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Abstract  

Room-temperature rechargeable sodium-ion batteries (SIBs), in view of the large availability and 

low cost of sodium raw materials, represent an important class of electrochemical systems suitable for 

application in large-scale energy storage. In this work, we report a novel, high power SIB formed by 

coupling the layered P2-Na0.7CoO2 cathode with the graphite anode in an optimized ether-based 

electrolyte. The study firstly addresses the electrochemical optimization of the two electrode materials 

and then the realization and characterization of the novel SIB based on their combination. The cell 

represents an original sodium rocking chair battery obtained combining the intercalation/de-intercalation 

processes of sodium within the cathode and anode layers. We show herein that this battery, favored by 

suitable electrode/electrolyte combination, offers unique performance in terms of cycle life, efficiency 

and, especially, power capability. 

 

1. Introduction  

The great employment of non-renewable fossil fuels, presently one of the mayor responsible for 

greenhouse gas emission and atmosphere pollution, has driven the interest on alternative energy plants 

and more environmentally friendly power sources [1,2]. The large attention devoted to the development 

of renewable energy sources and new technologies for energy conversion and storage have led to the 

achievement of high performance and efficient rechargeable electrochemical systems [3,4]. Batteries 

based on the use of alkali metals, such as lithium and sodium have been identified as the most suitable 

since 1980s. However, the great success of lithium-ion batteries so far mitigated the interest on SIB 

technology [5]. Recent concerns on long-term availability, limited geographical localization and 

increasing price of lithium, triggered renewed interest on alternative rechargeable batteries [6–8]. 

Sodium-ion batteries (SIBs) represent the most interesting alternative to lithium due to high abundance, 

low cost and large availability of the sodium precursors [9,10]. A relevant number of suitable materials 



have been identified [11–13], including cathodes, anodes as well as electrolytes, however only few 

prototypes of full SIBs have been reported [14–19].  

In fact, the golden electrode combination (LiCoO2-graphite) identified for lithium-ion batteries more than 

two decades ago, has not been identified for SIBs, yet. However, both Na0.7CoO2 [20] and graphite [21] 

have revealed surprising differences in half and full cells in respect to the analogues lithium-based 

materials. Sodium cobalt oxide revealed poor performances in terms of cycling stability and efficiency 

of the Na (de-)insertion process [22–27]. These issues have been attributed to inappropriate selection of 

the electrolyte solution. Indeed, NaPF6-EC:PC proposed by Ponrouch et al  [28] as standard electrolyte 

for sodium-ion batteries led to poor stability, while NaClO4-EC:DMC solution reported by J.J. Ding et 

al [26] evidenced improved cycle life, however, low Coulombic efficiency. This issue might be mitigated 

in principle, by the addition of fluoroethylene carbonate (FEC) to the electrolyte solution [15]. 

Furthermore, several successes have been achieved by partially substituting cobalt with different metals, 

such as Fe, Ni and Mn within the layered structure [29–33].  

Among the anodes, sodium conversion [34,35] and alloying [16,36,37] compounds, as well as 

hard and soft carbons [38] appeared the most suitable for application in SIB. Recently, expanded graphite 

has been proposed as anode with very promising cycling behavior in terms of capacity retention, however 

showing limited rate capability [39]. In contrast, the use of graphite, i.e., the most widely diffused anode 

for LIB, has been so far hindered in SIB by the unfavorable graphitic interlayer distance compared to the 

ionic radio of sodium ions. Recent study in diglyme-based electrolyte demonstrated that the co-

intercalation phenomena of ternary GICs (graphite intercalation compounds), i.e., solvated sodium ions, 

enables the sodium storage within the graphite, thus allowing its use as anode for SIBs [21]. 

Herein, we originally disclose an enhanced, high-power SIB based on a layered oxide cathode 

and a graphite anode.  We show that this battery, exploiting the combination of an intercalation chemistry 



at the cathode side and a co-intercalation phenomenon at the anode side, has unique electrochemical 

properties that make it suitable for stationary energy storage applications. 

