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Abstract 

Most individual fish in farmed and wild populations are infected with parasites. Upon dissection of 

fish, helminths from gut are often easily visible. Enteric helminths include several species of 

digeneans, cestodes, acanthocephalans and nematodes. Some insights into biology, morphology and 

histopathological effects of the main fish enteric helminths taxa will be described here. The immune 

system of fish, as that of other vertebrates, can be subdivided into specific and aspecific types, 

which in vivo act in concert with each other and indeed are interdependent in many ways. Beyond 

the small number of well-described models that exist, research focusing on innate immunity in fish 

against parasitic infections is lacking. Enteric helminths frequently cause inflammation of the 

digestive tract, resulting in a series of chemical and morphological changes in the affected tissues 

and inducing leukocyte migration to the site of infection. This review provides an overview on the 

aspecific defence mechanisms of fish intestine against helminths. Emphasis will be placed on the 

immune cellular response involving mast cells, neutrophils, macrophages, rodlet cells and mucous 

cells against enteric helminths. Given the relative importance of innate immunity in fish, and the 

magnitude of economic loss in aquaculture as a consequence of disease, this area deserves 

considerable attention and support.  
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1. Helminth intestinal parasites of fish 

In fish, as in other vertebrates, the digestive tract is one of the primary routes of microbial and 

parasitic infections [1], and serves as a primary barrier limiting or preventing the entry of harmful 

organisms [2]. The intestinal canal affords a remarkably benign and rich environment for otherwise 

vulnerable enteric parasites, offering them protection and nutrients [3].  

Helminths, also commonly known as parasitic worms, are multicellular organisms. There is 

no clear consensus on the taxonomy of helminths. Helminths include some turbellarians, 

ectoparasitic flukes (Monogenea), endoparasitic flukes (Aspidogastrea and Digenea), and Cestoda, 

all belonging to the phylum Plathyhelminthes;  acanthocephalans, nemathelminths (nematodes), and 

hirudineas or leeches belonging to Anellida [4]. Helminth parasites are of considerable medical [5] 

and veterinary importance [6]. Parasitic helminths in natural habitats are able to reduce drastically 

their host fitness, which therefore have evolved powerful counter-measures to control infection [7]. 

Recently, Shinn et al. [8] provided estimates of economic loss associated with notable parasite 

infections in some of the world’s leading finfish production industries. The successful infection of 

helminth largely depends on their capacity to evade and/or manipulate the generally efficient 

immune system of hosts [5,9,10]. Nevertheless, interaction between helminth and the piscine 

immune system are under-investigated [10]. 

There are numerous studies of the effects parasitic helminths have on the alimentary canal 

and associated organs of fish [11-18]. As part of the infection process, certain intestinal worms 

induce structural modification to their host’s tissues (Tab. 1), and most likely are responsible for 

alterations to normal intestinal physiology [48]. Certain types of enteric helminths of fish (e.g., 

digenetic trematodes, cestodes) usually do not cause severe, visible damage to the intestine, mainly 

due to their relatively superficial relationship with the host tissues [49] (Tab. 1a). In contrast other 

helminths such as acanthocephalans typically cause much more severe damage due to deep 

penetration of many species into the gut tissues [50] (Tab. 1b).  

Parasitic helminths excrete or secrete (ES) a variety of molecules into their hosts. The ES 

products of trematodes, cestodes and nematodes contribute to immune evasion strategies of the 

parasites through different mechanisms [51]. Research into the ES substances produced by 

helminths infecting fish is still very much in its infancy with only a few scattered observations on 

nematode-fish models (see [6,52]) and a tapeworm-fish system [10,53]. From the earlier studies of 

fish-helminth conducted by the authors, no tegumental secretions packaged into extracellular 

vesicles were observed, however that does not exclude the possibility that a fraction of ES proteins, 

not packaged in vesicles, may be produced by parasite. A description of each enteric helminth taxon 

is provided below. 

https://en.wikipedia.org/wiki/Nematodes
https://en.wikipedia.org/wiki/Leeches
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1.1. Digenean (endoparasitic flukes) (Tab. 1a, Fig. 1a) 

The Digenean Flukes or digeneans (formerly digenetic trematodes) form a class of flatworms or 

platyhelminths. Flukes reproduce as adults and again as larvae, hence the name "di-genetic" or two 

births. Unlike generalized flatworms, most digeneans have two sucker-like holdfast organs. About 

70 families with over 5000 species are known from all fishes. The digeneans that produce 

significant damage to their hosts as sexual adults are mainly those that occur in non-gut sites. With 

reference to parasitized intestine, the site of infection by most digeneans is restricted almost entirely 

to the paramucosal lumen, mucosa or epithelial tissues (Fig. 1a) [54]. Most intestinal digeneans 

probably feed by browsing on the mucosa or epithelial tissues, mucus, blood, products of host’s 

digestion, and products of their own histolytic secretion [55]. Many digeneans with at least one 

sucker attach to the mucosal surface of the fish digestive tract (Fig. 1a) [22,56]. Therefore, the main 

damage is the destruction of the mucosal epithelium covering the villi, with subsequent necrosis and 

degeneration [54,56].  

