices for neural glass 1758 107
regeneration applications. graphene  DIV3 419.6 22.0 16.6%
glass 359.7 14.9
B RESULTS AND DISCUSSION “Average + standard error of the mean (s.em.) of length values
plotted in Figure 1b, and percentage of length increase on graphene
Graphene Promotes Axon Elongation in Developing with respect to glass at different DIVs.
DRG Neurons. The effect of graphene on axon outgrowth in
primary peripheral neurons was investigated using DRG differences were found, with the axons on graphene 17% longer
neurons dissected from postnatal day (P) 4 mice,"” which than on glass. After day 3, the axons crossing the micro-
were cultured on PDL/laminin-coated substrates® in the channels started to form complex networks that impeded to
presence of NGF. We used graphene grown via chemical further quantify their length with accuracy.
vapor deposition (CVD)*’ (for more details, see SI). In order It should be noted that the same axonal length analysis at an
to precisely determine axonal length, we used a compartmen- early developmental stage was also performed on standard and
talized microfluidic chamber placed on top of a graphene- graphene coated coverslips, yielding results that confirm
coated glass coverslip (Figure la). preferential neurites outgrowth on graphene (Figure Sla)b).
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Figure 2. Altered axonal transport of luoNGF in DRG neurons on graphene. (a) Schematic representation of compartmentalized microfluidic cell
culture. Neurons are seeded in the soma compartment (SC) and extend their axon in the 150 ym microchannels reaching the axonal side (AC),
where fluoNGF is administered (green droplets). (b) Representative kymographs of fluoNGF vesicles along a single axon at DIV2 and DIVS; -
scale bar, S um; y-scale bar, 10s. (c) Box plots for the number of vesicles per 1 mm of axons after the administration of fluoNGF at the axon
compartment of DRG neurons cultured on graphene and glass at DIV 2 and DIV 5. Data are not significantly different according to a Mann—
Whitney test. In box plots: Box between 25th and 7Sth percentile; horizontal line: median; whiskers: Sth and 95th percentiles; square: mean;
circles: outliers. (d) Speed distributions for moving parts of vesicle trajectories on graphene (red) and glass (blue) at DIV2 and DIVS. The mean +
standard deviation (SD) of each peak position calculated from the three independent replica is reported in the graph in the same color.
Distributions with maxima normalized at 1. (e) Percentage of vesicles in different categories at DIV2 and DIVS (mean + s.e.m. for independent
cultures). The four categories are stalled (stl), retrograde (ret), anterograde (ant), and oscillating (osc). The percentage of stalled and retrograde
vesicles on graphene at DIV2 was significantly different from the control (***p < 0.0001, one-way ANOVA, with Bonferroni’s multiple comparison
test). The distribution of the populations at DIVS did not significantly differ, according to one-way ANOVA. The number of acquired time-lapse
images used to calculate the vesicle population was 81 for glass and 56 for graphene at DIV2 and 75 for glass and 72 for graphene at DIVS. For all
panels, the number of vesicles at DIV2 in three independent cultures was 3604 for graphene and 5188 for glass. The number of vesicles at DIVS in
two independent cultures was 4905 for graphene and 5399 for glass.

Furthermore, this analysis revealed an organized pattern of in uptake and trafficking of trophic factors, which are at the
DRGs grown on graphene already at DIV3, whereby somas are basis of axon elongation and neural survival.

clumped together and dense axonal bundles depart radially Graphene Alters Retrograde Transport of Nerve
from them (Figure Slc,d). Knowing the influence of the Growth Factor Signaling Endosomes. Survival of sym-
substrate nanotopography on cell spreading,””** we studied pathetic and sensory neurons is known to rely on the

retrograde axonal transport of NGF signaling endosomes
back to the cell body,'”'®*® while numerous studies indicate
that axon elongation is prompted by a local effect of NGF
which does not directly involve mechanisms in the cell body.””
Hence, we examined whether the observed graphene-induced

. . axon outgrowth correlates with an altered NGF axonal
analyses, we can exclude its effect on substrate wettability and .

2325 transport. We used fluorescence microscopy to perform axonal
transport studies in living, compartmentalized DRG neurons
using a fluorolabeled NGF variant (fluoNGF) covalently
coupled to an Alexa488 organic dye.”**” A schematic of the
experiment is shown in Figure 2a.

To assess the effect of graphene on the transported vesicles,

graphene surface morphology via AFM (Figure S2). The
flatness of the surface, with a root-mean-square roughness of
about 1.8 nm, made us exclude the presence of features that
can lead to discontinuous cell—substrate adhesion.”> More-
over, as graphene crumpling was never observed in our

soma clumping.

