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ABSTRACT  

In multiple sclerosis (MS), several adhesion molecules are involved within the central nervous 

system in inflammatory and neurodegenerative processes that are associated to progressive 

disability and increasing brain atrophy. The neural cell adhesion molecule (NCAM) has been 

suggested to participate in the reparative mechanisms and in the remyelination processes, key issues 

in MS pathology. We aimed at investigating plasma levels of the seldom investigated soluble 

(s)NCAM, and as comparison those of intercellular adhesion molecule-1 (sICAM-1) and vascular 

adhesion molecule-1 (sVCAM-1), and their association with clinical and MRI measures of lesion 

volumes and of global and regional atrophy. The cross-sectional study was conducted in 85 

relapsing-remitting (RR)-MS, 53 progressive (P)-MS patients, and 42 healthy individuals (HI).   

Correlation of MRI measures with plasma levels of these adhesion molecules were not observed.  

In the MS and HI groups, sNCAM levels were significantly and positively associated with sVCAM-

1 levels. Differently, the correlation between sICAM-1 and sVCAM-1 was observed only in MS 

patients. sNCAM and sVCAM-1 levels were higher in P-MS compared to HI (P=0.05 and P=0.028 

respectively). The sVCAM-1 levels differed (P<0.001) among  DMTs groups and HI. 

The association of sNCAM plasma levels with MS disease, as well as differences in sVCAM-1 

levels in patients receiving different  DMTs, deserve further investigation. 

 

Key words: multiple sclerosis, MRI, adhesion molecules, NCAM, VCAM-1, ICAM-1. 
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1. Introduction  

In multiple sclerosis (MS), several adhesion molecules are suggested to be involved in 

inflammatory processes promoting neurodegeneration within the central nervous system (CNS), 

that are associated with progressive disability and increasing brain atrophy [1, 2]. 

 The members of the immunoglobulin superfamily, intercellular adhesion molecule-1 

(ICAM-1) and vascular adhesion molecule-1 (VCAM-1), through binding to integrins LFA-1 and 

VLA-4 respectively, are critical in leucocyte-endothelia interaction, promoting the immuno-

inflammatory response in MS [3, 4]. The soluble forms sICAM-1 and sVCAM-1 are considered to 

be markers of BBB disruption [5] and might regulate functions of the corresponding cell-bound 

forms [6-8]. A large number of studies investigated plasma or serum levels of sICAM-1 and 

sVCAM-1 in MS providing often conflicting data and highlighting heterogeneity in 

“immunological/adhesion pattern” among MS clinical phenotypes [9-13]. 

 The neural cell adhesion molecule (NCAM, also known as CD56), another member of the 

immunoglobulin superfamily, is involved in cell migration, axonal growth and fasciculation, 

organization and modulation of synapses (reviewed in [14] ). Its possible involvment in the 

reparative mechanisms and in the remyelination processes, key issues in MS [15], has been 

suggested [16]. Shedding of sNCAM molecules from cell membrane of neural and glial cells might 

have a role in brain plasticity, as it differentially alters neurite branching in a cell-type dependent 

manner [17, 18]. 

The large majority of the studies have investigated sNCAM levels in the cerebrospinal fluid (CSF), 

which appeared to be lower in MS patients CSF compared to controls and to decrease in a step-wise 

manner through the progression of MS disease (reviewed in [14]). Differently, only one study 

investigated sNCAM in serum of MS patients [19].  

 Neuroimaging investigation of MS–adhesion molecule associations received considerable 

attention over the years, mainly evaluating the presence/absence of brain lesions, or T2 lesion 

volumes [13, 20-22] by magnetic resonance imaging (MRI). Brain atrophy assessment has become 
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important for the evaluation of neurodegeneration and MS disease progression. The whole brain 

volume (BV), the cortical volume (CV) or lateral ventricular volume (LVV), reflect regional axonal 

loss as well as demyelination in white and gray matter tissue structures [23, 24]. Moreover, atrophy 

of the deep gray matter (DGM) and particularly of the thalamus, which has a prominent role in 

integrating signals of complex cognitive and motor functions, is associated to physical and 

cognitive disability in MS [25].  