 

1.2. Cestoda (tapeworms) (Tab. 1a, Fig. 1 b,c) 

Tapeworms or cestodes form a large class of the flatworms with more than 5000 species identified. 

The common name comes from the long series of body segments which resemble a tape measure. 

All tapeworms are permanent parasites. Adults cestodes inhabit the digestive tract or, occasionally, 

associated organs of vertebrates definitive hosts [57,58]. Tapeworms usually consist of a chain of 

segments (proglottids) each with a set of reproductive organs and lack a digestive system, absorbing 

nutrients through a specialized outer layer of the body. Eucestoda possess a distinct anterior 

holdfast organ called the scolex (Fig. 1b,c), which varies remarkably in shape among the 11 orders 

[57]. The extent of damage caused by cestodes as in other helminths is generally related to the 

intensity of infection and depth of parasite penetration within the host tissue (Tab. 1a). Most 

tapeworms generally do not induce severe damage to the fish digestive tract, provoking only 

destruction of the superficial layer of the intestinal wall at the point of scolex attachment (e.g., 

Cyathocephalus truncatus see Tab. 1a, Fig. 1b,c). More rarely tapeworms penetrate more deeply, 

closely approaching the muscular layer and inducing both a complete loss of the intestinal 

architecture and an enhanced inflammatory response (e.g., Monobothrium waganeri see Tab. 1a). 

 

1.3. Acanthocephala (thorny headed worms) (Tab. 1b, Fig. 1d,e) 

These worms form a small phylum in the Animal Kingdom. The name "acanthocephala" means 

thorny headed. Acanthocephalans are all permanent parasites in the intestine of most vertebrates. 
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More than 1500 species are known, the vast majority of which are parasites of fish and use 

crustaceans as intermediate hosts. Acanthocephalans attach in the gut of their host with a globular 

or cylindrical and retractable, thorny proboscis. In addition to the intensity of infection, the extent of 

damage caused by acanthocephalans is related to the depth of parasite penetration within the host 

tissue (Tab. 1b). Some acanthocephalan genera parasite of fish, including Acanthocephalus [50] and 

Pomphorhynchus (Tab. 1b) penetrate deeply through the intestinal wall and provoke extensive 

damage to the alimentary canal (Fig. 1d). At the site of attachment the acanthocephalan parasite 

destroys the mucosal folds (Tab. 1b, Fig. 1d,e) and the proboscis hooks penetrate into the 

epithelium of adjacent villi for secure anchoring.  Folds more distant from the worms remained 

intact. 

 

1.4. Nematoda (roundworms) (Tab. 1c, Fig. 1f)  

The phylum Nematoda are comprised of 256 families and more than 40000 species [59]. Most free-

living forms are small to microscopic, but parasitic forms are large. It is believed that there are 125 

families of zooparasitic nematodes, including species that exploit both freshwater, marine and 

brackish water fishes. Roundworms, as the name implies, are circular in cross-section, and often 

take the form of an elongate cylinder, tapered at each extremity. The body of nematode is covered 

by a thick, elastic and tough cuticle, which could be smooth, or more generally bears fine transverse 

striations at regular intervals [60]. Most species are dioecious, sexually dimorphic and oviparous.  

 Due to the rapid development of marine aquaculture, the importance of nematodes as fish 

pathogens is increasing [60]. Most of our knowledge on nematodes as fish parasites is founded in 

the numerous papers and monographs of Moravec [see 60]. Nematode parasites harm their host in 

different ways, such as causing mechanical injury, atrophy of tissues, castration, and occlusions of 

the alimentary canal and blood vessels [61,62]. While most references on nematode parasites are 

concerned with the prevalence and intensity of infection, there are some studies on the 

pathogenecity of fish intestinal nematodes (Tab. 1c). 

 

2. Fish immune system 

The Latin word “immunis” means “exempt from”, and the term immunology refers to the 

field of research on defence mechanisms against infectious diseases [63]. The immune system has 

evolved to discriminate between self (e.g., host tissue) and non-self (e.g., pathogens, foreign 

bodies). Defence mechanisms include two broad categories which differ between them mainly for 

the receptor types used to recognize pathogens [64]: 
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I) Specific (adaptive or acquired) immunity, which responds to an invading pathogen and then 

reacts in an appropriate manner to eliminate it. The adaptive immune recognition is mediated 

by antigen receptors with narrow specificities. Upon repeated exposure to the pathogen, the 

specific immune system produces a faster and more adequate response. Lymphocytes are the 

primary cell types involved in specific immune responses [63,65]. 

II) Aspecific (non-specific or innate) immunity, which provides an immediate response to an 

invading organism and is composed of physical barriers, cellular and humoral components 

[66]. The innate immune recognition is mediated by germline encoded receptors with a broad 

specificity [67]. The innate defence is the only mechanism available to invertebrates and is of 

primary importance in vertebrates, especially in fish where the acquired immune response is 

sluggish compared to the instant and relatively temperature-independent innate immune 

response [66,68]. Innate response generally precedes the adaptive one and also plays a 

fundamental role in the organization of the acquired immune response and the maintenance 

of homeostasis [69].  

