Guppies (Poecilia reticulata) discriminate among two quantities of food items

 but prioritise item size over total amountTyrone Lucon-Xiccato ${ }^{1 *}$, Maria Elena Miletto Petrazzini ${ }^{1}$, Christian Agrillo ${ }^{1,2}$, Angelo Bisazza ${ }^{1,2}$
${ }^{1}$ Dipartimento di Psicologia Generale, Università di Padova, Italia
${ }^{2}$ Centro di Neuroscienze Cognitive, Università di Padova, Italia
* Correspondence: T. Lucon-Xiccato, Dipartimento di Psicologia Generale, Via Venezia 8, 35131, Padova, Italy. Phone: +39 0498276635; fax: +39 0498276600; e-mail: tyrone.luconxiccato@studenti.unipd.it

Abstract

When two food patches are available, individuals of many animal species feed on the larger one, a preference frequently used to study numerical abilities in mammals and birds. We employed this method to investigate, for the first time, food quantity discrimination and its underlying mechanisms in a fish, the guppy (Poecilia reticulata). Guppies facing two sets of similar-sized food items successfully discriminated numerosity up to a 0.5 ratio (1 versus 4 and 2 versus 4 items, but not 2 versus 3 or 3 versus 4 food items). A further experiment suggested that guppies attended to cumulative surface area of food items rather than number to select the larger quantity. Moreover, in a 2 versus 4 discrimination where the cumulative surface area occupied by food was matched by using larger items in the set with fewer items, guppies unexpectedly showed a preference for the smaller numerosity. Since this result might be explained by assuming that guppies selected the larger food item, we performed additional experiments to test this hypothesis. Guppies were observed to be very accurate in estimating item size, being able to discriminate between two food items that differed by a ratio of 0.75 in surface area. The attraction to the larger food item was so strong that guppies preferred the set containing the largest item even when the other set contained a double quantity of food. Since guppies in the wild forage in groups and compete for food, we hypothesised that in this species natural selection has favoured cognitive mechanisms allowing a rapid and efficient choice of the most profitable food item within the patch.

Keywords: fish cognition; food choice; guppy; numerical cognition; Poecilia reticulata; quantity discrimination.

INTRODUCTION

Many animals are capable of estimating and comparing quantities, an ability that drives decision making in several contexts and confers important fitness advantages. For instance, female freshwater gobies (Padogobius bonelli) choose male nests with greater surface available for egg deposition (Bisazza, Marconato, \& Marin, 1989), and female swordtails (Xiphophorus helleri) prefer males with the longest ornament (Basolo, 1990). Salamanders (Plethodon cinereus) and spiders (Portia africana) use quantification mechanisms to increase predation success (Nelson \& Jackson, 2012; Uller, Jaeger, Guidry, \& Martin, 2003). Because of the broad relevance in decisional processes, researchers have made a great effort to understand the ability to discriminate quantity in animals.

The quantity to be assessed is sometimes continuous (e.g., the area of the nest), but, in other situations, it is discrete and animals are required to assess the number of items contained in a set (e.g., the number of preys). However, even two sets with a different numerosity usually differ by other continuous quantities (often called perceptual variables) that co-vary with number, such as the cumulative surface area or the total volume occupied by items. An animal could therefore infer the number of items in a set using number, continuous quantities or both cues. For example, in the wood duck (Aix sponsa), parasitic females lay more eggs in host nests with small clutches (Odell \& Eadie, 2010), but it is not necessary to assume that they can count egg number, as more eggs, for example, occupy a larger volume in the nest. Similarly, striped field mice (Apodemus agrarius) prefer to prey on small groups of ants because as high-density ants may bite them (Panteleeva, Reznikova, \& Vygonyailova, 2013). This task could be accomplished by counting ants as well as by estimating the cumulative surface area and/or the amount of movement. To fully comprehend decisional mechanisms, it is important to understand the exact ways an animal acquires and uses
information (e.g., if that species prefers to use numerical or perceptual cues to infer the number of items in a set).

For these reasons, the study of quantity discrimination in animals often requires researchers to devise complex experiments in laboratory settings with controlled continuous or numerical information. For example, chimpanzees (Pan troglodytes) showed remarkable accuracy in selecting the larger of two sets of discrete items presented in two dishes in front of them (Hanus \& Call, 2007). Beran and Beran (2004) gave to chimpanzees the choice of two opaque containers in which pieces of food have been inserted item-by-item to prevent them to glimpse the whole quantity. Chimpanzees could still tell the difference, suggesting that they enumerate each item sequentially presented. A typical behaviour adopted by prey fish to dilute predation risk consists in joining the largest available shoal (Agrillo, Piffer, Bisazza, \& Butterworth, 2012; Buckingham, Wong, \& Rosenthal, 2007). A number of different cues can be used to estimate shoal size. Experimental manipulation of these cues has shown that fish use density, cumulative area, and amount of activity to estimate how numerous shoal mates are in a group (Agrillo, Dadda, Serena, \& Bisazza, 2008; Gomez-Laplaza \& Gerlai, 2013a; Gomez-Laplaza \& Gerlai, 2013b; Pritchard, Lawrence, Butlin, \& Krause, 2001), but that they can also base their choice solely on numerical information when they are prevented to use other cues (Bisazza, Piffer, Serena, \& Agrillo, 2010; Dadda, Piffer, Agrillo, \& Bisazza, 2009).

The ability to estimate quantities plays a major role in foraging activities. Although in a few cases small groups of prey are more profitable than large ones (Panteleeva et al., 2013), generally foragers would be expected to benefit from recognising and selecting larger food sources. Depending on the context, this may imply choosing the larger food item (Beran, Evans, \& Harris, 2008), the patch with more food items-i.e. the larger number of items (Garland, Low, \& Burns, 2012) - or the patch with the overall larger amount of food irrespective to the number of items (Bogale, Aoyama, \& Sugita, 2014).