Up to now, the relationship between brain atrophy parameters and levels in plasma of soluble forms 

of  adhesion molecules has not been explored in MS.  

 In this study, we aimed at investigating associations of soluble plasma levels of key 

adhesion molecules, the seldom studied sNCAM and as comparison sICAM-1 and sVCAM-1, with 

clinical and MRI measures of disease severity, in a cohort of MS patients and in healthy individuals 

(HI). 

2. Materials and methods 

2.1 Study population 

The population of this cross-sectional study included subjects recruited in a case-control study of 

cardiovascular, environmental and genetic risk factors for disease progression in patients with MS 

(CEG-MS study; IRB ID: MODCR00000352) [26]. 

Subjects with the following characteristics were included: having MS according to the 

revised McDonald criteria [27] or being a healthy individual (HI), having an MRI scan at the 3T 

scanner using the standardized MRI protocol, age between 18–75 years and physical/neurologic 

examination within 30 days from the standardized MRI study protocol. The exclusion criteria 

consisted of presence of relapse and steroid treatment within the 30 days preceding study entry, pre-

existing medical conditions known to be associated with brain pathology (e.g., neurodegenerative 

disorders, cerebrovascular disease, positive history of alcohol abuse, etc.) and pregnancy. 
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Subjects underwent neurological and MRI examinations and provided blood samples. The 

collected data included demographic and clinical information. The Expanded Disability Status Scale 

(EDSS) was assessed in MS patients. The study protocol was approved by the local Institutional 

Review Board and all participants gave their written informed consent. 

2.2 MRI acquisition and image analysis 

MRI were obtained on a General Electric (GE) 3T Signa Excite HD 12.0 scanner (Milwaukee, WI) 

using an eight-channel head and neck coil. 2D T2/PD-weighted images (WI), fluid-attenuated 

inversion recovery (FLAIR), spin-echo T1-WI without gadolinium contrast, 3D high resolution T1-

WI and susceptibility-weighted imaging (SWI) were acquired. 2D sequences were acquired using a 

256x192 matrix and 256x192mm
2
 FOV, resulting in a nominal in-plane resolution of 1x1mm

2
, and 

48 gap-less 3mm thick slices were acquired for whole-brain coverage. Sequence-specific 

parameters were: dual FSE proton density and T2-WI (TE1/TE2/TR=9ms/98ms/5300ms; echo-train 

length=14), 4:31 min long; FLAIR (TE/TI/TR=120ms/2100ms/8500ms; flip angle=90º; echo-train 

length=24), 4:16 min long; and spin-echo T1-WI (TE/TR=16ms/600ms), 4:07 min long. In 

addition, a 3D high resolution T1WI fast spoiled gradient echo sequence with a magnetization-

prepared inversion recovery pulse was acquired (TE/TI/TR=2.8ms/900ms/5.9ms, flip angle=10º), 

4:39 min long, with 184 slices of 1mm thickness, resulting in isotropic resolution.  

MRI analysts were blinded to the subject’s physical and neurologic condition. T2- and T1 

lesion volume (LV) were assessed using a semi-automated edge detection contouring/thresholding 

technique.[28] Normalized brain volume (NBV) and cortical volume (NCV) were obtained using 

SIENAX software (version 2.6) [29]. DGM and thalamus volumes were calculated using FIRST, 

[30] and subsequently normalized using the SIENAX-derived scaling factor. Prior to tissue 

segmentation, lesion filling was utilized to reduce the impact of T1 hypointensities [31].  

2.3 Assays for adhesion molecules 
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Adhesion molecules were measured in EDTA plasma samples obtained only once at the time of the 

neurological and MRI examinations. sNCAM, sICAM-1 and sVCAM-1 levels were assayed using 

Milliplex™ magnetic bead kits (human neurodegenerative disease bead panel 3, HNDG3MAG-

36K, Merck Millipore, Germany). Based on producer’s information, this assay recognizes total 

sNCAM and not a specific isoform. Samples were processed following the manufacturer 

recommended protocols and read on a MAGPIX instrument equipped with the MILLIPLEX-

Analyst Software 5.1 (Merk Millipore) using a five-parameter nonlinear regression formula to 

compute sample concentrations from the standard curves. Concentrations were expressed as ng/mL. 