Host responses against invading pathogens are basic physiological reactions of all living organisms 

[3]. Fish include over 27,000 species and are, phylogenetically, the oldest vertebrate group 

representing more than one-half of the vertebrates on the planet [70]. Both wild and farmed fish 

suffer from a number of protozoan and metazoan parasites, fungi, bacteria and viruses. The 

importance of fish health is not limited to the professionals who work in fisheries science but 

extends to aquatic ecosystems where fish diseases play an important role. Understanding the 

immune system of fish is of great importance as it provides information on the evolution of 

immunity in vertebrates [71]. According to Whyte [72], teleost fish occupy a key evolutionary 

position in the development of the innate and adaptive immune responses in that they are the 

earliest class of vertebrates possessing the elements of both types of immunity. Parasitic infections 

in teleost fish are limited by constitutive innate defence mechanisms that render the host refractory 

or reduce the severity of infection [73]. Recent studies however, have begun to clarify the relative 

roles of innate and acquired immunity against parasitic infections in teleosts by recognizing the 

presence and significance of specific innate effector mechanisms [73].  

 

2.1. Innate cellular response against intestinal helminths 

The innate defences responding to infections are associated with an inflammatory reaction 

[3,6,9,63]. The attachment organs of endoparasitic helminths (Fig. 1) often provoke inflammation 

of the host gastrointestinal tract. Inflammation is a protective reaction of the host in response to 

injury, resulting in specific chemical and morphological alterations in cells and tissues [63,74]. In 
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teleosts, gills, skin, urogenital system and gut are the principal mucosal surfaces and represent the 

first line of defence [75]. The cellular involvement during the inflammatory response may be 

biphasic, beginning with an influx of neutrophils followed by the subsequent arrival of 

monocytes/macrophages [76]. Innate immunity in teleosts relies on a range of cell types [63], which 

are listed below. In turn we will examine each cell in detail with respect to morphology, function 

and involvement against helminth infections. 

 

2.1.1. Mucous cells 

Fish mucus is involved in a wide range of functions, including respiration, reproduction, 

excretion, feeding, ionic and osmotic regulation, and protection against, and resistance to, disease 

[77-80]. The first level of gastrointestinal defense consists of the substances secreted into the lumen, 

including mucus (Fig.1c,e), bicarbonate, nucleic acid, immunoglobulins, and other antibacterial and 

surface-active phospholipid materials [81]. Mucus is an essential component of mucosal innate 

immunity [75,77] with intestinal mucous cells playing a key role in controlling the inflammatory 

response [82,83]. In some fish species, mucous cells produce and release defensive materials 

[84,85]. Generally, the nucleus of the mucous cell is observed to be elongated and basally placed 

(Fig. 2a,b). Mucus granules occupy the entire supranuclear cytoplasm (Fig. 2a,b), appearing as 

spherules or polyhedrons surrounded by a single granule membrane. Within TEM sections, the 

mucus granules appeared electron-opaque and, in some instances, as electron-lucent granules (Fig. 

2a,b).  

Numerous studies of fish-helminth systems have demonstrated an increase in mucous cell 

abundance and/or mucus production (summarized in Table 1; examples shown in Fig. 1c,e). The 

intestines of brown trout, Salmo trutta and chub, Squalius cephalus infected with the 

acanthocephalan Pomphorhyncus laevis [16,32] as well as those of brown trout parasitized with 

Echinorhynchus truttae (Acanthocephala) and Cyathocephalus truncatus (Cestoda) [25] showed an 

hyperplastic response of mucous cells. Copious mucus secretion appeared as an adherent blanket 

around the worm body at the site of infection [16,25]. The increase in the number of mucous cells 

observed in the intestine of fish only in close proximity to helminths suggests that the parasite elicit 

a local rather than a general/diffuse response of the intestine [25,32].  

Mucus qualitative changes have been reported in response to intestinal parasites of fish, 

possibly with a defensive significance [16,25,32,79,86,87]. In the infected intestine, mucous cells of 

several fish species secrete neutral and acidic glycoconjugates; the acidic types are mainly 

sialylated or non-sulphated glycoconjugates [e.g., 16,25,32]. Acid mucins enhance viscosity of 
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mucus secretion resulting in greater protection against pathogens [87]. In particular sialic acid-rich 

glycoconjugates inhibit bacterial adhesion to fish cells [79,88].  

A close relationship between degranulation of mast cells (MCs) and excessive mucus 

secretion by mucous cells has been reported in several studies on mammal-intestinal helminth 

systems [89-91], while similar reports in fish-helminth systems are rare [49,92]. In a recent study of 

chub intestine naturally infected with an acanthocephalan, transmission electron microscopy and 

confocal microscopy revealed a close spatial relationship between intestinal mucous cells and MCs, 

and degranulation of MCs bordering the plasmalemma of mucous cells was frequently detected 

[33]. The same close relationship between MCs and mucous cells in the epithelium of infected 

intestine was reported in Silurus glanis (Fig. 2b). The possibility exists that in fish, as in mammals, 

epithelial MC degranulation induces excessive mucus discharge by mucous cells against an 

invading parasite.  

