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Abstract

Superhydrophobicity, the enhanced hydrophobicity of surfaces decorated with tex-

tures of suitable size, is associated with a layer of gas trapped within surface rough-

ness. The reduced liquid/solid contact makes superhydrophobicity attractive for many

technological applications. This gas layer, however, can break down with the liquid

completely wetting the surface. Experiments have shown that the recovery of the

“suspended” superhydrophobic state from the wet one is difficult. Self-recovery – the

spontaneous restoring of the gas layer at ambient conditions – is one of the dreams of

research in superhydrophobicity as it would allow to overcome the fragility of super-

hydrophobicity.

In this work we have performed a theoretical investigation of the wetting and re-

covery processes on a set of surfaces characterized by textures of different dimensions

and morphology in order to elucidate the optimal parameters for avoiding wetting and

achieving self-recovery. Results show that texture size in the nanometer range is a
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necessary condition for self-recovery, but not a sufficient one: the geometry plays a

crucial role – nanopillars prevent self-recovery while surfaces with square pores exhibit

self-recovery even at large positive pressures. However, the optimal morphology for self-

recovery, the square pore, is sub-optimal for the functional properties of the surface,

e.g., high slippage. Our calculations show that these properties are related to regions

of the texture separated in space: self-recovery is controlled by the characteristics of

the bottom surface while wetting and slip by the cavity mouth. We thus propose a

modular design strategy which combines self-recovery and good functional properties:

square pores surmounted by ridges achieve self-recovery even at 2 MPa and have a

very small liquid/solid contact area. The macroscopic calculations, which allowed us

to efficiently devise design criteria, have been validated by atomistic simulations, with

the optimal texture showing self-recovery on atomic timescales, τ ∼ 2 ns.
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Superhydrophobic surfaces are textured surfaces made of hydrophobic materials. A liq-

uid in contact with such surfaces can be suspended over a gas layer entrapped in the cav-

ities by capillary forces: the Cassie-Baxter state1 (CB, Fig. 1a). The reduced contact area

with the solid makes the superhydrophobic Cassie-Baxter state suitable for self-cleaning,2,3

anti-icing,4–6 humidity-proof coatings,7,8 microcondensation,9 drag-reduction,10–12 oil-water

separation,13–15 superhydrophobic electrodes for batteries and fuel cells,16–18 prevention of

corrosion,19,20 and other technological applications. On the same surface and under the same

conditions a liquid might also completely wet the textures; in this case the system is said

to be in the Wenzel state21 (W, Fig. 1b), which is characterized by very large liquid/solid

contact area. The superhydrophobic properties of textured surfaces are related to the inter-

vening gas layer (CB state). For this reason, one should speak of superhydrophobic states
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rather than superhydrophobic surfaces.

In typical applications, Cassie-Baxter and Wenzel are two stable or metastable states of

the system. A surface prepared in the metastable state, e.g., Cassie-Baxter, can remain in

the initial configuration for long timescales, which depend on the thermodynamic conditions

and on the texture characteristics. It is clear that in most applications the transition from

the Cassie-Baxter to the Wenzel state should be delayed or avoided. At the same time, it

is desirable to favor the reverse transition from the Wenzel to the Cassie-Baxter state – the

recovery of superhydrophobicity – should the system undergo wetting due, for example, to

a temporary change of external conditions. The aim of the present work is to design the

geometry and morphology of surface textures in order to realize surfaces that cannot be

wetted under normal conditions and, even when this happens, they are capable of rapidly

recovering without external inputs.

A thought experiment in which the pressure is increased from ambient conditions and

subsequently restored can help understanding the problem of wetting and recovery in more

rigorous terms, following the equilibrium arguments of, e.g., Refs.22,23 At ambient conditions

the free energy of the system presents two minima (Fig. 1c): an absolute minimum – the

stable state, Cassie-Baxter in the hypothesis – and a local minimum – the metastable Wenzel

state – separated by a free-energy barrier ∆Ω†CW. Thus, if this specific system is initially

prepared in the Cassie-Baxter state it remains in this state. When the pressure increases,

the difference of free energy ∆ΩCW = ΩC − ΩW between the Cassie-Baxter and Wenzel

states increases from negative values. Eventually, ∆ΩCW becomes zero at the heterogeneous

coexistence pressure P co (Fig. 1d), and positive for P > P co (Fig. 1e). At moderate pressures

the barrier separating the Cassie-Baxter and Wenzel states, ∆Ω†CW, is much larger than the

thermal energy available to the system, kBT , where kB is the Boltzmann constant and T

the temperature. Thus, the transition time τ = τ0 exp(∆Ω†CW/kBT )24,25 is longer than the

experimental time of observation. Therefore, the system remains kinetically trapped in the