The calculated inter-assay coefficient of variations for sNCAM, sICAM-1 and sVCAM-1 were 

4.9%, 5.7% and 7.3% respectively, while intra-assay coefficient of variations were 3.3%, 4.0% and 

6.8%. The lower limits of detection for sNCAM, sICAM-1 and sVCAM-1 were 4.81 pg/mL, 6.29 

pg/mL and 6.44 pg/mL, respectively. Assays were performed blinded to clinical status. 

2.4 Statistical analysis 

SPSS (IBM Corp. Armonk, NY, USA, version 24.0) statistical software was used for all statistical 

analyses and GraphPad (GraphPad Software, Inc. La Jolla, CA, USA, prism version 6.01) for the 

figures. 

Data were assessed for normality using the Kolmogorov–Smirnov test. The Fisher’s exact test was 

used to compare differences in categorical variables and the Student’s t-test to compare age.  

Differences in brain volumes between total MS and HI groups and between RRMS and PMS were 

evaluated by ANCOVA, with age and gender as covariates. Spearman’s rank correlation was used 

to assess associations among the adhesion molecules levels and with demographic characteristics, 

EDSS and disease duration. Differences in adhesion molecules levels between clinical MS 

subgroups and HI were determined by the Kruskal-Wallis test, followed by Dunn’s multiple 

comparison test. The same statistical tests were used to analyze variations of adhesion molecules 

levels in the presence of different disease-modifying treatments (DMTs). P-values ≤0.05 were 

considered as statistically significant. The associations of MRI measures with adhesion molecules 
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were assessed using linear regression analysis, with the MRI measure of interest as the dependent 

variable, and  age, gender, drug-treatment and the adhesion molecule of interest as the predictor 

variables. Given the multiple testing involved, a conservative p-value ≤0.01 was used for 

significance assessment and a p-value ≤0.05 was considered a trend. 

3. Results  

The demographic and clinical characteristics of the study populations are summarized in Table 1 

and have been previously reported [32]. The patient population (n=138) included 85 relapsing 

remitting (RR-MS) and 46 secondary-progressive and 7 primary-progressive MS, categorized as 

progressive (P-MS) group for the purpose of the analyses.  

 3.1 Adhesion molecules levels in plasma 

The adhesion molecules levels in plasma of MS and HI groups are summarized in Figure 1A. 

The levels of sNCAM and sVCAM-1 differed among MS and HI (p=0.033 for both proteins, 

Kruskal-Wallis test). Higher levels in P-MS compared to HI were detected for sNCAM 

(median=302.6, IQR=276.8-349.3 ng/mL vs. 272.8, IQR=230.2-331.8 ng/mL; p=0.050) and for 

sVCAM-1 (median=1039, IQR=881.5-1249 ng/mL vs. median=855.3, IQR=782.6-1066 ng/mL; 

p=0.028) by Dunn’s multiple comparison test. No significant differences in sICAM-1 plasma levels 

were observed between the study groups (Figure 1A). 

The association among the adhesion molecules levels was explored in the MS and HI groups 

(Table 2). In the MS and HI groups, sVCAM-1 levels were significantly and positively associated 

with sNCAM levels (r =0.26, p=0.002 in MS and r =0.49, p=0.001 in HI). Additionally in MS, 

trend for positive association between sICAM-1 and sVCAM-1 (r =0.20, p=0.021) was observed. 

3.2 Association of clinical and MRI features with adhesion molecules levels 

Soluble adhesion molecule levels were not found to be associated with EDSS and disease duration. 
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Significant differences for 5 out of 7 MRI parameters were observed between RR-MS and 

P-MS groups, and in particular for NBV (P=0.001), DGM volume (P=0.007) and thalamus volume 

(P=0.008). As expected, all brain MRI measures were significantly different between total MS and 

HI (Table 3).  