An additional and crucial issue that has yet to be resolved is the role of the overproduction 

of mucus in the alimentary canal of fish infected with enteric helminths. It has been proposed that 

excessive mucus may contribute to the elimination of parasites from mammal intestine [93], yet in 

over three decades the authors of this review have never seen the expulsion of worms from the host 

gastrointestinal tract, despite having examined several fish-helminth systems in situ. Thus, we 

believe that the lack of expulsion of many acanthocephalan and cestode species from host intestine 

could be due to the deep penetration of proboscis and scolex in the fish intestinal tissue. The 

function of blanket of mucus is mainly to protect the intestinal mucosa as a physical barrier against 

the mechanical and biochemical damages induced by parasites (Fig. 1c,e), as suggested in several 

studies [25,32,79,86,94]. 

Intestinal helminths are known to alter intestinal physiology, permeability, mucus secretion 

[16,25,83,95] and production of antimicrobial peptides [42], all of which may impact on bacterial 

survival and spatial organization [83]. Several peptides involved in the regulation of intestinal 

mucus secretion are released during inflammation [17,94-99]. Some opioid peptides like leu- and 

met-enkephalin are commonly found within the gut neuroendocrine system of teleosts [100]. Opioid 

peptides play an important role in the discharge mechanism of mucus from mucous cells induced by 

luminal stimuli [101]. Within the fish’s intestine, galanin acts as a cholinergic co-mediator 

[102,103], and the release of mucus from mucous cells is stimulated by cholinergic agonists [104]. 

Serotonin is involved in mucus secretion [97]. A plethora of recent studies have shown that 

helminths can induce a marked change in the presence of certain neuromodulators in the intestine of 

their fish host (Figs. 3, 4a) [17,18,95,98,99,105,106]. Bosi et al. [95] demonstrated that chub 

intestine infected with an acanthocephalan shows an increase in the number of endocrine cells 
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releasing  leu- and met-enkephalin, galanin, and serotonin, and suggest that these regulatory 

substances may be involved in the hyperplasia of mucous cells and in enhanced mucus discharge. 

 

2.1.2. Mast cells (MCs) 

Granulocytes, which are identified by distinctive cytoplasmic granules, are subdivided into 

neutrophils, eosinophils and basophils which are found in peripheral blood and some organs of fish 

[107]. The term “eosinophilic granule cells” was introduced by Roberts et al. [108] to indicate 

mononuclear granule-containing cells which were found distributed in the connective tissues of 

teleosts. In recent years there has been a tendency to use the more conventional term “mast cells” as 

these cells have functional and morphological similarities to mammalian MCs [109]. Fish MCs are 

irregular in shape with an eccentric, polar nucleus, and a cytoplasm characterised by numerous 

large, electron-dense, membrane-bounded granules (Fig. 2b-f). Piscine MCs constitute a 

heterogeneous cell population [76,109]. One of the most controversial aspects of this heterogeneity 

is the staining properties of the cytoplasmic granules [see 109].  

MCs are important as initiators and effectors of innate immunity and regulators of the 

adaptive immune response. MCs exist in all classes of vertebrates, sharing both a similar 

morphology and, most likely, function [110]. MCs are probably present in all teleosts and are found 

in a variety of tissues and organs, especially the gastrointestinal tract (Fig. 4b), skin and gills 

[41,76,111]. MCs are motile [41,76,112] and are often strategically positioned at perivascular sites 

to regulate inflammation, thus placing them in a unique position to encounter invading organisms 

and to orchestrate a response [28,41,90,91,113].  

MCs in non-mammalian vertebrates contain a wide range of compounds (i.e. heparin, 

neuropeptides, proteases) and also, in bony fishes, antimicrobial peptides (AMPs) [114,115]. Only 

the MCs of perciform fish contain histamine [110]; this biogenic amine regulates the inflammatory 

response [116] by acting on professional phagocytic granulocytes [110]. The occurrence of 

histamine in the gastric mucosa, as a regulatory molecule of acid gastric secretion, is a general 

feature in all vertebrates [117]. Both vertebrates and invertebrates produce AMPs, which are a key 

factor in innate immunity [118,119]. One of the most common groups of AMPs in fish are the 

piscidins, a family of linear, amphipathic peptides [120-122]. Piscidins have potent, broad-spectrum 

antimicrobial activity against viruses, bacteria, fungi, water molds and metazoan parasites 

[42,120,123,124]. 

MCs degranulate in response to exposure to a variety of pathogens [28,41,68] and known 

degranulating agents [109,111,125]. In turn MC degranulation can promote other events, for 

example intestinal contraction in gilthead seabream and rainbow trout [110,125]. Degranulation of 
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fish MCs close to the tegument of helminths in intestine (Fig. 2e) and other organs was reported in 

some studies of the present authors [e.g., 13,27,28]. Only the MCs in association with the extra-

intestinal infections of the acanthocephalan P. laevis in Gasterosteus aculeatus, were observed 

lying on the surface of the parasite or the granules had penetrated the tegument [28].   

Changes in the production of proliferating cell nuclear antigen (PCNA) within intestinal 

mucosa can provide an early indication of deviations to normal gut function and PCNA analysis has 

recently been applied to the field of aquatic parasitology [39,124]. Changes in PCNA expression 

can be determined through immunohistochemistry and marked increases in the rate of cellular 

division in intestinal tissue have been reported using this approach [126]. Infection of the 

acanthocephalan Dentitruncus truttae within the intestinal tract of S. trutta elicited a significant 

increase in the number of PCNA positive MCs at the site of parasite attachment when compared to 

the number found in both uninfected conspecifics and in tissue zones away from the point of 

parasite attachment [39].  