 

2. Experimental 

2.1 Material synthesis and characterization  

P2- type layered Na0.7CoO2 was synthesized by solid-state reaction. The precursors (Sigma 

Aldrich) were used as received without further purification. Anhydrous sodium carbonate (Na2CO3, ACS 

reagent, ≥99.5%) and cobalt oxide (Co3O4, Co(II,III) oxide powder) were pre-dried respectively at 120 

°C and 400 °C for 2 hours. Following, the powders were mixed and grinded. After the achievement of 

an homogeneous mixture, the pelletized material was subjected to a thermal treatment at 850 °C for 15 

hours in air atmosphere and finally quenched to room temperature. In order to compensate the sodium 

loss at high temperature, an excess of 10% of Na2CO3 in respect to the desired amount has been used. 

The elemental composition, obtained by inductively coupled plasma optical emission spectrometry 

(ARCOS ICP-OES, Spectro Analytical Instruments, Kleve, Germany), was determined from the Na/Co 

ratio, assuming no oxygen deficiencies. The structural and morphological characterization of the sample 

were investigated by X-Ray Diffraction (XRD, Rigaku Dmax Ultima + X-ray diffractometer) with CuKα 

radiation, in the 2θ range from 10° to 90°, and by scanning electron microscopy using a Phenom-FEI 

instrument, respectively. Natural graphite (SLP-30, IMERYS) was used as received without any further 

treatment. The electrolytes were prepared in an argon-filled dry box with an oxygen and water content 

lower than 1 ppm. Before use, solvents have been dried by using 4Å zeolite type for several days, until 

a water content lower than 10 ppm as detected by Karl Fisher titration. NaClO4 (sodium perchlorate) salt 

was dried under vacuum overnight at 180°C and dissolvent in various solvents in a 1 mol L-1 ratio. The 

solvents used for electrolyte preparation were EC:DMC (1:1 w/w) (ethylene carbonate:dimethyl 



carbonate), EC:DMC(1:1 w/w)+20%weight FEC (fluoroethylene carbonate) and TEGDME 

(tetraethylene glycol dimethyl ether). 

 

2.2 Electrochemical characterization 

The electrochemical tests were run using Swagelok-type cells assembled in an argon-filled glove 

box. Sodium half-cells were assembled by using glass fiber (Whatman) as separators soaked in various 

electrolyte solutions and sodium metal as counter and reference electrode. Sodium metal was cut from 

sodium pieces (99.8%, Acros Organics), roll pressed and punched on the current collector. The 

Na0.7CoO2 electrodes were prepared by doctor-blade casting on Al of a slurry prepared by dispersing 80 

wt% of active material, 10 wt% of carbon black conductive agent (Super C65, IMERYS) and 10 wt% of 

polyvinylidenefluoride (PVDF 6020 Solef, Arkema Group) binder  in N-methyl-2-pyrrolidone (NMP). 

Graphite electrodes were prepared by casting on Cu foil a slurry composed by active material, Super C65 

carbon conductor (IMERYS) and Carboxymethyl cellulose (CMC, Walocel 2000PA, 1.2 substitution 

degree) binder in an 85:5:10 weight ratio. Following, electrodes of 12-mm diameter, loaded by 2 mg of 

Na0.7CoO2 and 6 mg of graphite, respectively, have been punched, pressed and dried. The cells were 

assembled in an argon-filled glove box with H2O and O2 content lower than 1 ppm. A Maccor 4000 

Battery system was used for the galvanostatic cycling tests.  The cells were cycled at various current 

rates, within the 0.02V to 2.0V vs Na+/Na for graphite half-cells, 3.8V-2.0V vs Na+/Na for Na0.7CoO2 

half-cells and 3.7V-0.5V for Graphite/Na0.7CoO2 full-cells. Prior full-cells assembly, graphite anodes 

were electrochemically activated by pre-cycling in order to remove the irreversible capacity exhibited 

during the first discharge and to provide a sodium source able to compensate the sodium deficiency of 

the P2-type cathode.  