Obtained results support the trend previously reported for
embryonic DRG neurons on epitaxial graphene. Furthermore,
the time-dependent axonal increase agrees well with what
reported for non-compartmentalized hippocampal neurons on

CVD graphene, where an initial ~30% increased elongation NGF vesicular trafficking was examined within the micro-
was reported for DIV2, followed by a stabilization at ~13% in channels, using compartmentalized neurons on glass as control.
the following days.' It is thus established that graphene Visual inspection of the detected vesicles suggested that
strongly impacts the early development of axon elongation in graphene induces a strong reduction of retrogradely trans-

peripheral sensory neurons. The optical transparency of ported NGF vesicles at DIV2 (Supplementary Videos S1 and
graphene makes it an ideal substrate to probe possible changes S2), while this is not the case at DIVS (Figure 2b). To clarify if
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Figure 3. Altered neuron excitability and graphene electronic properties. (a) Graphene-cultured DRGs show hyperpolarized resting membrane
potential in comparison to glass-cultured controls (*Pypge < 0.05, two-way ANOVA). The number of measured neurons, collected in three
independent cultures, was: DIV2, glass n = 4, graphene n = 7; DIV3, glass n = 9, graphene n = 12; DIV4, glass n = 3, graphene n = S. (b,c) Number
of spikes in response to current injection and representative traces on graphene and glass-cultured DRG at different DIVs; voltage traces at the
different injected currents shown in the top graphs are shifted vertically. (b) On DIV2, graphene-cultured DRGs show reduced spike number in
response to current injection with respect to glass-cultured controls (Pgpsyate x current < 0-001, two-way ANOVA, with Holm—Sidak posthoc test, *p
< 0.0S, **p = 0.005). (c) On DIV4, no difference in spiking was observed between graphene- and glass-cultured DRGs according to two-way
ANOVA test at 0.05 significance. The number of measured neurons, collected in three independent cultures, was: DIV2, glass n = S, graphene n =
6; DIV4, glass n = 3, graphene n = 6. (d) Representative Raman spectra obtained on bare graphene (red line) and on the neuron—graphene
interface at DIV2 (green line). (e) Raman map of the 2933 cm™' mode intensity, identifying the cell position. (f) 2D/G intensity ratio map of the
same area reported in (e), revealing a shift of the ratio in the area underneath the cell. (g) Histogram of 2D/G intensity ratio showing the bimodal
distribution of the intensity outside the neuron and the intensity underneath the neuron. The histogram reported in (g) shows a bimodal
distribution, where the distribution of 2D/G intensity ratio of bare graphene is peaked at 2.8, while the ratio in case of the graphene underneath the
neuron decreases down to 1.5.