Determining that an animal expresses a preference for the larger food quantity can be especially useful evidence of the quantitative abilities of the species. Most of the studies have focused on the ability to compare discrete quantity. Parrots (Psittacus erithacus) and jungle crows (Corvus macrorhynchos) discriminate between sets of food items when the ratio between the smaller and larger group is equal to 0.75 (Al Aïn, Giret, Grand, Kreutzer, \& Bovet, 2009; Bogale et al., 2014), while apes can discriminate even a 0.90 ratio (Hanus \& Call, 2007). Wolves (Canis lupus) could enumerate 3 versus 4 food items sequentially inserted in two containers, suggesting they have proto-mathematical skills (Utrata, Virányi, \& Range, 2012). Salamanders (genus Plethodon) and frogs (Bombina orientalis) chose the larger amount of food when presented 8 versus 16 and 4 versus 8 prey, respectively (Krusche, Uller, \& Dicke, 2010; Stancher, Rugani, Regolin, \& Vallortigara, 2015).

Some studies have tried to disentangle the role of numerical and continuous information in food quantity discrimination. A common procedure is to match the amount of food in the two sets by placing individually larger items in the set with fewer items. Mixed results have been obtained with this method. Some species select the set with more food items, indicating that their choice is mainly driven by numerical information (Hauser, Carey, \& Hauser, 2000; Rodríguez, Briceño, Briceño-Aguilar, \& Höbel, 2015; Uller \& Lewis, 2009). Others appear to choose randomly, suggesting their choice is primarily driven by continuous information, such as the cumulative surface area occupied by food in the sets (Bogale et al., 2014; Feigenson, Carey, \& Spelke, 2002; Krusche et al., 2010). Finally, in some cases, animals appear to prefer the set with fewer food items, probably because their choice is driven by a preference for the larger single-food item present in it (Boysen, Berntson, \& Mukobi, 2001). These differences could be due to differences in foraging ecology of the species, but, to date, no hypothesis has been formulated to explain this variation in result.

Studies done with other methodologies indicated that the ability of teleost fish to discriminate quantities is often comparable to that determined for birds and mammals. Guppies (Poecilia reticulata), for example, when tested in spontaneous choice for the larger group of conspecifics, can discriminate 3 versus 4 fish (Agrillo et al., 2012) and with training some individuals can detect a 5 versus 6 item discrimination using numerical information only (Bisazza, Agrillo, \& Lucon-Xiccato, 2014). Surprisingly, the food choice task, probably the most used paradigm for investigation of quantitative abilities in vertebrates, has never been studied in fish, a circumstance that prevents a proper comparison with other species.

In this study, we observed guppies in four experiments of spontaneous food choice aimed to investigate for the first time quantity estimation abilities during foraging and its mechanisms in a fish. In experiment 1, we studied whether guppies discriminate between sets of discrete food items with homogeneous size, reproducing the paradigm most used in other vertebrates; in experiment 2 , we assessed the relative importance of number and cumulative surface area in food quantity discrimination. Since results of these two experiments are better explained by assuming that guppies pay special attention to the size of individual food items, we hypothesised that guppies prioritise item size over total amount in food choice and we performed two further experiments. In experiment 3 , we investigated the ability to discriminate between two food items differing in size and in experiment 4, we tested if the preference of guppies for the larger food item was stronger than their preference for the larger food set.

METHODS

Subjects

The experimental subjects were adult male and female guppies of an outbreed domestic strain reared in our laboratory at Dipartimento di Psicologia Generale, Università di Padova. This laboratory population originated from 200 individuals bought from a local pet shop in 2010. The maintenance tanks were 150-1 glass aquaria with natural gravel bottom and abundant natural and artificial plants. Each tank housed approximately twenty individuals (sex ratio $1: 1$) that were free to interact and breed. Water temperature was constant at $26 \pm 1{ }^{\circ} \mathrm{C}$, and $15-\mathrm{W}$ fluorescent lamps illuminated the aquaria from 7:30 to 19:30. The fish were fed three times per day with commercial food flakes (Fioccomix, Super Hi Group, Ovada, Italy) and Artemia salina nauplii. Each subject was randomly selected from the maintenance tanks and observed in only one experiment.

After the end of the experiment, each subject was anesthetised in a MS-222 bath (SigmaAldrich, St. Louis, Missouri, US) and photographed in lateral view. The standard length (SL) of the subjects was estimated from the digital images by using Image J Software (available at http://rsbweb.nih.gov/ij/download.html).

Experimental apparatus and stimuli

Each experimental apparatus was a $20 \times 50 \mathrm{~cm}$ glass tank filled with gravel and 25 cm of water. The long walls of the tank were covered with green plastic. The apparatus was shaped like an hourglass (Fig. 1a) by mean of two trapezoidal lateral compartments ($10 \times 5 \times 25 \mathrm{~cm}$) made of transparent plastic placed in the middle of the tank. These lateral compartments housed two aquatic plants each to provide a natural and enriched environment for the subject. The guppy is a social species and it usually forms groups in the wild; two immature companions were housed in each lateral compartment to avoid social isolation of the subject. Two fluorescent lamps were placed above the main compartments to illuminate the apparatus. Experiments were conducted in a dark room. We used six identical apparatuses at the same time.

The stimuli were small pieces of commercial food flakes with a homogeneous brown colour (GVG mix, Sera GmbH, Heinsberg, Germany) cut by using a chirurgical scalpel. The stimuli were then pasted on $3 \times 3 \mathrm{~cm}$ white plastic cards by adding a drop of water. The size, number, and arrangements of the stimuli on each card varied according to the schedule of each experiment (Fig. 2). To present the stimuli to the subjects, each card was fixed to the terminal part of a transparent panel ($3.5 \times 15 \mathrm{~cm}$). The experimenter inserted the panels into the tank. Each panel was provided with a support that blocked it on the tank wall so that it could be rapidly placed in the correct position. The top end of the cards was 3 cm under water surface.

Procedure

We performed four experiments with the same apparatuses and basic procedure. Each subject underwent an acclimation phase, followed by an experimental phase consisting of a series of independent trials. In each trial, we presented the subject with two cards showing different quantities of food.