MCs play an important role in responding to inflammation and their number increases in 

allergic reactions in mammals [113] and as a consequence of helminth infection (Tab. 1; Figs 2c, 

4b). Evidence of MC migration has been found in gut tissues of salmonids [127,128]. Within the 

intestines of infected fish, numerous MCs were observed to be in close contact with capillaries and 

the outer layer of the endothelia as well as within the lumen of the blood vessels [13,28,41,42]. This 

close association with the endothelial cells of capillaries suggests that MCs migrate across the 

endothelium [30,41]. Indeed, the occurrence of the MCs throughout the propria-submucosa of 

intestine [12,39,42,129] suggests that there is a resident population of these cells. Based on a 

considerable body of descriptive data, it is reasonable to presume that fish have two populations of 

MCs, a circulating and a resident population, and the presence of parasites may induce recruitment 

of MCs to the site(s) of infection [80] and proliferation in loco of MCs of the resident population 

[39,124]. Accordingly, acute MC activation is a feature of many types of tissue injury; experimental 

studies have demonstrated that pathogen products can activate MCs [130].  

From in vivo infection experiments, it has become evident that the tapeworm Schistocephalus 

solidus is capable of substantial manipulation of cellular immune responses of its second 

intermediate host, the three-spined stickleback Gasterosteus aculeatus [131]. Accordingly, an initial 

increase of granulocytes in the blood and head kidney of infected fish was observed; only after 63 

day post-infection, the proportions of granulocytes started to decrease at both sites, while 

lymphocytes were increasing. This might reflect the ability of S. solidus to impair the cellular 

response of its host [131]. Scharsack et al. [53] were the first to investigate in vitro the effects of 

helminth excretory/secretory (ES) products on piscine leukocytes. Unfortunately, our current 



 11 

knowledge on the ES substances produced by fish helminths and their effects on their host’s 

immune systems are too limited for conclusions to be made at this time [52].  

 

2.1.3. Phagocytes: neutrophils and macrophages 

Phagocytosis is a well-conserved innate defense mechanism that has served as a robust platform for 

incorporation of novel layers of immunological control [132]. Phagocytes contribute to both pro-

inflammatory and anti-inflammatory (resolution) responses at infectious foci [132,133]. In fish, two 

major professional phagocyte populations have been described: granulocytes (particularly 

neutrophils) and mononuclear phagocytes (circulating monocytes and tissue macrophages) [107]. 

Furthermore, B cells (a type of lymphocyte) have been shown to have phagocytic capacities in 

teleost [134]. The role of piscine neutrophils and macrophages in inflammatory regulation and 

pathogen killing has not yet been studied in detail [135]. Nevertheless, phagocytosis and production 

of oxygen radicals/reactive oxygen species (ROS), nitric oxide (NO) and reactive nitrogen species 

(RNS) are known to occur in both fish phagocytes [136,137]. Moreover, they can synthesize 

cytokines/chemokines [66,138]. Monocytes and macrophages release ROS and RNS predominantly 

intracellularly, while neutrophils do so both intracellularly and extracellularly [139]. The 

extracellular release of these reactive oxygen and nitrogen species provide a defense against 

pathogens that have escaped internalization or are too large to be internalized [139]. In mammals 

NO, RNS, ROS exert biocide action, contributing to the control of bacteria, parasites and tumoral 

cells, and recent evidence suggests additional functions in innate and adaptive immunity such as 

cytokine response and immune cell apoptosis modulation [140]. Among its numerous functions, 

NO exhibits potent toxic and antimicrobial effects against different fish pathogens [139]. 

Neutrophils are involved in the inflammatory process, especially during the period of initial 

pathogen challenge, migrating to and accumulating at the site of parasitic infection or injury 

[9,19,139,141-143]. Fish neutrophils present morphological and histochemical staining properties 

very similar to their counterparts in mammals [144], indeed, they can be recognized by the presence 

of myeloperoxidase in their cytoplasmic granules [63]. Neutrophils appear round to oval in shape 

though their outline was commonly irregular (Fig. 2d,e). These cells have a round nucleus and a 

cytoplasm that contains dark, elongated granules which are lamellar in appearance (Fig. 2d,e). 

Neutrophils can be found in spleen, kidney and blood and in inflammatory lesions [145,146]. The 

continuous production of neutrophils, and the capacity of the immune system to respond to 

pathogens by increasing neutrophil numbers, must be tightly regulated [142]. In response to 

inflammatory stimuli, neutrophils migrate from the circulating blood to infected sites; whereupon 

they efficiently bind, engulf, and kill bacteria by proteolytic enzymes, antimicrobial proteins, and 
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reactive oxygen species [139,147]. The receptors and growth factors that are involved in neutrophil 

development, as well as the overall development process itself, have remained largely unexamined 

in teleosts [142] but some data are provided in a recent review by Havixbeck and Barreda [139]. 