such a change is due to an altered NGF uptake on graphene, between retrograde and anterograde within a limited space. We
we quantified the number of vesicles per mm of axons after found that in graphene and control, the majority of NGF
NGF administration (Figure 2c) in control and graphene and vesicles were stalled both at DIV2 and DIVS (Figure 2e).
found no significant difference between the two groups, both at However, on graphene at DIV2, the number of retrogradely
DIV2 and DIVS. This is in agreement with the reported transported vesicles was 8.5-fold reduced with respect to the
unmodified neuron survival rate on graphene compared to the control, in favor of a 13% increase of the stalled vesicles (Table
control.* We next ruled out that the observed effect was due to S3). When comparing the oscillating and anterograde
a slowing down of vesicles and accordingly quantified the populations, we found no significant difference between
velocities during retrograde and anterograde motion of the graphene and control. Hence, in the first developmental
vesicles on graphene and glass (represented by positive and stage, the graphene effect on NGF transport is to reduce
negative velocities respectively, Figure 2d). We found that retrogradely moving vesicles in favor of a locally stalled
velocities of anterograde and retrograde transport were not population. Importantly, this effect almost disappears in more
altered by graphene both at DIV2 and DIVS. Also, we mature DRG cultures, where we found that the percentages of
observed, similarly to what reported in refs 28 and 30, that on both stalled and moving vesicles were superimposable to the
glass, vesicles underwent preferentially a retrograde movement, control (Figure 2e, right). This time-dependent fashion
resulting in an asymmetric distribution. Surprisingly, on matches the predominant effect of graphene in axon elongation
graphene, we observed a symmetric distribution at DIV2, at early developmental phases (Figures 1 and S1), suggesting a
indicating comparable retrograde and anterograde movements key role for this trafficking alteration in the process. In order to
for NGF vesicles. On the contrary, at DIVS vesicles on elucidate the cause/effect links between graphene, NGF vesicle
graphene and glass exhibited similar distributions of speeds stall, and axon elongation, we next investigated possible
with predominant retrograde transport. The obtained data electrophysiological and structural changes prompted by the
prompted us to analyze the entire population of NGF vesicles material—neuron interface.
and classify them based on their movement. We distinguished Altered Neuron Excitability and Electrostatic Inter-
four different categories: (1) stalled (stl) when the vesicles did action with Graphene. Electric activity has been recently
not move; (2) retrograde (ret) when the vesicles moved from associated with increased retrograde flux of signaling endo-
the axon tip to the cell soma; (3) anterograde (ant) when the somes in hippocampal neurons®’ and to inhibited axon
vesicles moved from the cell soma to the axon tip; and (4) outgrowth in adult sensory neurons.”” Hence, we carried out
oscillating (osc) when the movement of the vesicle switched patch-clamp electrophysiology measurements® to study the
3636 https://dx.doi.org/10.1021/acs.nanolett.0c00571
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Figure 4. Modifications of axonal topology and cytoskeleton of DRGs on graphene. (a,d) Representative STORM images of SII spectrin (red) in
DRG neuron cultured on glass and on graphene and fixed at DIV2, superimposed to conventional fluorescence images (gray). Scale bar: 20 ym.
(b,e) Magnification of the STORM images with intensity profiles across the periodic spectrin structure reported with a red line. Scale bar: 200 nm.
(c,f) Magnification of the STORM images with white arrows indicating MPS radial expansions (Scale bar: 500 nm). (g) Box plots showing the
periodicity of spectrin ring-like structure, which did not significantly differ according to Mann—Whitney Test. The number of analyzed regions is 21
for graphene and 48 for glass, each from two independent cultures. (h) Box plots of the number of radial expansions per 10 ym of axon, showing a
significantly higher number of radial expansions on glass than on graphene (***p < 0.0001, Mann—Whitney Test). The number of analyzed axons
is 64 for graphene and 123 for glass, each from two independent cultures. For the box plots in (gh): Box between 25th and 75th percentile;
horizontal line: median; whiskers: Sth and 95th percentiles; square: mean; circles: measured values. (i) Representative TEM images for quantifying
axon diameter and number, geometry, and spacing of MTs of DRG cultured on graphene and glass. Scale bar: 200 nm. A couple of adjacent MT's
are highlighted with dotted red lines (graphene) or with dotted blue lines (glass). Grid-pattern lines are superimposed in black, and the intersection
points of the grid lines with the MT, used to quantify the MT distance, are highlighted in yellow. The length of parallel MTs and the MT distance
are also reported. (j) Box plots showing the average distance between a couple of microtubules within axons on glass and graphene (**¥p < 0.0001,
Mann—Whitney Test). (k) Box plots showing the lengths of parallel sections of microtubule couples inside the axon on glass and graphene (***p <
0.0001, Mann—Whitney Test). For the box plots in (jk): Box between 25th and 75th percentile; horizontal line: median; whiskers: Sth and 95th
percentiles; square: mean; circles: outliers; number of analyzed couples: 79 for graphene and 97 for glass, each from two independent cultures.
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effect of graphene on DRG membrane resting potential and
neuron excitability. To allow a direct comparison with the
axonal elongation and transport studies, experiments were
performed at similar time points. We observed a significantly
hyperpolarized resting membrane potential for graphene-
cultured DRG neurons with respect to glass-cultured controls
regardless of the DIV investigated. Cellular excitability was
further investigated by quantifying the number of spikes
evoked by current injection steps. We observed that, at DIV2,
the mean number of spikes in graphene was significantly lower
than in the control (Figure 3b). However, this difference
disappeared at DIV4, with control and graphene neurons firing
a similar number of spikes (Figure 3c).