Cassie-Baxter state even when this is metastable. Upon additional increase of the pressure,
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Figure 1: Cartoon illustrating the configuration of the Cassie-Baxter (a) and Wenzel (b)
states, the (meta)stable states of a system consisting of a liquid (l) and gas (g) in contact with
a solid surface (s) with (simple) textures. In the panel (b) are illustrated the characteristic
dimensions of the surface textures considered in the present work: the thickness W , the
spacing (pitch) S and the height H. Panels (c-f) report the cartoon of energy profiles along
the wetting/recovery process at various pressures (pressure increases in going from panel c
to f). At low pressure (c) Cassie-Baxter is stable and Wenzel is metastable. Increasing the
pressure the heterogeneous coexistence is achieved (d) at which the two states (minima) have
the same free energy. Further increasing the pressure Wenzel becomes the stable state (e),
but the two states are still separated by a large barrier, much higher than the thermal energy.
Finally, at large pressures there is no minimum in correspondence of the Cassie-Baxter state:
Wenzel is the only stable state available to the system.

the barrier decreases until it becomes small enough that the system can readily undergo

the Cassie-Baxter/Wenzel transition (Fig. 1f). If the initial external conditions are restored,

the recovery barrier ∆Ω†WC is very large, the system remains kinetically trapped in the

Wenzel state (Fig. 1b) and recovery cannot be achieved. This thought experiment illustrates

why several experimental and theoretical works22,23,26 report that the Cassie-Baxter/Wenzel

transition is irreversible for standard surfaces operating near ambient conditions.

Several strategies have been developed to preserve27–30 or recover31–33 the Cassie-Baxter

state. Hierarchical surfaces have been fabricated to increase the intrusion pressure, but

no quantitative design criteria have been identified yet to fabricate optimal systems. Active
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approaches to enhance wetting resistance have also been considered, such as pressurization of

the gas layer ,28,29 but this adds complexity to the system. Concerning the recovery, several

strategies have been developed, including the in situ development (and spread) of gas,31

electrical switching,32,34 mechanical vibration,33 but also these approaches add complexity

to the system.

Ideally, a superhydrophobic surface should be able to withstand the highest possible

pressure without undergoing a wetting transition22,23,35–41 and recover the Cassie-Baxter

state once the perturbation has ceased (self-recovery). Pioneering attempts to design surfaces

with these characteristics were based on heuristic hypotheses on the Cassie-Baxter/Wenzel

transition mechanism.42–46 More recently, Prakash et al.47 have proposed the modification of

the internal part of nano-pillar surfaces by a sphere of hydrophobic material to enhanced the

resistance to the wetting and promote the recovery. A possible drawback of this approach is

that the hydrophobic sphere necessary to make the recovery barrier negligible occupies most

of the surface cavities, which might affect the function of the surface. Giacomello et al 48

have shown that self-recovery can be achieved even at large pressures, if the surface textures

have the characteristic size of 2 nm or less; the precise dimension depends on the contact

angle of the surface. Here, building upon these early attempts we identify design principles

of self-recovery surfaces which do not affect their functional properties.

To achieve our objectives we first consider a number of surfaces with textures of techno-

logical interest and investigate their properties with respect to liquid intrusion and extrusion.

In particular, we focus on surfaces decorated with circular and square pores, square pillars,

and ridges of nanoscopic size (Fig. 2a-d). We investigate the dependence on the liquid pres-

sure of the wetting and recovery barriers for these systems. From this analysis one identifies

the fundamental design principles affecting the resistance to wetting and self-recovery abili-

ties. Second, on the basis of the wetting properties of simple texture morphologies we design

surfaces combining good superhydrophobic characteristics, robustness of the Cassie-Baxter

state, and self-recovery properties (Fig. 2e-f). For our best surface, we also identify the max-
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imum possible size of the texture that still allows self-recovery, which is a key fabrication

parameter.