We investigated whether adhesion molecule levels could be associated with MRI measures in MS 

patients by regression analyses adjusting for age, gender and type of DMTs. None of the adhesion 

molecules investigated was associated with the MRI measures either in the whole MS- and  HI. 

populations (Supplementary Table 2 and 3 respectively) or in the  P-MS group (data not shown).  

3.3 Adhesion molecules levels in patients grouped by disease-modifying treatments  

As the plasma levels of adhesion molecules can be influenced by DMTs for level analysis (Figure 

1B), those were categorized into four groups: IFN-beta, GA, Other and None. Since very few 

patients (Table 1) had been treated with natalizumab, they were not included in the analysis. 

The levels of sVCAM-1 differed (p<0.001, Kruskal-Wallis test) among the DMT groups and HI 

sVCAM-1 levels were higher in MS patients treated with IFN-b (median=1098, IQR=895.2-1311 

ng/mL) compared to Other DMTs (median=802.4, IQR=619.6-1148 ng/mL; p=0.016) and to HI 

(median=855.3, IQR=782.6-1066 ng/mL, p=0.011). Additionally, sVCAM-1 levels were higher in 

MS with None treatment (median=1149 ng/mL, IQR=975.2-1314) compared to HI (median 855.3, 

IQR=782.6-1066 ng/mL; p=0.003) and to Other treatment (median=802.4, IQR=619.6-1148 ng/mL; 

p=0.004). Neither sNCAM or sICAM1 levels  showed  significant differences among patients 

receiving different DMTs. 

4. Discussion 

Adhesion molecules are suggested to take part in the different processes that lead to the 

development of lesions and neurodegeneration in MS. Based on the functional importance in MS 

pathogenesis, we investigated the levels of sNCAM, and in comparison, those of sICAM-1 and 

sVCAM-1, in a large cohort of subjects, in which multiple clinical and MRI measures of disease 
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severity were assessed. Levels were evaluated in plasma by a multiplex assay, which favors 

detection of associations by decreasing experimental variations.  

Highly significant correlations between plasma levels of sNCAM and sVCAM-1 were 

detected both in patients and HI. The noticeable values of the correlation coefficients for these 

molecules, which are produced by different genes and might be expressed by different cells, add 

further interest to this observation. This relation, that we report here for the first time, could reflect a 

coordinated regulation of NCAM and VCAM-1 expression and/or shedding, present in healthy and 

disease conditions. The correlation coefficient, lower in MS patients than in HI, suggests that the 

biological pathways linking these adhesion molecules are altered in MS by still undefined 

molecular components, which deserves further investigation. Differently, the correlation between 

sICAM-1 and sVCAM-1 was observed only in MS patients, which might be explained by the role 

of their membrane forms, involved in the coordinated  multi-step leukocytes adhesion process in 

disease [8].  

 We detected higher plasma levels of sNCAM in P-MS patients compared to HI, a novel 

observation in the MS literature, in which data for the soluble form of NCAM in plasma are scanty. 

Interestingly, increased levels of sNCAM were recently detected in sera of patients with various 

types of peripheral neuropathies [33] and peripheral neuropathy has been reported in MS without 

being associated to EDSS [34-36]. The hypothesis that increased levels of sNCAM in progressive 

MS could be associated to the presence of peripheral neuropathy deserves further investigation. On 

the other hand in CSF, sNCAM levels were found either reduced in MS [37] as well as in SPMS as 

compared to RRMS [38], or increased in MS patients in the acute phase of the disease and 

undergoing steroid treatment [16]. However, one of the limitations of our study is that we did not 

investigate  sNCAM levels in CSF, which makes it difficult to speculate further.    

 Although sICAM-1 and sVCAM-1 have been extensively investigated in plasma [7, 10, 11, 

39, 40], comparison with the previous and often conflicting observations is difficult because of 

different recruitment criteria of patients, and differently grouped clinical MS phenotypes. Our cross-
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sectional study did not include patients with signs of relapse provided by Gd-contrast, and thus  the 

relapse-associated disease activity was not explored, a potential limitation of  the present 

investigation. 