Acclimation phase

The subject was introduced into the apparatus 7 days before the start of the experiment, with the four immature companions that could freely swim in the apparatus. A preliminary experiment showed that subjects apparently familiarise faster to the apparatus when they could interact with other fish. For 3 days, the subject was fed 3 times a day by delivering food from alternate short walls of the tank. On the $4^{\text {th }}$ day, the subject was fed according to the same schedule, but, a few seconds before food delivering, a single card without any stimulus was inserted into the tank near one of the short wall. A Pasteur pipette was used to deliver food close to the card to allow the subject to learn the association between the card and the food. To further habituate subject to the
experiment, in the following 2 days it was fed 6 times per day (3 in morning and 3 in the afternoon) by inserting in the tank a single card with some pieces of food pasted onto it. Therefore, the subject had to feed on the food pasted onto the card. Most of the subjects learned this feeding routine very fast and rapidly reached the card once inserted into the water; some others did not learn, and they did not approach the card, or they approached it occasionally after longer delay. These subjects were not admitted to the experimental phase and were replaced with new subjects of the same sex. We discarded 3 males and 2 females in experiment 1,2 females in experiment 2,1 male in experiment 3 , and 1 male in experiment 4 . In experiment 4 , an additional subject (a male) ceased to feed on the cards after the $4^{\text {th }}$ day of the experimental phase and its performance was considered only up to this point.

To avoid how companions might influence the choice of the subject, on the $6^{\text {th }}$ day of the acclimation phase, they were removed from the main compartment of the tank and inserted into the two lateral compartments. The subject could still see them when in middle portion of the apparatus, but not while approaching the stimuli. The last day of the acclimation phase, the subject was not fed.

Experimental phase

In each experimental trial, two cards that differed in number and/or size of food items (see next paragraph) were inserted simultaneously into the corners of one of the short walls of the tank (Fig. 1b). Before inserting the cards, we waited until the subject was in the opposite half of the tank. This way, fish could see both stimuli before choosing. After the subject chose one of the cards, the other was gently removed from the water. The chosen card was left into the water until the subject consumed all of the food on it, which normally took around 20-30 seconds. The following trial began after 5 minutes. Eight trials were administered each day; 4 in the morning (9:00-10:00) and 4 in the afternoon (15:00-16:00). A preliminary experiment with this schedule showed guppies'
performance was not affected by the order of the trial within each day. The side of the tank in which we inserted the cards and the relative position (right or left) of the card with the larger amount of food alternated according to a pseudo-random pre-set scheme, as did the presentation order of the different types of discriminations. The spatial configuration of the food items was varied according to a fixed sequence to prevent fish from using pattern recognition across trials.

Description of the single experiments

Experiment 1

This experiment investigated the ability of guppies to discriminate between discrete food quantities by presenting two sets with different numbers of food items. We administered four discriminations: 1 versus 4 , 2 versus 4 , 2 versus 3 , and 3 versus 4 food items (numerical ratios: $0.25 ; 0.50 ; 0.67$, and 0.75 , respectively) (Fig. 2). All food items were the same size ($1.5 \times 1.5 \mathrm{~mm}$). The experimental phase lasted 10 days, for a total of 80 trials (20 for each discrimination). Experiments were performed 5 days per week, from Monday to Friday. We observed 20 subjects, 10 males and 10 females.

Experiment 2

The food items used in experiment 1 were the same size; therefore, the card with more food items had also the larger amount of food. This experiment did not provide information about whether guppies selected the larger quantity by enumerating food items or using continuous variables, such as cumulative surface area. As in other studies of this type (Bogale et al., 2014; Piffer, Miletto Petrazzini, \& Agrillo, 2013), in experiment 2, we studies the relative importance of these two types of information by presenting two novel discriminations in which either numerosity or total surface were made irrelevant (Fig. 2). In the first discrimination we presented the choice between 3 versus 3 food items, but one card had food items, on average, twice as large as the other.

In the second discrimination, we presented a choice between 2 versus 4 food items with the numerically smaller group having food items, on average, twice the size, making food surface areas equal. The size of the food items used ranged from $1.5 \times 1.5 \mathrm{~mm}$ to $3 \times 3 \mathrm{~mm}$. The experimental phase lasted 5 days (a total of 40 trials, 20 for each discrimination). We observed 10 subjects, 5 males and 5 females.

Experiment 3

We proposed that the results of experiment 2 are better explained by a hypothesis that guppies pay special attention to the size of individual food items within the set. In experiment 3, we investigated the ability of guppies to discriminate between two food items of different size, using an experimental design similar to that of experiment 1 . Subjects were presented with pairs of food items (one on each card) with four size ratios: $0.25,0.50,0.67$, and 0.75 , the same ratios used in experiment 1 (Fig. 2). The size of the food items used was $1.5 \times 1.5 \mathrm{~mm}, 2.1 \times 2.1 \mathrm{~mm}, 2.6 \times 2.6$ mm , and $3 \times 3 \mathrm{~mm}$. The experimental phase lasted 10 days, for a total of 80 trials (20 for each discrimination). Experiments were performed 5 days per week, from Monday to Friday. We observed 10 subjects, 5 males and 5 females.

Experiment 4

Experiment 2 and 3 indicated that the size of the single food item has a strong influence on guppies' food choice. In this experiment, we contrasted the total amount of food with the size of the largest food item to determine if this preference could lead to suboptimal decisions (such as choosing the card with less food overall). In each trial, all the food items were the same size, except one item twice as large as the other. In half of the trials, the small food items were $1.5 \times 1.5 \mathrm{~mm}$ and the large one $2.1 \times 2.1 \mathrm{~mm}$; in the remaining trials, the small food items were $2.1 \times 2.1 \mathrm{~mm}$ and the large one $3 \times 3 \mathrm{~mm}$. We presented the subjects with two discriminations in which the largest food
item was always on the card with the smaller food quantity (Fig. 2). The first discrimination presented 2 versus 6 food items (twice the food in the card without the largest item). In the second discrimination we presented 3 versus 6 food items (1.5 times the food in the card without the largest item). To keep the subject from learning that the largest food item was always associated with the smaller food quantity, 2 out of 8 trials presented a reversed condition (with the larger food items in the card with the larger food quantity). These trials were not included in the analysis. The experimental phase lasted 6 days for a total of 36 trials (18 for each discrimination discounting the 12 with the reversed condition). We used 10 subjects, 5 males and 5 females.