 

 



3. Results and discussion 

3.1 The P2-Na0.7CoO2 electrode 

The structural and morphological characterization of Na0.7CoO2 are shown in Fig. 1. The XRD 

pattern (Fig. 1a) matches with the typical P2-type layered structure reported for the γ-Na0.71Co0.96O2 

phase (JCPD # 00-030-1182). The P2-Na0.7CoO2 crystallizes in the hexagonal P63/mmc space group, 

displaying an ABBA arrangements of (CoO2)n sheets formed by CoO6 edge-sharing octahedral units 

among which Na+ ions can be hosted in two different types of trigonal prismatic sites, sharing faces (Naf) 

with two CoO6 octahedra belonging to adjacent layers or edges (Nae) with six CoO6 surrounding 

octahedral units [20,22]. The SEM micrographs (Fig. 1b) reveal that Na0.7CoO2 particles are formed by 

adherent planes of hexagonal symmetry, with size ranging from 5 to 10 µm, thus reflecting the layered 

morphology of the cathode material. 

Figure 1 

 

The electrochemical characterization of the Na0.7CoO2 cathode (Fig. 2) is performed in sodium 

half-cell using two versions of a common EC:DMC-NaClO4 electrolyte, i.e. a bare version and an 

upgraded solution added by FEC [15]. The first charge-discharge profile in the bare solution (inset of 

Fig. 2a) exhibits a first de-sodiation process characterized by four plateaus and a capacity of about 80 

mAh g-1, while the following sodiation process, delivering about 84 mAh g-1, evolves through eight 

plateaus corresponding to the various phase transitions already described by Berthelot et al [20]. 

Subsequently, the charge-discharge process of the sodium cell reversibly proceeds following the above 

eight voltage plateaus, centered at about 3V vs. Na+/Na (Fig. 2a). Despite a lower capacity of Na0.7CoO2 

during the first discharge in the FEC-added electrolyte (65 mAh g-1, Fig. 2b), the reversible capacity of 

the cell remarkably increases up to about 105 mAh g-1 during the following cycles. The lower capacity 

during first charge in the upgraded electrolyte, already observed in a previous work [15], may be most 



likely attributed to the formation of a passivation layer at the cathode surface partially hindering the de-

sodiation process. The cathode passive layer is modified during the following cycles, thus efficiently 

allowing the electrochemical process [40,41]. Indeed, the comparison of the cycling trend (Fig. 2c) 

clearly shows the expected increase of both coulombic efficiency (from 95% to about 100%) and capacity 

(from 80 to 100 mAh g-1) by FEC addition.  

Figure 2 

Taking into account the results reported in Fig.2, the rate capability of the Na0.7CoO2 cathode is 

investigated in the EC:DMC-NaClO4-FEC electrolyte (Fig. 3). The electrode delivers capacity of about 

100 mAh g-1 at 0.2C, 80 mAh g-1 at 1C and still a residual capacity of about 70 mAh g-1 when cycled at 

the very high rate of 10C, following the expected voltage signature with low polarization (Fig. 3a), stable 

trend and efficiency exceeding 99% (Fig. 3b). This remarkable performance is attributed to the high 

diffusion coefficient of sodium ions in layered cobalt oxides (D~0.5-1.5×10-10 cm2 s-1,which is a value 

even higher than those of Li+ in LiCoO2) and to the high electronic conductivity of cobalt (metallic 

conduction σ ≈ 300 S cm-1), which greatly improves the kinetic of the sodium (de)-insertion reaction into 

the host structure [42,43]. The cell can recover about 98% of the initial capacity by decreasing the current 

from 10C back to 0.2C, thus further accounting for the structural stability of the Na0.7CoO2 electrode. 

Moreover, even after the stressful rate capability test, the material exhibits a capacity retention of about 

92% after 100 cycles with an efficiency approaching 100% (Fig.3b).  