In this study we explored brain atrophy, which is emerging as a meaningful indicator of 

neurodegeneration and clinical disease progression in MS patients and is at least partially 

independent of the effects of conventional MRI lesions [23, 41]. Through extensive analysis of 

lesion volumes as MRI indicators of brain inflammation and with global and regional atrophy as 

neurodegenerative mark, we did not find any correlation with adhesion molecules plasma levels. In 

addition, association of levels with disability and disease duration did not emerge. As a matter of 

fact, a longitudinal study failed to find a correlation between mean levels of sICAM-1 and sVCAM-

1 with MRI data of disease progression [21]. On the other hand, patients with diagnosis of 

progressive MS in the present study presented higher levels of sVCAM and sNCAM and significant 

differences in MRI measures of disease severity as compared to HI.  

We provide the first evaluation for sNCAM in relation to several DMTs, which did not 

appear to influence plasma levels of this adhesion molecule. This would support relation of the 

higher sNCAM concentration with MS progressive phenotype.  

Although we found a noticeable correlation between sNCAM and sVCAM-1 plasma levels, only for 

sVCAM-1 we observed level differences in patients grouped by DMTs and higher levels in patients 

without treatment than in HI. Moreover, patients treated by drugs other than IFN-b and GA 

displayed the lowest levels. The study design and the heterogeneity of DMTs in this group do not 

enable to relate this observation to a specific treatment, which requires further investigation.  

5. Conclusions 

In a large cohort of patients characterized for multiple MRI measures of disease severity, sNCAM 

levels in plasma were evaluated for the first time, and compared with  those of sICAM-1 and 

sVCAM-1. Plasma levels of sNCAM, sICAM-1 and sVCAM-1 did not correlate with clinical and 

MRI measures of disease severity. 
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Whereas correlation between plasma levels of sNCAM and sVCAM-1 were detectable both in 

patients and HI, that between sICAM-1 and sVCAM-1 was observed only in MS patients. In 

progressive MS, as compared with HI, increased levels of sNCAM and sVCAM-1 were detected. 

This association was confirmed even after evaluation of adhesion molecules levels in patients 

grouped by DMTs, which appear to modulate  only sVCAM-1 plasma levels.  
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Table 1. Demographic and clinical characteristics of the cohorts. 

 

All MS 

n=138 

RR-MS 

n=85 

P-MS 

n=53 

HI 

n=42 

Female, n (%) 100 (72.5) 60 (70.6) 40 (75.5) 31 (73.8) 

Age, years 54.3±10.8 50.1±10.7 60.9±7.2 51.0±14.3 

Age onset, years 32.9±9.5 32.6±9.1 33.3±10.1 - 

Disease duration, years 21.1±10.6 17.0±8.8 27.6±10.0 - 

EDSS, median (IQR) 3.5 (2-6) 2 (1.5-3.5) 6 (4-6.5) - 

Annual relapse rate 0.2 (0.4) 0.2 (0.4) 0.1 (0.3) - 

DMT type,  number of patients (%) 

Interferon-beta 

Glatiramer acetate 

Natalizumab 

Other DMT* 

No DMT 

 

 

45 (32.6) 

 

42 (30.4) 

 

5 (3.6) 

 

19 (13.8) 

 

27 (19.6) 

 

 

30 (35.3) 

 

23 (27.1) 

 

4 (4.7) 

 

13 (15.3) 

 

15 (17.6) 

 

 

15 (28.3) 

 

19 (35.9) 

 

1 (1.9) 

 

6 (11.3) 

 

12 (22.6) 

- 

 

MS: Multiple Sclerosis; RR-MS: Relapsing Remitting Multiple Sclerosis; P-MS: Progressive 

Multiple Sclerosis; HI: Healthy Individuals; EDSS: Expanded Disability Status Scale; IQR: 

interquartile range; SD: standard deviation; n: number; DMT: disease-modifying treatment. 
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* Other DMTs include: 5 fingolimod, 3 teriflunomide, 5 dimethyl-fumarate, 4 intravenous 

immunoglobulin, 1 mitoxantrone and 1 methotrexate treated patients. All continuous variables (age 

and disease duration) are reported as mean ± standard deviation. For the ordinal EDSS, the median 

(interquartile range) is given. 