Statistical analysis

Statistical analysis was performed in R (R Core Team, version 3.0.2). All statistical tests were two-tailed and significance threshold set at $\mathrm{p}=0.05$, unless stated otherwise. To evaluate the performance of the subjects, we computed the proportion of choice of the card with the larger food quantity. This variable was reported in text as percentages, and was always arcsine square root transformed before analysis (Sokal \& Rohlf, 1995). We initially tested for a sex difference in the size of the subjects (SL) using independent sample t-test. As females were generally larger than males, we tested for sex and SL effect on the food choice performance independently: the effect of the SL was assessed with Pearson correlation test, whereas the effect of sex was examined with the linear mixed model (LMM). In experiment 1 , the SL was log-transformed to achieve normality assumptions. To assess whether the proportion of choice of the larger food quantity was different from the one expected by chance (50\%), we used one sample t-test. Pearson correlation test was used to assess the correlation between the performances of the subjects in the discriminations. A LMM ('lme' function from the 'nlme' R package) fitted with the identifier name of the subject (subject ID) as random factor was used to study the possible effect of sex and discrimination in each
experiment. Trend analysis in experiments 1 and 3 was performed according to Logan (2011). To compare the discrimination abilities of guppies in experiments 1 and 3 , we fitted the pooled data into a LMM model with experiment (1 and 3), sex, and quantity ratio $(0.25,0.50,0.67$, and 0.75) as fixed factors, and subject ID as random factor. The text gives means \pm standard deviations. Finally, we used the Bayesian information criteria of the LMM models with and without the effect of sex to approximate a Bayes factor (Schwarz, 1978). The Bayes factor estimates relative strength of evidence for the two competing models even in the case of non-significant results and small sample size (Dienes, 2014).

Ethical note

Our experiments consisted in observations of fish behaviour without manipulation of the subjects. Fish spontaneously participated in the experiments, otherwise they were substituted. Experimental tanks were provided with natural plants, bottom gravel and social companions to minimise differences from maintenance tanks. None of the subjects expressed distress during observation. At the end of the experiment, subjects were released in maintenance tanks identical to the ones previously described, and kept only for breeding purpose. Experiments comply with the law of the country (Italy) in which they were performed (Decreto legislativo 4 marzo 2014, n. 26). The experimental procedures have been approved by Università di Padova Ethical Committee (protocols n. 09/2012 and 108660).

RESULTS

Experiment 1

Subjects measured $24 \pm 3 \mathrm{~mm}$. Female subjects were significantly larger than male (females SL: $26 \pm 3 \mathrm{~mm}$; males SL: $22 \pm 1 \mathrm{~mm}$; independent sample t-test: $t_{18}=3.879, P=0.001$). There was no significant correlation between SL of subjects and proportion of choice of the card with more food items (Pearson correlation: $r_{18}=-0.021, P=0.983$), suggesting that the body size did not affect the results of the experiment.

Subjects chose the card with more food items in $55.25 \pm 7.56 \%$ of the trials, a preference significantly greater than chance (one sample t-test: $t_{19}=3.109, P=0.006$). However, separate analysis for each discrimination found the ratio between quantities important. Subjects significantly discriminated 1 versus $4\left(63.25 \pm 14.89 \%, t_{19}=3.907, P<0.001\right)$ and 2 versus 4 food items ($57.5 \pm$ $\left.8.51 \%, t_{19}=3.916, P<0.001\right)$, but not 2 versus $3\left(53.00 \pm 11.52 \%, t_{19}=1.174, P=0.255\right)$ or 3 versus 4 food items ($47.25 \pm 11.18 \%, t_{19}=1.104, P=0.283$) (Fig. 3). The proportion of choice of the card with more food items significantly correlated between the 1 versus 4 and 2 versus 3 discrimination (Pearson correlation: $r_{18}=0.526, P=0.017$) and between the 2 versus 4 and 3 versus 4 discrimination ($r_{18}=0.472, P=0.036$). There was no significant correlation between the remaining discriminations (all P values >0.300).

The LMM on the proportion of choice of the card with more food items revealed a significant effect of discrimination $\left(F_{3,54}=8.721, P<0.001\right)$. A polynomial trend analysis suggested that the proportion of choice of more food items decreased linearly with the increase of the ratio of the discrimination $(P<0.001)$ (Fig. 3). No significant effects of sex $\left(F_{1,18}=1.613, P=\right.$ $0.220)$ nor significant sex by discrimination interaction $\left(F_{3,54}=1.021, P=0.391\right)$ were found in the model. The approximate Bayes factor indicated that the LMM model without the effect of sex was 42.612 times more likely to explain the performance of the subjects than the model with the effect of sex.

Subjects measured $22 \pm 2 \mathrm{~mm}$. Females were significantly larger than males (females SL: 23 $\pm 1 \mathrm{~mm}$; males SL: $21 \pm 1 \mathrm{~mm}$; independent sample t-test: $t_{8}=3.795, P=0.005$). There was no significant correlation between SL and proportion of choice of the card with the larger food area in the 3 versus 3 discrimination (Pearson correlation: $r_{8}=-0.001, P=0.997$) or of the card with more food items in the 2 versus 4 discrimination ($r_{8}=0.113, P=0.756$), suggesting that body size did not affect the results of the experiment.

In the 3 versus 3 discrimination with different food area, subjects chose the larger area in $68.00 \pm 14.57 \%$ of the trials, a preference that was significantly greater than chance (one sample t test: $t_{9}=3.791, P=0.004$) (Fig. 4). In the 2 versus 4 discrimination with equal food area, subjects chose the more food items in $33.00 \pm 11.60 \%$ of the trials, a preference significantly smaller than chance ($t_{9}=4.329, P=0.002$) (Fig. 4). There was no significant correlation between the proportion of choice of the larger food area in the 3 versus 3 discrimination and the proportion of choice of the more food items in the 2 versus 4 discrimination (Pearson correlation: $r_{8}=-0.428, P=0.217$).