The present analysis is based on a combined macro- and microscopic approach. The

wetting and recovery mechanism and barrier of the extended set of systems is studied by

the continuum rare events method – CREaM36– which allows to identify transition barriers

for a liquid in a complex confining environment based on the sharp interface model of a

solid-liquid-gas system. For selected systems, results are validated by standard (MD) and

by restrained molecular dynamics (RMD),49,50 a simulation technique designed to compute

the free-energy profile of systems characterized by large free-energy barriers.

Anticipating our results, we show that the recovery barrier is essentially determined by

the morphology and geometrical characteristics of the bottom of the corrugations, while the

wetting barrier is mainly associated with the characteristics of the top part of the textures.

It turns out that the most efficient topography for self-recovery is the surface with square

nanopores, which, however, typically has a large liquid/solid contact area, resulting in un-

satisfactory superhydrophobic properties. Moreover, in square-pore surfaces one of the walls

of the textures is orthogonal to the flow, with potential limitations to the drag reduction.

Pillar and ridge surfaces, on the contrary, present lower liquid/solid contact areas and per-

form better at reducing drag,51 but their recovery barrier is very large making the wetting

process typically irreversible. These observations brought us to propose a modular design of

textured surfaces consisting of the combination of simple texture morphologies of the kinds

listed above. In particular, we have found that the combination of ridges and square pores,

resulting in a topography of ridge textures with transversal bulkheads at their bottom, ren-

ders surfaces highly resistant to wetting, capable of self-recovery, and retaining the good

superhydrophobic properties of ridges.
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Results and Discussion

We study the thermodynamics and kinetics of the wetting and recovery by considering the

grand potential Ω of the system as a function of the volume of gas Vg in the surface corruga-

tions. This grand potential profile is obtained from a macroscopic model of the three-phase

solid-liquid-gas system as explained in the Methods section. From the grand potential profile

(Fig. 1c-e) one obtains the wetting ∆Ω†CW and recovery ∆Ω†WC barriers at different pressures.

In the present work we take as the operative definition of intrusion pressure, P int (extrusion

pressure, P ext), the pressure at which the wetting (recovery) barrier is 25kBT , corresponding

to a transition time τ = τ0 exp(∆Ω†/kBT ) = 1 s,25 i.e., the order of magnitude of the typical

experimental time. From Ω one obtains also the coexistence pressure P co for the heteroge-

neous system, i.e., the pressure at which the Cassie-Baxter and Wenzel states have the same

grand potential (Fig. 1d).

The three-phase system is described in terms of the sharp interface model, consisting of

solid, liquid, and gas bulk domains separated by sharp discontinuities at their interfaces. The

corresponding grand potential is the sum of bulk and interface terms: Ω = −PsVs − PlVl −

PgVg+γslAsl+γlgAlg+γsgAsg, where Px and Vx are the pressure and volume of a generic phase

x and γxy and Axy are the surface tension and area between the x and y phases, respectively.

Considering that the solid surface does not change during the process, the state of the system

is fully characterized by the liquid/gas interface –the meniscus– whose intersection with the

solid surface determines the volume of each phase and the areas of the various interfaces.

The (relative) grand potential can be recast into the more convenient form:

∆Ω = ∆PVg + γlg(Alg + cos θYAsg) (1)

where the Young contact angle cos θY = (γsg−γsl)/γlg depends on the chemical nature of the

solid, liquid, and gas and ∆P = Pl − Pg is the difference between the pressure of the liquid

and the gas. Within the sharp-interface approximation, in which surface tension terms do not
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depend on the pressure, for a given surface morphology and chemistry, ∆P determines the

relative stability of the Cassie-Baxter and Wenzel states. For convenience, in the following

we will report Ω as a function the gas volume fraction φg = Vg/VT, where VT is the volume

of the texture cavities.

The wetting and recovery processes can proceed with the liquid entering into or exit-

ing from the textures along different trajectories. By trajectory we mean the sequence of

meniscus configurations along the wetting/recovery, i.e., as a function of φg. Different paths

are characterized by different grand potential profiles which correspond to different menis-

cus morphologies along the process and, thus, to different values of the interface terms in

Eq. (1). Among these trajectories, we consider that of maximum probability as identified

by the continuum rare event method (CREaM – described in the Methods section), and

along it we compute Ω (see Supp. Info. for a discussion on wetting via the depinning vs

sagging mechanisms). θY is set to 125◦, corresponding to the state of the art hydrophobic

materials,52,53 and γlg = 0.072N/m, i.e., the surface tension of water at room temperature.