These results demonstrate that the early days of contact with
graphene are characterized by a change in neuron excitability,
followed by a phase of adaptation. Hence, we describe a
correlation between neuron excitability, axon elongation, and
signaling endosomes transport. The synchrony between
restored excitability and recovery of normal NGF retrograde
transport dynamics with prolonged culturing is a strong clue of
such correlation. The recovery of normal signaling endosome
transport shall, in turn, contribute to maintain neuronal
survival.**

In order to understand the reasons behind the observed
reduced cellular excitability in the cell/electrolyte/graphene
system, we carried out further electrical and spectroscopic
analysis. Electrical measurements with a van der Pauw
geometry of the graphene sample (i.e., coated and after
medium immersion, with no neurons on top) indicate that
holes are the majority carriers (Table S4). Peripheral neurons
are known to be negatively charged, possessing more negative
resting membrane potential with respect to central neurons.*
We thus investigated by Raman spectroscopy whether the local
charge in graphene could be affected by a significant electrical
interaction with the cell. Figure 3d—g shows the results
obtained by carrying out Raman mapping of graphene with
cultured DRG neurons at DIV2. The Raman spectrum
measured for the neuron/graphene system (green line)
presents, in addition to the well-known G and 2D Raman
modes,”® a complex band peaked at 2933 cm™), with one
shoulder at 2885 cm™" (Figure 3d). These Raman modes can
be attributed to the cell and in particular to the CHj stretching
(proteins) and to the CH, antisymmetric stretching (lipids),
respectively.”” Indeed, Figure 3e shows the Raman map of the
2933 cm™' mode intensity, identifying the cell position. The
same areas were mapped to extract the 2D/G intensity ratio
map (Figure 3f). The intensity ratio was found to be decreased
precisely underneath the neuron (Figure 3g), demonstrating an
increase of the local hole doping of graphene (from 2 X 10"
cm™ to 6 X 10" cm™?), clearly ascribable to the cell negative
membrane potential. This value is in agreement with the one
reported for a graphene-astrocyte system.*®

It is known that carbon-based 7-electron-rich surfaces are
ideal adsorption sites for potassium (K*) ions.””*" In
particular, it was shown that the electronic properties of
graphene can tune the efficiency of graphene in trapping K"
ions and that such trapping ability is likely to be significant in
p-doped graphene (ie., our case)."" This will reduce the
extracellular concentration of potassium (K*) ions, thus
affecting transmembrane ionic currents. Thus, we speculate
that a modified (i.e., reduced) extracellular K* concentration
due to preferential adsorption of K" ions may increase K"
currents and dampen neuronal excitability of graphene-
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cultured DRGs. At this time, the cause/effect link between
altered excitability and modified NGF transport remains
elusive, and further studies shall be performed to elucidate it.
Since NGF transport could be also influenced by the axonal
structure on graphene, in the next section, we examine the
ultrastructure of axons grown on graphene at early
developmental stage.

Reduced Microtubule Distance and Elongated Axo-
nal Topology on Graphene. NGF retrograde axonal
transport is mediated by the dynein-microtubule (MT)
transport system'' and can thus be influenced by structural
changes in the axon. This is maintained by a complex system of
proteins including MT's and actin filaments that ensures shape,
capacity to direct movements, and extension of the growth
cone.*”

Here, we first took the membrane-associated periodic
skeleton (MPS) in consideration. This is a periodic ring-like
structure around the axon circumference formed by actin,
spectrin, and associated proteins, found in a broad range of
neuronal cell types including DRG neurons.””** We examined
the MPS with stochastic optical reconstruction microscopy
(STORM), for studying possible variations induced by
graphene. DRG neurons were fixed at DIV2 and immunos-
tained for fII spectrin for STORM imaging (Figure 4).

We found that graphene-cultured neurons maintain the
characteristic periodicity of ~190 nm of the MPS (graphene,
195.6 = 20.8 nm vs glass, 196.7 + 14.9 nm, Figure 4g).
However, the super-resolution approach also allowed us to
distinguish the presence of regions in which the MPS expands
radially (white arrows in Figure 4cf). These are compatible
either with zones of minor compaction within axonal bundles*®
or with increased diameter of single axons. The number of
MPS radial expansions was quantified over an axonal length of
10 um, and we found that on graphene, they were more than
halved with respect to the control (Figure 4h). These data
confirm the observation that on graphene, axonal bundles are
tightly organized already at the early developmental stage
(Figure Slc,d), but also suggest that axons therein may have a
stretched structure, which would well correlate with their
increased length (Figure 1).