The LMM on the proportion of choice of the larger food area/more food items revealed a significant effect of discrimination ($F_{1,8}=29.704, P<0.001$). No significant effects of sex ($F_{1,8}<$ $0.001, P=0.995)$ nor sex by discrimination interaction $\left(F_{1,8}=0.610, P=0.457\right)$ were found. The approximate Bayes factor indicated that the LMM model without the effect of sex was 22.029 times more likely to explain the performance of the subjects than the model with that effect.

Experiment 3

Subjects measured $23 \pm 2 \mathrm{~mm}$. Females were significantly larger than males (females SL: 25 $\pm 2 \mathrm{~mm}$; males SL: $21 \pm 1 \mathrm{~mm}$; independent sample t-test: $t_{8}=3.860, P=0.005$). There was no
significant correlation between SL and proportion of choice of the card with the larger food item (Pearson correlation: $r_{8}=-0.107, P=0.768$), suggesting that body size did not affect the results of the experiment.

Subjects chose the card with the larger food item in $74.38 \pm 5.72 \%$ of the trials, a preference significantly greater than chance (one sample t-test: $t_{9}=11.316, P<0.001$). A separate analysis for each discrimination revealed the proportion of choice of the larger food item was significant in all quantity ratios (0.25 ratio: $88.50 \pm 5.80 \%, t_{9}=15.306, P<0.001 ; 0.50$ ratio: $79.00 \pm 4.59 \%, t_{9}=$ 16.157, $P<0.001 ; 0.67$ ratio: $65.00 \pm 11.3 \%, t_{9}=3.851, P=0.004 ; 0.75$ ratio: $65.00 \pm 12.69 \%, t_{9}=$ $3.660, P=0.005$) (Fig. 3). The proportion of choice of the larger food item was significantly correlated only between the 0.50 and 0.67 discrimination (Pearson correlation: $r_{8}=0.705, P=$ 0.023). There was no significant correlation between all the remaining discriminations (all P values >0.100).

The LMM on the proportion of choice of the larger food item revealed a significant effect of discrimination $\left(F_{3,24}=18.911, P<0.001\right)$. A polynomial trend analysis suggested that the proportion of choice of the larger food item decreased linearly with the increase of the ratio ($P<$ $0.001)$ (Fig. 3). No significant effect of sex $\left(F_{1,8}=0.011, P=0.920\right)$ or significant sex by discrimination interaction $\left(F_{3,24}=0.441, P=0.726\right)$ were found. The approximate Bayes factor indicated that the LMM model without the effect of sex was 48.565 times more likely to explain the performance of the subjects than the model with that effect.

Comparison of experiments 1 and 3

The LMM model that compares experiments 1 and 3 revealed a significant effect of experiment $\left(F_{1,26}=52.252, P<0.001\right)$ and ratio $\left(F_{3,78}=22.889, P<0.001\right)$, but also a significant experiment by ratio interaction $\left(F_{3,78}=3.368, P=0.023\right)$. We explored the nature of this interaction
by comparing each ratio between the two experiments using multiple t-tests with α-level corrected with Bonferroni method. In all the ratios, subjects achieved a performance significantly better in experiment 3 (all P values <0.0125). Therefore, it seems reasonable that guppies were more accurate in the comparison of the single item with the respect of multiple items. The effect of sex and the remaining interactions in the LMM model were not significant (sex: $F_{1,26}=1.248, P=$ 0.274 ; interactions: all P values >0.300). The approximate Bayes factor indicated that the LMM model without the effect of sex was 79.166 times more likely to explain the performance of the subjects than the model with the effect of sex.

Experiment 4

Subjects measured $23 \pm 3 \mathrm{~mm}$, and there was no significant difference between the two sexes (females SL: $25 \pm 1 \mathrm{~mm}$; males SL: $22 \pm 3 \mathrm{~mm}$; independent sample t-test: $t_{8}=1.966, P=$ 0.085). There was no significant correlation between SL of the subjects and preference for the set with the larger food item in either the 2 versus 6 discrimination (Pearson correlation: $r_{8}=-0.291, P$ $=0.414$) or the 3 versus 6 discrimination $\left(r_{8}=0.112, P=0.758\right)$, suggesting that body size did not affect the results of the experiment.

In the 2 versus 6 discrimination, subjects chose the set with the larger food item in $58.67 \pm$ 10.31% of the trials, a preference significantly greater than chance (one sample t-test: $t_{9}=2.621, P$ $=0.028$) (Fig. 4). In the 3 versus 6 discrimination, the preference for the larger food item ($64.78 \pm$ 8.99%) was also significantly greater than chance ($t_{9}=5.025, P<0.001$) (Fig. 4). Discrimination of 2 versus 6 and 3 versus 6 were not significantly correlated (Pearson correlation: $r_{8}=0.621, P=$ 0.055).

The LMM on the proportion of choice of the set with the larger food item revealed no significant effect of discrimination $\left(F_{1,8}=4.691, P=0.062\right)$, sex $\left(F_{1,8}=1.357, P=0.278\right)$, or
significant sex by discrimination interaction ($F_{1,8}=0.408, P=0.541$). The approximate Bayes factor indicated that the LMM model without the effect of sex was 13.107 times more likely to explain the performance of the subjects than the model with the effect of sex.

DISCUSSION

In experiment 1, guppies were administered four discriminations between discrete food quantities, from 1 versus 4 up to 3 versus 4 . Overall, subjects selected the larger food quantity, but their performance was affected by the numerical ratio. They had a significant preference only in the two easier discriminations (1 versus 4 and 2 versus 4 food items), but showed a near-chance performance in the remaining discriminations (2 versus 3 and 3 versus 4 food items). The ratio dependence of the accuracy aligns with previous literature in mammals (Ward \& Smuts, 2007) and birds (Al Aïn et al., 2009) in the same numerical ratios. To explain this phenomenon, several authors have hypothesised the existence of an approximate number system for discrimination in the whole numerical range whose accuracy is set by Weber's law (Cantlon \& Brannon, 2007). However, the performance of guppies in food choice appears to be lower than that found in studies of other species (chimpanzee: Beran, 2006; orangutan: Call, 2000; macaque: Hauser et al., 2000; New Zealand robin: Hunt, Low, \& Burns, 2008; salamander: Uller et al., 2003) and similar only to dogs (Ward \& Smuts, 2007). Interestingly, the upper limit of the discrimination ability we observed in food choice test was also lower than the one reported in shoal choice experiments, where guppies discriminated up to 3 versus 4 conspecifics (Agrillo et al., 2012), or in experiments that used training procedures where some guppies achieved a 4 versus 5 items discrimination (Bisazza et al., 2014). The different thresholds in numerical acuity of guppies in different tasks is worth noting and points to the existence of multiple, context-dependent numerical systems instead of a single cross-
modal system to process quantity in every context (Miletto Petrazzini, Agrillo, Piffer, \& Bisazza, 2014; Spelke, 2000;).