We first consider the wetting/recovery characteristics of four basic types of textures of

interest for technological applications: i) circular and ii) square pores, iii) pillars and iv)

ridges (Fig. 2a-d). The geometry of these textures is characterized by three parameters: the

spacing (S), the thickness (W ), and the height (H) of the solid part of the corrugations

(Fig. 1b). The detailed study of how these three geometrical parameters affect the relative

stability of the Cassie-Baxter vs Wenzel state, the wetting and recovery barriers, the intrusion

and extrusion pressure, and their dependence on the temperature will be discussed in a

forthcoming article. Here we focus on the analysis and design of textures in a range allowing

for self-recovery. In particular, we consider textures of thickness W = 1 nm, with S and H

chosen such that the cross section and volume of the texture are 121 nm2 and 1100 nm3,

respectively (S ∼ H ∼ 10 nm). As we will discuss more in detail below, this size is in the

range allowing self-recovery at ambient conditions.

In Fig. 2a-d we report the grand potential as a function of the amount of gas in the
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Figure 2: Surface textures considered in this work together with grand-potential profiles
expressed in kBT units as function of gas volume fraction (φg) in the cavities at ambient
conditions (∆P ≈ 0.1 MPa). a) Circular and b) square pores, c) pillars, d) ridges. The
final panels show the proposed modular textures: e) square pores/pillars and f) square
pores/ridges.

cavities at ambient conditions. The shape of these curves is qualitatively similar, with two

minima corresponding to the Cassie-Baxter and Wenzel states separated by a barrier. For

all but the pillar system the grand potential of the Cassie-Baxter state is lower than the

Wenzel one, i.e., Cassie-Baxter is stable and Wenzel is metastable. For the pillars the order

of stability between the two wetting states is opposite because of the small hydrophobic

surface area of the thin structures considered in the present work; thicker pillars (higher W )

or a smaller pitch (lower S) will eventually result in a stabilization of the Cassie-Baxter over

Wenzel state. Nevertheless, even when the Cassie-Baxter state is metastable, due to the large

wetting barrier and the correspondingly long transition time (Table 2), a droplet deposited

on the pillar surface or the surface immersed in a liquid will remain in the superhydrophobic

state for experimentally relevant times.

We remark that all the systems considered have a high intrusion pressure due to their

9



Table 1: Characteristics of the textured surfaces considered in the present work; P co is the
heterogeneous coexistence pressure, ∆Ω† is the corresponding wetting and recovery barrier.
For the modular structures (pore/pillars and pore/ridges) P co is the coexistence pressure
between the Wenzel and the intermediate Cassie-Baxter (iC) state: there is no pressure at
which Wenzel and Cassie-Baxter have the same Ω for these surfaces. P int and P ext are the
intrusion and extrusion pressures at room temperature, respectively. As explained in the
text, the operative definition of intrusion and extrusion pressure is the pressure at which the
corresponding barrier is 25 kBT . For modular structures, in which the system presents three
(meta)stable states, P int and P ext are determined by the largest of the two iC/C and iC/W
barriers. In particular, for both modular surfaces the intrusion pressure is the one at which
∆Ω†iCW = 25 kBT . Concerning the extrusion pressure, the relevant barrier is ∆Ω†iCC for the
square pore/pillar surface and ∆Ω†WiC for the square pore/ridge one. The solid fraction f
and the corresponding apparent contact angle θ for a system in the Cassie-Baxter state are
also reported.

P co ∆Ω† P int P ext f θ
[MPa] [kBT ] [MPa] [MPa] [◦]

a) Circular pore 12.6 476 14.9 −9.4 0.24 154
b) Square pore 13.9 421 16.4 1.8 0.17 158
c) Pillars −1.6 788 1.3 −52.7 0.01 175
d) Ridges 5.4 568 8.1 −17.8 0.09 164
e) Square pore/pillars 11.0 283 15.7 −7.14 0.01 175
f) Square pore/ridges 11.1 289 15.7 2.0 0.09 164

Table 2: Wetting and recovery characteristics of standard and modular surfaces at ambient
conditions: wetting, ∆Ω†CW, and recovery, ∆Ω†WC, barriers and corresponding times, τCW and
τWC. At ambient conditions the modular square pore/pillars surface has three (meta)stable
states. Thus, the overall wetting and recovery processes are characterized by two barriers
each and the associated transition times, corresponding to the C→iC and iC→W (left and
right numbers of the slash), and W→iC and iC→C, respectively.