Under some “emergency” conditions, localized infection can induce long-range recruitment 

of neutrophils from hematopoietic tissue [145], including the bone marrow in humans and the CHT 

(caudal hematopoietic tissue) in zebrafish larvae, which are the primary sites of neutrophil 

production [146]. Mobilization and activation of granulocytes has been considered a significant part 

of the immune response to helminth parasites by rainbow trout [141], roach and carp [148,149] and 

three spined-sticklebacks [131]. Fish neutrophils have also been shown to phagocytise small foreign 

particles [65,142], and upon degranulation release the granule contents in close proximity to 

parasites (Fig. 2e) [19,27,150]. Neutrophils commonly co-occur with macrophages that readily 

engulf small extracellular pathogens, such as viruses and bacteria [68]. There are several records of 

mammals infected by helminths where the macrophages were able to kill trematode larvae [151] 

and⁄or eosinophils and neutrophils were able to kill adult and larvae of nematodes [152,153]. The 

mechanism by which these cells mediate protection against helminth infection is through 

recruitment to the site of infection, surrounding the worm, and adhesion to the parasite’s body. 

Eosinophils and neutrophils then degranulate on the cuticle of nematodes [152,153], while the 

macrophages penetrate the tegument of the trematode inflicting damage that ultimately results in the 

death of the parasite [151].  

In the case of helminth-infected fish neutrophils have been observed in intestine of tench, 

Tinca tinca harboured metacercariae of a trematode [19] and in the intestine of tench infected with 

adult Monobothrium wageneri [27] (Fig. 2e). The tight clustering of this tapeworm and the deep 

penetration of their scolices inflict severe mechanical damage to the tench intestine and induce an 

intense inflammatory response, with the migration, recruitment and degranulation of neutrophils at 

the site of infection (Tab. 1; Fig. 2e). However, what is less clear is whether these phagocytes have 

the ability to directly kill helminths [9]. 

Teleosts macrophages are widespread in the gills and body cavity, but are mainly 

encountered as reticulo-endothelia cells (mononuclear phagocyte system) in the kidney and spleen 

[63]. Macrophages of adult fishes and their ontogeny have been reported in some teleost species 

using appropriate markers for specific cell populations [154]. The macrophages appeared large and 

contained vesicular structures with electron-opaque contents (dense bodies) and electron-lucent 

vesicles (Fig. 2f). In mammals, the macrophage colony-stimulating factor receptor (Mcsfr) has been 

used as a marker of macrophages, since its expression in embryonic and adult mice is largely 
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restricted to the monocyte/macrophage lineage [155,156]. Moreover, the Mcsfr gene is expressed in 

macrophages of zebrafish [157] and gilthead seabream [158].  

Many macrophages of fish contain different types of pigments including melanin [63]. These 

groups of cells are termed macrophage aggregates (MAs) or melano-macrophage centres [159,160]. 

MAs may be found within tissue encapsulating many foreign bodies and parasites [160]. MAs 

functions have been reported to include the focal destruction, detoxification and recycling of 

endogenous and exogenous materials [161,162]. Fundamental to the protection offered by the 

phagocytes is their bactericidal activity, which is closely associated with the production of reactive 

oxygen and nitrogen intermediates [136].  

In fish, the innate defences responding to helminth infection involve macrophages [163-165] 

and MAs [19,58,159,166]. Activity of macrophages from Oncorhynchus mykiss in response to 

diplostomules of the eye fluke Diplostomum spathaceum has been reported in vitro by Whyte et al. 

[163]. According to Roberts [167], when a common acute inflammatory response is elicited, it is 

characterized by the presence of neutrophils and monocytes in the blood and by an accumulation of 

neutrophils and macrophages at the site of infection (Fig. 4b). Within an inflammatory site, 

macrophages are exposed to both pro-inflammatory stimuli and dying cells [133]. 

Larval migration of digeneans, cestodes and nematodes and their subsequent encapsulation 

within the viscera and body tissues of fish, generally induces the development of fibro-

granulomatous lesions [19,58,124,165,168]. Fish granulomas are inflammatory foci composed of 

concentric layers of epithelioid cells and they are very similar to mammalian granulomas [167,169]. 

Epithelioid cells are so-named because of their morphological similarity to epithelial cells [170]. It 

is believed that epithelioid cells are typically transformed macrophages, which have the principal 

role of engulfing foreign agents [63,160]. The formation of epithelioid and giant cells in fish is 

known to occur from a variety of insults and their origin from macrophages was observed in vitro 

[107]. Macrophages seem to play an important role in the immune response to helminth parasites in 

fish [9,163]. Nevertheless, the exact role of macrophages in the immunity against helminths has not 

yet been elucidated [171]. 

 

2.1.4. Rodlet cells 

For over a century, fish histologists and pathologists have attempted to determine the origin and 

functions of the enigmatic rodlet cell (RC). RCs appear elongate in shape and are characterized by a 

distinctive cell cortex and club-shaped electron-dense inclusions, called rodlets (Fig. 2a,c), which 

accounts for their name. RCs have been encountered in a wide range of tissues of freshwater and 

marine teleosts [172-174]. RCs have been observed in many organs, most often associated with 
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epithelia, including the intestinal epithelium (Fig. 2a), and generically associated to mesothelia and 

endothelia [19,172,175-177].  

Contrasting points of view of the nature of RCs have been proposed since their first 

description by Thélohan [178] who believed they were parasites. Several authors favoured the 

parasitic nature of RCs [179-183] but this remains questionable, with many of the unresolved issues 

enumerated in the review of Manera and Dezfuli [172].  