In relative quantity judgments, animals can use both numerical and non-numerical information that co-varies with number (Cantlon \& Brannon, 2007; Gomez-Laplaza \& Gerlai, 2013a). For instance, two groups of food items could be discriminated by using their cumulative surface area instead of their number. In experiment 2, we investigated the relative importance of these two types of information by presenting the choice between 3 versus 3 food items with a 2:1 surface area and between 2 versus 4 food items with cumulative surface area matched (because the items in the smaller set were of larger size). Guppies preferred the larger quantity in the first discrimination but not in the second. In this species, the cumulative surface area occupied by food appears to be more important than the number of food items in quantity estimation during foraging. Analogous results have been found in other organisms. For instance, jungle crows showed no preference for small or large quantities of food items when the total volume between sets was equalised (Bogale et al., 2014). Human infants presented with sets of crackers chose at chance when the total surface area was equated (Feigenson et al., 2002). However, the preference for continuous variables over number in food quantity discrimination has not been found in all species investigated. For instance, rhesus monkey (Macaca mulatta) and horses (Equus caballus) privilege number of items rather than overall volume in selecting the larger food quantity (Hauser et al., 2000; Uller \& Lewis, 2009). To date, it is not clear whether these differences can be ascribed to different experimental methodologies or different foraging strategies.

Intriguingly, in the second discrimination of experiment 2 (2 versus 4 food items with matched area), guppies did not choose the two options with the same frequency but instead showed a marked preference for the set with fewer food items. To equate the area of the two options, the set with fever food items contained, on average, larger food pieces, and in the 90% of the trials the largest food item was contained in this set. Therefore, a possible explanation for our results is that
guppies have a strong preference for larger food items. Our hypothesis implies that guppies should possess an excellent ability to estimate and compare the area of two food items. There is indeed some evidence that fish have this ability. Female freshwater gobies lay eggs on the larger nest available (Bisazza et al., 1989), and female guppies prefer to mate with males showing larger area of carotenoid pigmentation (Houde, 1997). However, to our knowledge, no study has assessed the accuracy of area discrimination in fish.

In experiment 3, we investigated the ability of guppies to discriminate between two food items differing in area, using the same ratios as in experiment $1(0.25,0.50,0.67$, and 0.75$)$. Here the subjects performed much better than in experiment 1 and exhibited a significant preference for the larger food quantities, even in the 0.75 ratio discrimination. Again, the accuracy of the subjects appeared to decrease with increasing ratio, suggesting Weber's law sets the accuracy of this task as well. So guppies discriminate up to a 0.67 and 0.75 ratio of quantity, but only if these quantities are not fragmented into more units. Further investigation should test this effect in other tasks.

Given their remarkable ability in area discrimination, it is not surprising that guppies in experiment 2 used the food area as a prominent cue to drive their food choices. What still remains unclear is why guppies are so accurate in comparing the area of single food items compared to multiple discrete items and why they are so attracted by large food items. In the natural environment of guppies, a simultaneous encounter of two patches of food is probably a rare event. Conversely, wild guppies often move in shoals (Magurran \& Seghers, 1991); thus, many can discover and exploit a single food patch at once. While an individual is processing one food item in the patch, its shoal mates are probably eating the residual items. In such a scenario, there is an advantage for the individual that detects and consumes the largest food item first. Therefore, natural selection should promote abilities that accurately estimate and compare the size of single food items and decision mechanisms that prioritise the search of larger food items rather than the search of patches containing more overall food. If our hypothesis is correct, the preference for the larger food
item should prevail over other choice criteria. Guppies should choose the patch with the larger food item even when the overall food quantity is smaller than the other option. We tested this possibility in experiment 4, finding support for our hypothesis. Guppies preferred the larger food item even when this led them to the suboptimal choice of a set with overall less food. Interestingly, two other social species have a similar pattern of food selection: chimpanzee presented with two sets of food items reliably selected the largest, but showed a bias toward the smaller one when it contained the largest single food item (Beran et al., 2008; Boysen et al., 2001); cotton-top tamarins (Saguinus oedipus) showed a similar preference for sets with the largest single food items (Stevens, Wood, Hauser, 2007). Like guppies, those two monkeys forage in groups and compete for food (Pusey \& Schroepfer-Walker, 2013; Tardif \& Richter, 1981; Wittig \& Boesch, 2003), supporting our hypothesis that the preference for the larger food item could arise from social foraging habits.

Although our study was not designed to investigate cognitive sex differences, we used males and females in all experiments, which allows us to compare sexes and to increase knowledge about an issue which is almost neglected in fish (but see Lucon-Xiccato \& Bisazza, 2014). Sex differences in quantity discrimination abilities have been studied only in salamanders (Plethodon cinereus) and humans (Benbow \& Stanley, 1983; Gallagher et al., 2000; Uller et al., 2003). In the four experiments of the present study, we found no evidence of differences between male and female guppies, suggesting the sexes have comparable quantity discrimination abilities and mechanisms for food choice. This result appears quite robust, since the Bayesian approach indicated a strong (sensu Jeffreys, 1998) evidence against the hypothesis of a sex difference in guppies' performance. In the guppy, the two sexes have the same diet and exhibit only minor differences in foraging behaviour (Dussault \& Kramer, 1981; Magurran, 2005; Nikolaeva \& Kasumyan, 2000). Therefore, the selective pressures imposed on cognitive mechanisms controlling food choice are likely to be similar in the two sexes.