Figure 3 

 

3.2 The Graphite electrode 

A first attempt for graphite anode characterization in sodium half-cell is conducted by employing 

the two electrolytes above described, i.e., bare EC:DMC-NaClO4 and FEC-added one (Fig. 4a, green and 

black curves, respectively). However, both the carbonate-based electrolytes revealed a very poor 



behavior, with very limited signs of sodium intercalation process in the sodium cell. The poor 

electrochemical performance may be ascribed to the unfavorable graphitic interlayer distance compared 

to the ionic radio of sodium ions in carbonate-based electrolyte media that hinders the formation of binary 

GICs, which should enable the Na-intercalation process [21,44]. In contrast, the use of glyme-based 

electrolyte, i.e. 1M TEGDME-NaClO4, enables the co-intercalation of solvated sodium ions by forming 

ternary GICs (graphite intercalation compounds) [44] following an electrochemical process centered at 

about 0.77V vs. Na+/Na (Fig. 4a, red curve).  It has been demonstrated that the voltage plateau for Na 

storage increases according to the chain length of the glyme-based solvent, suggesting that higher 

potential values for Na storage indicate more stable discharge products [44]. 

This process allows reversible cell operation for 500 cycles at 1C, with a capacity of about 100 mAh g-

1, a steady state efficiency approaching 100% and a retention as high as 99 % (Fig. 4b). The rate capability 

test of the graphite anode in sodium cell using the glyme-based electrolyte (Fig. 4c) shows, after an 

activation cycle performed at 0.1C, a capacity ranging from 100 mAh g-1 at 0.2C to about 90 mAh g-1 at 

current rate as high as 10C. The cell completely recovers its initial capacity when the current is lowered 

back to 1C. The voltage profile during the test reported in Fig. 4d evidences relevant capacity retention 

and almost no effect of the increasing current on the polarization, thus further accounting for the high 

rate capability of the cell. 

Figure 4 

Considering the excellent capacity retention and the high rate capability of both cathode and 

anode, we expect that their combination may lead to a full SIB characterized by long cycle life and high 

power. However, prior to combining anode and cathode, the high performance of the P2-Na0.7CoO2 

should be confirmed in the TEGDME-based solution, that is, the most suitable electrolyte for the anode. 

Accordingly, Fig. S1 and related discussion in the Supplementary Information (SI) section confirm that, 

despite a lower rate capability in particular at the very high currents in respect to carbonate solution, the 



Na0.7CoO2 electrode efficiently operates in the TEGDME-based electrolyte. Moreover, the additional 

electrochemical tests on sodium half-cells using a Na0.7CoO2 electrode and electrolytes containing 

different salts, well supported the choice of NaClO4 as sodium salt rather than others such as NaCF3SO3 

and NaPF6 (see Fig. S2 in the Supplementary Information). 

 

3.3 The full sodium-ion cell  

Prior to assembly the full-cell, the graphite anode has been electrochemically activated in sodium 

half-cells in order to remove its small irreversible capacity and achieve a partial sodium intercalation for 

compensation of the sodium deficiency of the cathode used without pre-cycling [15]. Figure 5a reports 

the voltage profiles of the Graphite/TEGDME-NaClO4/ Na0.7CoO2  full SIB cycled within the 3.7–0.5 V 

voltage range at 1C (175 mA g-1). The first cycle reveals the expected lower charge capacity in respect 

to the discharge ascribed to the above discussed sodium deficiency in the cathode that is used without 

any activation (compare with Fig. S1b in SI section). At the steady state, the cell operates with an average 

voltage value of about 2.2V with a profile reflecting the combination of sodium (-de) intercalation within 

cathode and anode layers following a sodium rocking chair process and delivering a reversible capacity 

of about 80 mAh g-1, upon 100 cycles. The rate capability of the SIB is investigated from 1C to 10C (i.e., 

from 175 to 1750 mA g-1) both in terms of voltage profile (Fig. 5b) and cycling trend (Fig. 5c). The 

results show a voltage slightly affected by the increasing current from 1C to 2C and well reflecting the 

efficient electrochemical process (compare Fig. 5b and Fig. 3a), while the very high currents (5C and 