The literature on RCs as endogenous fish cells is extensive [see 172,184]. RCs display 

intraspecific and interspecific variability in size. The topic has been previously and specifically 

addressed by Manera et al. [185] who concluded that size differences had to be attributed mainly to 

fish species. Nevertheless, tissue type (within the same species) contributed significantly as a source 

of difference, providing evidence for the presence of RC morphotypes [185]. Additional reports 

have also suggested the possible existence of RC morphotypes [186-188]. In particular, co-

occurrence of two different types of mature RCs were reported in the kidney tubules of gilthead sea 

bream Sparus aurata L. [187]. Advances in molecular biology and immunological methods applied 

to RCs should enable us to elucidate whether different putative morphotypes may behave 

differently [185].  

Several factors likely influence the variance in RC numbers: fish species, crowding season, 

the ionic concentration of the water and stressful stimuli including exposure to toxicants [189-193]. 

A correlation has been shown between the rising number of RCs and fish parasite infections 

[20,167,186,194-198]. RC numbers increase in fish infected with metazoans, especially at the site 

of infection or attachment [19-21,109,123,168,175,195-197]. Indeed, in the intestine of eel, 

Anguilla anguilla, naturally infected with digenean species, free RCs were observed in host lumen 

and bacteria were attached to them (Dezfuli personal observations).   

Within the last decade, many authors favoured the hypothesis that RCs belong to the host 

defence system [19,76,172,175,186,194,199]. These suggestions were based primarily on common 

features between RCs and leucocytes (e.g. marginal location of such cells in blood vessels) [19,197] 

and aggregation of RCs at the site of parasite infection (see above). Occurrence of RCs in reactive 

foci as a result of infection with micro- and macro-parasites was reviewed by Manera and Dezfuli 

[172] and there have been further reports on this topic [19,21,27,168,175,184,197,200]. Data on 

numerous fish-helminth systems suggest that RCs represent an inflammatory cell type closely 

linked to other piscine immune cells (e.g. mast cells, epithelioid cells and mesothelial cells) 

[19,27,76,109,165]. 

 

3. Conclusions: overview on fish response to helminths 
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Generally enteric helminths elicit an increase in the number, migration and/or accumulation of 

certain types of host immune cells at the site of infection (summarized in Table 1).  

The innate immune responses of fish to infections share several similarities although each host-

parasite system has its own peculiarity. 

The main cell types involved and the extent of the fish defence response vary according to:  

- the depth of penetration of the helminth: RCs and mucous cells occurred particularly when 

the helminth is attached to the intestinal epithelium (e.g., eel-digeneans); granulocytes and 

macrophages increase especially in response to those worms which penetrate more deeply 

into the intestinal wall (e.g., trout-acanthocephalans, tench-tapeworm);  

- the dimension and morphological characteristic of the helminth and intensity of worm 

burden;  

- phase of the infection: neutrophils are the first cell type recruited to the site of an acute 

inflammatory response; macrophages prevail during a chronic inflammation. 

In most infections, both the histological damage and the inflammatory reaction are limited to the 

point of attachment of the parasite or near its body whilst the intestinal areas far from the helminths 

resemble uninfected intestines. Thus the elicited response appears local rather than general or 

diffuse. One of the main and more frequent reactions of the intestine against a worm is the 

hyperplasia of the mucous cells and secretion of excessive mucus around the parasite. When a 

helminth challenge occurs in the intestine both the density of mucous cells and the composition of 

their mucin granules could be modified. 

The different host immune cells, which are typically able to phagocytise and/or secrete active 

compounds, often co-occur at sites of infection and cooperate to orchestrate an efficient and 

integrated defence response. Some examples are seen in the relationships between: MCs and 

endocrine cells; epithelial MCs and mucous cells for regulation of mucus discharge; and MCs and 

fibroblasts at sites of infection for host tissue remodelling.  

 

4. Further research perspectives  

In recent years there has been a renaissance in the study of piscine immune systems. These 

investigations have significantly expanded our knowledge of the evolution and diversification of 

vertebrate immune system [201]. This is exemplified by the recent publication of a number of 

review articles illustrating not only the growing scientific interest for this area but also emphasizing 

the series of notable advances made. Beyond the small number of well-described models that exist, 

research programs focusing on innate immunity in fish against parasitic infections are lacking. Part 

of this perhaps lies in the challenges in creating the different types of host-parasite models that are 
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necessary to address the range of responses observed in fish [6]. Given the relative importance of 

innate immunity in fish, and the magnitude of economic loss in aquaculture as a consequence of 

disease, then this area deserves considerable attention and support.  

 In recent years there have been significant advances in the understanding of the molecular 

mechanisms involved in the immunomodulation of various ES proteins and other products 

generated by mammalian helminths. Still, knowledge regarding the occurrence and effects of 

helminth ES proteins on the immune systems of fish is limited. Likewise, the mucosal immune 

system of higher vertebrates has been the subject of intense investigation for several decades but in 

marked contrast to this, only scant details regarding intestinal mucosal immunity in fish are known. 