We next exploited transmission electron microscopy (TEM)
to analyze whether and how the MT organization is affected by
this topological rearrangement. In detail, we quantified the
spacing between adjacent couples of MTs in longitudinal
sections of the DRG culture on graphene in comparison with
the control (Figure 4i), processing the neurons as described
before.*® We found that on graphene the intratubular distance
was significantly reduced by 19%, when compared to the
control (Figure 4j). In order to exclude an effect of the axon
caliber on this measure,"” we quantified the mean axon
diameter and the number of MTs per axon, which were found
to be comparable in the two cases (Figure S5). Accordingly, a
parallel immunofluorescence quantification of tubulin showed
that the mean fluorescence intensity of Alexa488-labeled fSIII-
tubulin is similar for DRG cultures grown on graphene and
control (Figure S6). Moreover, we measured the length for
which the pairs of MTs arranged into adjacent arrays remains
parallel along the same axon, finding that this parameter
exhibits a remarkable 42% increase in graphene with respect to
the control (Figure 4k), indicating that MTs are closer and
straighter in axons on graphene than on the control substrate.
This can be easily explained by the electrostatic interaction
experienced by axons on graphene (Figure 3), which may
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increase their adhesion to the substrate, finally changing their
three-dimensional architecture and forcing them to remain
straighter than on the control substrate. Overall, our results
suggest that the interaction between graphene and neurons
does not dramatically alter the axonal ultrastructural
organization, maintaining a similar total number and integrity
of MTs and MPS, but rather confers to axons an elongated
morphology. This effect may also provide another cause for the
observed stall of NGF signaling endosomes (Figure 2). Indeed,
transient radial expansions of axonal diameter were recently
described to facilitate the processivity of the fast-moving
retrograde carriers.”® Accordingly, the inhibition of these
expansions prompted by graphene (Figure 4h), along with the
reduced MT interdistance (Figure 4j), might create a more
crowded space that inhibits cargo mobility and reduces the
retrograde transport of NGF-loaded endosomes, ultimately
favoring their local action on axon outgrowth.

B CONCLUSIONS

Graphene has attracted the interest of the neuroscience
community worldwide for its biocompatibility, electrical
properties, and regenerative potential."”~>* However, the real
possibility of using this material for neuroregeneration
applications will depend on our understanding of how
graphene influences the processes of neurite outgrowth,
elongation, and regeneration following injury. This can be
achieved by exploiting graphene optical transparency to
observe the processes of interest, as we propose in this work.
Optical microscopy of DRG neurons shows an axonal length
greater on graphene than in the control. Single-molecule
fluorescence microscopy in living DRG neurons reveals that,
although on graphene neurons are completely viable for
weeks,”'" deep nanoscale changes characterize the early cell-
material interaction. In detail, we observe an 8.5-fold reduction
of retrogradely transported vesicles of NGF, the signaling
molecule known to mediate sensory axon development (Figure
2e). These data are in line with previous observations that local
NGF actions account for axon elongation.27 Indeed, NGF-
induced axonal sprouting in sensory neurons has been widely
investigated, and NGF treatment probed in models of spinal
cord injury.53 Several aspects still need to be addressed, for
example, whether graphene locally stalls only NGF vesicles, or
also other fast-retrograde carriers, if NGF internalized at the
soma is also influenced by graphene, and how the
spatiotemporal signaling events triggered by NGF receptors”*
change on graphene. Nevertheless, our experiments provide a
clear clue that the physical control of the intracellular NGF
pool may be useful for regeneration approaches.

To investigate possible causes for the observed NGF
trafficking alteration, we studied graphene influence on both
electrical and structural properties of axons. In the former case,
we observe mutual effects: on one side, neurons change
graphene charge concentration, inducing a doping clearly
measurable via Raman spectroscopy (Figure 3f), and on the
other side, graphene hyperpolarizes the resting membrane
potential and reduces cell excitability (Figure 3a—c). It is
noteworthy that this condition correlates with a maximal effect
of graphene on axonal length (up to >70% increase with
respect to a control substrate, Tables 1 and S1) and was
previously linked to increased axon regeneration in sensory
neurons.”” On the other hand, graphene also alters axon
morphology, inducing longer and straighter axonal bundles
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(Figures 1, S1, and 4h) and closer and straighter MTs within
each axon (Figure 4j).

The sum of these effects is progressively diminished with
time, allowing to reach already after 4—5 DIV an excitability
and axonal transport comparable to the control (Figures 2e
and 3b) and stabilizing to a 17% increased axonal outgrowth
(Figure 1b and Table 1). Thus, the molecular players stalling
NGF signaling endosomes are selectively switched on upon the
early contact with the material. More studies are needed to
understand if the electrophysiological and structural graphene
effects can impact independently the transport of NGF
vesicles, or if they are rather synergistic. This will depend on
the ability to experimentally dissect membrane hyperpolariza-
tion, axonal stretching, and retrograde transport inhibition,
while not precluding the correct NGF uptake to preserve
neuron survival. Obtained results may surely increase our
mechanistic detail of axonal growth processes and help to
design optimal biocompatible guides to enhance them.
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