To summarise, we provide evidence that guppies discriminate the larger quantity of food by using primarily non-numerical cues and that they prioritise the selection of the largest food item over the total number of items and the total amount of food. We hypothesised that this might occur because of shoaling habits that bring them to compete for food and hence favour strategies that maximise the chance of consuming larger food items before their companions. Further studies investigating such feeding strategies in species that do not form shoals are welcome to verify this hypothesis.

ACKNOWLEDGEMENTS

This work was funded by the FIRB grant (RBFR13KHFS) from Ministero dell'Istruzione, Università e Ricerca (MIUR, Italy) to Christian Agrillo, by "Progetto di Ateneo" from University of Padova to Christian Agrillo, and by "Progetto Strategico NEURAT" from University of Padova to Angelo Bisazza. We are grateful to Robert R. Jackson and an anonymous reviewer for comments and suggestions that greatly improved the manuscript.

REFERENCES

Agrillo, C., \& Bisazza, A. (2014). Spontaneous versus trained numerical abilities. A comparison between the two main tools to study numerical competence in non-human animals. Journal of Neuroscience Methods, 234, 82-91.

Agrillo, C., Dadda, M., Serena, G., \& Bisazza, A. (2008). Do fish count? Spontaneous discrimination of quantity in female mosquitofish. Animal Cognition, 11(3), 495-503.

Agrillo, C., Piffer, L., Bisazza, A., \& Butterworth, B. (2012). Evidence for two numerical systems that are similar in humans and guppies. PLoS One, 7(2), e31923.

Al Aïn, S., Giret, N., Grand, M., Kreutzer, M., \& Bovet, D. (2009). The discrimination of discrete and continuous amounts in African grey parrots (Psittacus erithacus). Animal Cognition, 12(1), 145-154.

Basolo, A. L. (1990). Female preference for male sword length in the green swordtail, Xiphophorus helleri (Pisces: Poeciliidae). Animal Behaviour, 40(2), 332-338.

Benbow, C. P., \& Stanley, J. C. (1983). Sex differences in mathematical reasoning ability: More facts. Science, 222(4627), 1029-1031.

Beran, M. J. (2006). Quantity perception by adult humans (Homo sapiens), chimpanzees (Pan troglodytes), and rhesus macaques (Macaca mulatta) as a function of stimulus organization. International Journal of Comparative Psychology, 19(4), 386-397.

Beran, M. J., \& Beran, M. M. (2004). Chimpanzees remember the results of one-by-one addition of food items to sets over extended time periods. Psychological Science, 15(2), 94-99.

Beran, M. J., Evans, T. A., \& Harris, E. H. (2008). Perception of food amounts by chimpanzees based on the number, size, contour length and visibility of items. Animal Behaviour, 75(5), 17931802.

Bisazza, A., Agrillo, C., \& Lucon-Xiccato, T. (2014). Extensive training extends numerical abilities of guppies. Animal Cognition, 17(6), 1413-1419.

Bisazza, A., Marconato, A., \& Marin, G. (1989). Male competition and female choice in Padogobius martensi (Pisces, Gobiidae). Animal Behaviour, 38(3), 406-413.

Bisazza, A., Piffer, L., Serena, G., \& Agrillo, C. (2010). Ontogeny of numerical abilities in fish. PLoS One, 5(11), e15516.

Bogale, B. A., Aoyama, M., \& Sugita, S. (2014). Spontaneous discrimination of food quantities in the jungle crow, Corvus macrorhynchos. Animal Behaviour, 94, 73-78.

Boysen, S. T., Berntson, G. G., \& Mukobi, K. L. (2001). Size matters: impact of item size and quantity on array choice by chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 115(1), 106-110.

Buckingham, J. N., Wong, B. B., \& Rosenthal, G. G. (2007). Shoaling decisions in female swordtails: how do fish gauge group size?. Behaviour, 144(11), 1333-1346.

Call, J. (2000). Estimating and operating on discrete quantities in orangutans (Pongo pygmaeus). Journal of Comparative Psychology, 114(2), 136-147.

Cantlon, J. F., \& Brannon, E. M. (2007). How much does number matter to a monkey (Macaca mulatta)?. Journal of Experimental Psychology: Animal Behavior Processes, 33(1), 32.

Dadda, M., Piffer, L., Agrillo, C., \& Bisazza, A. (2009). Spontaneous number representation in mosquitofish. Cognition, 112(2), 343-348.

Dienes, Z. (2014). Using Bayes to get the most out of non-significant results. Frontiers in Psychology, 5, 781.

Dussault, G. V., \& Kramer, D. L. (1981). Food and feeding behavior of the guppy, Poecilia reticulata (Pisces: Poeciliidae). Canadian Journal of Zoology, 59(4), 684-701.

Feigenson, L., Carey, S., \& Spelke, E. (2002). Infants' discrimination of number vs. continuous extent. Cognitive psychology, 44(1), 33-66.

Gallagher, A. M., De Lisi, R., Holst, P. C., McGillicuddy-De Lisi, A. V., Morely, M., \& Cahalan, C. (2000). Gender differences in advanced mathematical problem solving. Journal of Experimental Child Psychology, 75(3), 165-190.

Garland, A., Low, J., \& Burns, K. C. (2012). Large quantity discrimination by North Island robins (Petroica longipes). Animal Cognition, 15(6), 1129-1140.

Gómez-Laplaza, L. M., \& Gerlai, R. (2013a). Quantification abilities in angelfish (Pterophyllum scalare): the influence of continuous variables. Animal Cognition, 16(3), 373-383.

Gómez-Laplaza, L. M., \& Gerlai, R. (2013b). The role of body surface area in quantity discrimination in angelfish (Pterophyllum scalare). PLoS One, 8(12), e83880.

Hanus, D., \& Call, J. (2007). Discrete quantity judgments in the great apes (Pan paniscus, Pan troglodytes, Gorilla gorilla, Pongo pygmaeus): the effect of presenting whole sets versus item-byitem. Journal of Comparative Psychology, 121(3), 241-249.

Hauser, M. D., Carey, S., \& Hauser, L. B. (2000). Spontaneous number representation in semi-free-ranging rhesus monkeys. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1445), 829-833.

Houde, A. E. (1997). Sex, color, and mate choice in guppies. Princeton, N.J.: Princeton University Press.