For example, several AMPs and acute phase response related factors such as lysozyme, various 

anti-proteases or cytokines have been recorded in teleosts but their role in the host’s response to 

parasitic infection is not completely known. Some insights on expression of pro-inflammatory 

cytokines in fish infected with ectoparasites are provided in [202,203]. 

Further studies are required on the relationship between fish immune systems and helminths. 

Indeed, it is necessary to intensify immunohistochemical investigations in search of a possible link 

between the different fish innate immune cells. Current advances in molecular biology should 

enable us to elucidate the nature of some of these cells (e.g. MCs and RCs), for which data is 

currently lacking. The application of molecular biological and immunopathological approaches to 

fish-helminth systems will expand our knowledge of fish pathology and lead to a greater 

understanding of the immune mechanisms in fish.  Ultimately this might lead to the discovery of 

novel aspects in mammalian immunity. 
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Figure captions  

Fig. 1. Histological sections showing intestine of fish infected with helminths belonging to different 

taxa. (a) Section of A. anguilla intestine with two digenean trematodes attached to the epithelium 

through the ventral suckers (arrows), Azan-Mallory stain, bar = 100 μm. (b) Intestine of brown trout 

Salmo trutta infected with the cestode Cyatocephalus truncatus (asterisk); the scolex (arrow) of the 

parasite erodes the epithelium, Azan-Mallory stain, bar = 200 μm. (c) Near the cestode (asterisk) 

attached by its scolex (arrow) a high number of mucous cells and a mucus layer (curved arrows) are 

clearly visible in the intestine of a brown trout, Alcian Blue/PAS, bar = 200 μm. (d) All the 

intestinal layers of the chub Squalius cephalus are disrupted by the acantocephalan Acantocephalus 

anguillae (asterisk); the hooked proboscis (arrow) of the parasite penetrates deeply into the 

intestinal wall, Azan-Mallory stain bar = 200 μm. (e) Abundant mucus secretion (curved arrow) 

surrounds the acantocephalan Echinorhynchus truttae (asterisk) infecting the intestine of Salmo 

trutta, Alcian Blue/PAS, bar = 200 μm. (f) A nematode (asterisk) is visible in the lumen of the 

intestine of brown trout, Haematoxylin and Eosin, bar = 100 μm.  

 

Fig. 2. Transmission electron microscopy of fish immune cells in infected intestines. (a) Anguilla 

anguilla infected with trematodes: in close proximity to the epithelial surface two mucous cells 

(arrows) and one rodlet cell (arrow head) scattered among enterocytes are visible, bar = 4.2 μm. (b) 

Close contact between a mast cell (arrow) and a mucous cell (curved arrow) in the epithelial layer 

of the intestine of Silurus glanis infected with a cestode, bar = 3.0 μm. (c) Co-occurrence of rodlet 

cells (arrow heads) and numerous mast cells (arrows) in the sub-mucosa layer of tench infected with 

the tapeworm Monobothrium wageneri, bar = 3.3 μm. (d) Micrograph from Squalius cephalus 

intestine showing two mast cells (arrows) and one neutrophil (curved arrow) in the inflammatory 

tissue around the acanthocephalan Pomphorhynchus laevis, bar = 2.5 μm. (e) Several neutrophils 

(curved arrows) and mast cells (arrows) in degranulation in the vicinity of the scolex tegument of 

M. wageneri (asterisk), bar = 3.3 μm. (f) Presence of mast cells (arrows) and macrophages (curved 

arrow) in the intestinal granuloma encircling a larva of the nematode Contracaecum rudolphii, bar 

= 2.6 μm.  

 

Fig. 3. Sections taken from the intestine of infected fish showing the immunoreactivity of the 

endocrine cells to some peptides involved in mucus secretion. (a) Several endocrine cells 

immunoreactive to the anti-galanin antibody scattered in the intestinal epithelium of rainbow trout, 

Oncorhynchus mykiss infected with the cestode Eubothrium crassum (asterisk). Some positive 

endocrine cells (arrows) are in contact with the mucous cells (arrow heads), bar = 50 µm. (b) The 
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image shows two endocrine cells positive to the anti-met-enkephalin antibody (arrows) in a mucous 

cells-rich epithelial region of the intestine of the brown trout Salmo trutta parasitized the 

acanthocephalan Pomphorhynchus laevis, bar = 10 µm. (c) In the intestinal epithelium of Squalius 

cephalus infected with P. laevis, anti-serotonin immunoreactive endocrine cells (arrows) and 

mucous cells (curved arrows) mainly containing acid glycoconjugates (Alcian Blue positive) are 

numerous, bar 20 µm. 

 

Fig. 4. Confocal Laser Scanning Microscope images of the intestine of Squalius cephalus infected 

with the acanthocephalan Pomphorhynchus laevis. (a) Numerous endocrine cells immunoreactive to 

anti-met-enkephalin antibody (arrows) close to and in contact with mucous cells positive to the 

lectin DBA (arrow heads) in the intestinal epithelium, bar = 10 µm; (b) High number of mast cells 

and macrophages-like cells immunoreactive to the anti-macrophage (MAC387) antibody in the 

tunica propria-submucosa (arrows) and in the epithelium  (curved arrows) near the mucous cells 

positive to the lectin DBA (arrow heads). Asterisk indicates the parasite’s body, bar = 20 µm. 
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