10C) lead to an increase of the polarization, as indeed expected by the rising ohmic drop of the cell. The 

cycling curves (Fig. 5c) show a delivered capacity ranging from about 80 mAh g-1 at 1C to 60 mAh g-1 

at 5C and to 40 mAh g-1 at 10C with efficiency always approaching 100% at the steady state. Moreover, 

the high-rate cycling test at 10C prolonged to more than 1200 cycles (Fig. 5d) reveals a capacity retention 

as high as 80%, i.e., a value well suitable for battery application. Despite the low energy density, expected 



to practically range from about 60 Wh kg-1 at 1C to 30 Wh kg-1 at 10C basing on the cell capacity and its 

average working voltage, the remarkable rate capability and cycle life represent a very appealing 

characteristics for high-power applications [45]. Indeed, our cell configuration allows at 10C the 

achievement of about 45% of its maximum capacity that corresponds to 6 minutes of charge or discharge, 

extended for more than 1000 cycles.  

 

Figure 5 

 

4. Conclusions 

We report in this work, a novel type of sodium ion battery exploiting a layered P2-type Na0.7CoO2 cathode 

combined with a graphite anode in an optimized, glyme-based electrolyte. As typical for SIBs, also the 

one here presented has a lower energy density than LIBs, however it offers unique characteristics of  long 

cycle life, high efficiency and, especially, high power density which make the cell quite attracting  for 

large-scale energy storage application. We have shown here that our SIB is able to operate at a rate as 

high as 10C, which makes it able to complete a full cycle in 12 minutes, thus meeting the duration 

required by energy storage systems, such as frequency regulation, peak reduction and demand shifting, 

where the typical cycling operation ranges from 1 to 40 per day. In addition, we report in this work the 

development and characterization of a cathode material having unique rate capability, as well as we 

confirm of the applicability of plain graphite as anode in sodium cells, when combined with a proper 

electrolyte. Certainly, we are aware that our SIB still requires optimization, especially in terms of overall 

cell balancing so as to properly address the initial irreversible capacity and finally increase its overall 

electrochemical behavior. On the other hand, the above-mentioned characteristics of long life and, 

especially of high power, encouraged us to believe that report this work, even if still in a preliminary 

stage, might be of concrete interest for the battery community. 
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Figure Captions 

 

Figure 1. (a) X ray diffraction patterns (XRD) and (b) scanning electron microscopy images (SEM) of 

the Na0.7CoO2 material. 

Figure 2. Galvanostatic responses at 0.2C rate in terms of voltage profile of the Na/1M NaClO4 EC:DMC 

(1:1 w/w)/Na0.7CoO2 and (b) and Na/1M NaClO4 EC:DMC (1:1 w/w) + 20% FEC/Na0.7CoO2 sodium 

half-cells. (c) Comparison of the cycling behavior in terms of stability and efficiency. 1C corresponds to 

175 mA g-1. Voltage range: 2.0-3.8 V vs Na+/Na. Room temperature (20 oC). 

 Figure 3 (a) Voltage profiles and (b) cycling behavior of the Na/1M NaClO4 EC:DMC (1:1 w:w) + 

20% FEC /Na0.7CoO2 cell studied at increasing currents. 1C corresponds to 175 mA g-1. Voltage range: 

2.0-3.8 V vs Na+/Na. Room temperature (20 oC). 

Figure 4. (a) Voltage profiles of the galvanostatic cycling tests of a Na/Graphite half-cell employing the 

various electrolytes (see experimental section for details). (b) Long term cycling behavior at 1C rate of 

a Na/1MNaClO4-TEGDME/Graphite half-cell and, in inset, corresponding voltage profile at the 1st, 100th 

and 500th cycle. (c) Cycling performance of a Na/1MNaClO4-TEGDME/Graphite half-cell at increasing 

current densities and (d) corresponding voltage profiles within 0.02-2.0 V vs Na+/Na range,  1C = 200 

mA g-1. Room temperature (20 oC). 