Hunt, S., Low, J., \& Burns, K. C. (2008). Adaptive numerical competency in a food-hoarding songbird. Proceedings of the Royal Society B: Biological Sciences, 275(1649), 2373-2379.

Jeffreys, H. (1998). The theory of probability. Oxford, U.K.: Oxford University Press.

Krusche, P., Uller, C., \& Dicke, U. (2010). Quantity discrimination in salamanders. The Journal of Experimental Biology, 213(11), 1822-1828.

Logan, M. (2011). Biostatistical design and analysis using R: a practical guide. West Sussex, U.K.: John Wiley \& Sons.

Lucon-Xiccato, T., \& Bisazza, A. (2014). Discrimination reversal learning reveals greater female behavioural flexibility in guppies. Biology Letters, 10(6), 20140206.

Magurran, A. E. (2005). Evolutionary ecology: the Trinidadian guppy. Oxford, U.K: Oxford University Press.

Magurran, A. E., \& Seghers, B. H. (1991). Variation in schooling and aggression amongst guppy (Poecilia reticulata) populations in Trinidad. Behaviour, 118(3), 214-234.

Miletto Petrazzini, M. E., Agrillo, C., Piffer, L., \& Bisazza, A. (2014). Ontogeny of the capacity to compare discrete quantities in fish. Developmental Psychobiology, 56(3), 529-536.

Nelson, X. J., \& Jackson, R. R. (2012). The role of numerical competence in a specialized predatory strategy of an araneophagic spider. Animal Cognition, 15(4), 699-710.

Nikolaeva, E. V., \& Kasumyan, A. O. (2000). Comparative analysis of the taste preferences and behavioral responses to gustatory stimuli in females and males of the guppy Poecilia reticulata. Journal of Ichthyology, 40(6), 479-484.

Odell, N. S., \& Eadie, J. M. (2010). Do wood ducks use the quantity of eggs in a nest as a cue to the nest's value?. Behavioral Ecology, 21, 794-801.

Panteleeva, S., Reznikova, Z., \& Vygonyailova, O. (2013). Quantity judgments in the context of risk/reward decision making in striped field mice: first "count," then hunt. Frontiers in Psychology, 4, 53.

Piffer, L., Miletto Petrazzini, M. E., \& Agrillo, C. (2013). Large number discrimination in newborn fish. PloS one, 8(4), e62466.

Pritchard, V. L., Lawrence, J., Butlin, R. K., \& Krause, J. (2001). Shoal choice in zebrafish, Danio rerio: the influence of shoal size and activity. Animal Behaviour, 62(6), 1085-1088.

Pusey, A. E., \& Schroepfer-Walker, K. (2013). Female competition in chimpanzees. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 368(1631), 20130077.

Rodríguez, R. L., Briceño, R. D., Briceño-Aguilar, E., \& Höbel, G. (2015). Nephila clavipes spiders (Araneae: Nephilidae) keep track of captured prey counts: testing for a sense of numerosity in an orb-weaver. Animal Cognition, 18(1), 307-314.

Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics, 6(2), 461-464.

Sokal, R.R., \& Rohlf, F.J. (1995) Biometry: the principals and practice of statistics in biological research. New York, N.Y.: W.H. Freeman and Company.

Spelke, E. S. (2000). Core knowledge. American Psychologist, 55(11), 1233-1243.

Stancher, G., Rugani, R., Regolin, L., \& Vallortigara, G. (2015). Numerical discrimination by frogs (Bombina orientalis). Animal Cognition, 18(1), 219-229.

Stevens, J. R., Wood, J. N., \& Hauser, M. D. (2007). When quantity trumps number: discrimination experiments in cotton-top tamarins (Saguinus oedipus) and common marmosets (Callithrix jacchus). Animal Cognition, 10(4), 429-437.

Tardif, S. D., \& Richter, C. B. (1981). Competition for a desired food in family groups of the common marmoset (Callithrix jacchus) and the cotton-top tamarin (Saguinus oedipus). Laboratory Animal Science, 31(1), 52-55.

Uller, C., \& Lewis, J. (2009). Horses (Equus caballus) select the greater of two quantities in small numerical contrasts. Animal Cognition, 12(5), 733-738.

Uller, C., Jaeger, R., Guidry, G., \& Martin, C. (2003). Salamanders (Plethodon cinereus) go for more: rudiments of number in an amphibian. Animal Cognition, 6(2), 105-112.

Utrata, E., Virányi, Z., \& Range, F. (2012). Quantity discrimination in wolves (Canis lupus). Frontiers in Psychology, 3, 503.

Ward, C., \& Smuts, B. B. (2007). Quantity-based judgments in the domestic dog (Canis lupus familiaris). Animal Cognition, 10(1), 71-80.

Wittig, R. M., \& Boesch, C. (2003). Food competition and linear dominance hierarchy among female chimpanzees of the Tai National Park. International Journal of Primatology, 24(4), 847867.

Figure 1.

Experimental apparatus. Aerial (a) and frontal (b) view. The subject was housed in the apparatus for the entire experiment. In each trial, two cards with items differing in number and/or size were simultaneously inserted at the corners of one of the short walls. The subject was allowed to select only one card while the other was removed after the choice.

Figure 2.

Examples of cards with stimuli used in the four experiments. In experiment 1 , the two cards differed in the number of food items. Experiment 2 sequentially controlled the number of food items and surface area of the food in two discriminations. In experiment 3, the two food items differed in size. In experiment 4 , the set with the smaller food quantity had a larger food item.

Figure 3.

Preference for the set with more food items (experiment 1, dark line) and for the larger food item (experiment 3, grey line). Data points represent mean \pm SEM percentage of choice for the larger food quantity.

Figure 4.

Preference for the larger food quantity in experiment 2 (left panel), and for the larger food item in experiment 4 (right panel). Data points represent mean \pm SEM percentage of choice.

Experiment 1	$\square \square \square$	$\square \square \square$
Experiment2	$\square \square \square \square$	
Experiment 3	$\square \square$	$\square \square \square$
Experiment4	$\square \square \square \square^{\square}$	\square \square \square \square \square \square \square \square \square