Descriptive analysis between MS and HI  were performed using Fisher’s exact test and Student t-

test. 
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Table 2. Correlations among adhesion molecules levels in Multiple Sclerosis patients and healthy 

individuals.   

 sNCAM sICAM-1 

Multiple Sclerosis patients 

sICAM-1 

Rho:  

P value: 

-0.08 

0.382 

 

sVCAM-1 

Rho:  

P value: 

0.26 

0.002 

0.20 

0.021 

Healthy individuals 

sICAM-1 

Rho:  

P value: 

0.21 

0.182 

 

sVCAM-1 

Rho:  

P value: 

0.49 

0.001 

0.25 

0.107 

 

sNCAM: soluble neural cell adhesion molecule; sICAM-1: soluble intercellular adhesion molecule; 

sVCAM-1: soluble vascular cell adhesion molecule 1. 

Spearman correlation coefficient and p-values are reported. 
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Table 3. MRI characteristics of the cohorts. 

 All MS RR-MS P-MS HI 

MS vs. 

HI 

p-value 

RR-MS vs. P-

MS 

p-value 

T2-LV, ml 15.8 (19.0) 11.8 (15.9) 22.2 (21.9) 0.2 (0.6) < 0.001 0.016 

T1-LV, ml 2.9 (6.2) 2.0 (4.6) 4.4 (8.1) 0.0 (0.0) 0.005 0.075 

NBV, ml 

1438 

(92.1) 

1469 

(82.4) 

1387 

(85.2) 

1528 

(97.9) 

< 0.001 0.001 

NCV, ml 591 (48.6) 606 (44.8) 567 (44.8) 630 (53.3) < 0.001 0.028 

LVV, ml 55.1 (27.0) 50.7 (25.2) 62.3 (28.5) 32.2 (14.5) < 0.001 0.229 

DGM volume, ml 53.6 (7.1) 55.5 (6.5) 50.4 (6.9) 60.5 (46.4) < 0.001 0.007 

Thalamus volume, 

ml 

17.7 (2.5) 18.4 (2.3) 16.5 (2.4) 20.3 (1.9) < 0.001 0.008 

 

MS: Multiple Sclerosis; RR-MS: Relapsing Remitting Multiple Sclerosis; P-MS: Progressive 

Multiple Sclerosis; HI: Healthy Individuals; LV: lesion volume; NBV: normalized brain volume; 

NCV: normalized cortical volume; LVV: lateral ventricular volume; DGM: deep grey matter. 

Lesion and brain volumes are expressed in milliliters and reported as mean values (standard 

deviation).  

P-values derived by ANCOVA with age and gender as covariates, are reported.  
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FIGURE LEGENDS 

Figure 1. Adhesion molecules levels in MS patients and in healthy individuals (A) and in relation 

to MS disease-modifying treatment (B). 

The adjusted p-values from Dunn’s multiple comparison test are provided. The error bars indicate 

median and the interquartile range.  

HI: healthy individuals; RR-MS: relapsing-remitting multiple sclerosis; P-MS: progressive multiple 

sclerosis; sNCAM: soluble neural cell adhesion molecule; sICAM-1: soluble intercellular adhesion 

molecule 1; sVCAM-1: soluble vascular cell adhesion molecule 1; GA: Glatiramer acetate; IFN-b: 

interferon-beta; None: no disease-modifying therapy; Other: other disease-modifying therapy. 

 

 

Figure 1. 
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Highlights 

 Plasma levels of sNCAM and sVCAM-1 were increased in P-MS compared to healthy 

individuals.  

 Highly significant correlations among plasma levels of sNCAM and sVCAM-1 were 

detected in MS patients and in healthy individuals. 

 Correlations of  sNCAM, sVCAM-1 and sICAM-1 plasma levels with global and regional 

brain atrophy were not detected.  

 Differences in sVCAM plasma levels were found among patients receiving different 

disease-modifying treatments. 
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