Figure 5. (a) Voltage profiles at various cycle number of the Graphite/1M NaClO4-TEGDME 

/Na0.7CoO2 full-cell galvanostatically cycled at 1C (175 mA g-1) within the 0.5-3.7 V voltage range at 

room temperature (20 oC). (b) Voltage profiles of the Graphite/1M NaClO4-TEGDME /Na0.7CoO2  full 

cell galvanostatically cycled at various current rates and (c) and corresponding cycling responses within 

the 0.5-3.7 V voltage. (d) Prolonged galvanostatic cycling of a Graphite/1M NaClO4-TEGDME 

/Na0.7CoO2 full-cell performed at 10C rate (1.75 A g-1). 1C corresponds to 200 mA g-1. Room temperature 

(20 oC).  
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Figure S1 reports the electrochemical performance of the Na /1M NaClO4-TEGDME / Na0.7CoO2 cell at 

room temperature. Figure S1 (a) and (b), reporting the test performed at 34 mA g-1 (0.2C) in terms of 

cycling behavior and voltage profile, respectively, show the same electrochemical trend observed using 

the carbonate based electrolyte (Fig. 2 in the manuscript), characterized by four voltage plateaus during 

the first charge and by eight reversible plateaus corresponding to the various sodiated phases evolution 

during the subsequent cycles. The initial charge capacity (57 mAh g-1) and the reversible steady state 

capacity (85 mAh g-1) are well comparable to those obtained using the FEC-added, carbonate electrolyte 

(compare with Fig. 2b in the manuscript). Moreover, the cell shows satisfactory capacity retention upon 

(about 97% upon 50 cycles) and coulombic efficiency (98%). Upon increasing the current density (Fig. 

S1c and d), the cell shows satisfactory rate capability, although lower than that of the cell employing the 

carbonate-based electrolyte (compare with 3 in the manuscript) due to the higher viscosity and then 

poorer electrode wetting or higher charge transfer. The discharge capacity delivered are approximately 

95, 91, 87, 80, 68, 40 and 21 mAh g-1 respectively at 0.2C, 0.33C, 0.5C, 1C, 2C, 5C and 10C. Lowering 

back the current from 10C to 0.2C the cell completely recovers its initial capacity, thus confirming high 

stability of the cathode material (compare with figure 3 in the manuscript). The voltage curves, reported 

in Fig. S1(d), shows the expected trend at 1C, while increasing currents leads to cell polarization due to 

the expected ohmic drop. The results here reported suggest the suitability of the glyme-based solution as 

electrolyte for P2-Na0.7CoO2 cathode. Considering the characteristics of half-cells using the glyme-based 

electrolyte, the P2-Na0.7CoO2 cathode and the graphite anode (Fig. 4 in the manuscript) we may conclude 

that the electrolyte is suitable for high power full sodium-ion battery combining the two electrodes, as 

indeed confirmed by the results reported in our manuscript (see Fig. 5). 

 



 

(a)      (b) 

 

 

 

      (c)                          (d) 

 

Figure S1. (a) Galvanostatic cycling behavior and (b) corresponding voltage profile of the Na/1M 

NaClO4-TEGDME/Na0.7CoO2 half-cell studied at 34 mA g-1 current within the 2.0-3.8 V (vs Na/Na+) 

voltage range. (c) Cycling trend at increasing current densities and (d) corresponding voltage curves of 

the Na/1M NaClO4-TEGDME/Na0.7CoO2 half-cell. 
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An additional study of TEGDME-based electrolytes using salts different than NaClO4, including NaPF6 

and NaCF3SO3, is following reported. The results of Figure S2 reveal for the investigated electrolytes 

lower cycling stability and efficiency in respect to the one using NaClO4. Considering that sodium salts 

were used as received, without any further purification step, we suppose that the poor performance of the 

cells using NaCF3SO3 and NaPF6 may be ascribed to possible presence of impurity traces leading to 

issues at the electrode-electrolyte interface.   

 

  

  (a)                       (b) 

Figure S2 

 

Figure S2. Effect of the sodium salt in the cycling behavior of Na/TEGDME/Na0.7CoO2 using NaCF3SO3 

(a) and NaPF6 (b).Test run at 34 mA g-1 within the 2.0-3.8V vs Na+/Na voltage range at 20 °C. 
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