∆Ω†CW τCW ∆Ω†WC τWC

[kBT ] [s] [kBT ] [s]

a) Circular pore 3169 2 · 101365 84 5 · 1025

b) Square pore 3254 1 · 101402 5.7 3 · 10−9

c) Pillars 320 1 · 10128 843 2 · 10355

d) Ridges 1671 6 · 10714 309 1 · 10123

e) Square pore/pillars 152.5/1257 2 · 1055/3 · 10534 6.5/115.5 7 · 10−9/1 · 1039

f) Square pore/ridges 2274 6 · 10976 6.3 6 · 10−9

reduced size; among those, the pore surfaces, in particular the square pore, can better resist

to intrusion. The superior ability of pore surface to resist to intrusion can be intuitively

understood considering that the driving force of the wetting, ∆PVg, which is the same for

all systems, is opposed by the solid/liquid-solid/gas surface term, γlg cos θYAsg, which is
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maximum in the square pore case.

Figure 3: a) Gas volume fraction as a function of time along a MD starting from the Wenzel
state at ambient conditions for the square pore/ridge surface. Complete recovery is achieved
within 1.5 ns. b) Comparison between the atomistic and continuum grand potential; contin-
uum data has been obtained without any fitting of atomistic results. The gray area represents
the confidence interval associated to the determination of the atomistic Ω profile. c) and
d) are selected meniscus configurations observed along recovery in continuum and atomistic
simulations, respectively, at corresponding φg values.

Upon large pressure variations such that P ≥ P int, caused, e.g., by impact54 or evapo-

ration37 of a water droplet, or turbulence in submerged applications,55 the system readily

undergoes a Cassie-Baxter/Wenzel transition. Experiments show that typically when the

external perturbation triggering the transition terminates, e.g., if the pressure perturbation

decreases, the system remains in the Wenzel state, i.e., the transition is irreversible.22 The

reason is that in the original conditions, typically ambient pressure and temperature, the

recovery barrier is very large. This is the case of the nanoscopic pillar and ridge surfaces con-

sidered in this work (Fig. 2c-d), which at ambient conditions present recovery barriers of 840
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and 309 kBT , respectively, corresponding to recovery times τWC ∼ 10355 and τWC ∼ 10123 s

(Table 2). The recovery barrier is much lower in the case of circular and square pores.

In particular, in the case of the square pore the recovery barrier at ambient conditions is

∆Ω†WC = 5.7 kBT and recovery time τWC = 3 · 10−9 s; in other words: nanoscale square-pore

surfaces are capable of self-recovery at ambient conditions. Actually, our calculations show

that nanoscopic square pore surfaces are able of self-recovery also at positive pressures, up to

P ext ∼ 1.8 MPa (Table 1). The extrusion pressures of the four systems follows the ordering

square pore > circular pore > ridges > pillars (Table 1). In particular square pores are the

only system with a positive P ext. These results show that nanocorrugations are necessary

but not sufficient for self-recovery: the morphology of textures crucially affects the recovery

barrier and extrusion pressure.

The relation between ∆Ω†WC, P ext, and the morphology of the textures can be understood

noticing that the configuration of the system at the transition state – the maximum of the

grand potential– is a gas bubble at the intersection between the solid part of the textures

and the bottom wall (Fig. 2). The gas bubble is formed at this place because here the

highest ratio χ = Asg/Alg is achieved. According to the sharp-interface model of Eq. (1)

the denominator is associated to the energy penalty of forming a liquid/gas interface, γlgAlg,

and the numerator to the energy gain of heterogeneous nucleation at an hydrophobic surface,

γlv cos θYAsg, (cos θY < 0 for hydrophobic surfaces); the value of this ratio is maximum for

a bubble located at the intersection between the vertical and the bottom walls of the cavity,

which is where nucleation takes place. In addition, for a bubble of prescribed volume, e.g.,

the volume of the critical bubble of the square pore, this ratio is higher in the square pore

(χ = 1.73), followed by the circular pore (χ = 1.46), the ridge (χ = 1.41) and, finally, the

pillars (χ = 0.97).

Summarizing: all the nanotextured surfaces analyzed here are able to resist to intrusion

under the action of intense pressures, with P int ∈ [1.28, 16.37] MPa; the pore surface emerges

as the best one at resisting intrusion and at achieving recovery, with those decorated with
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square pores being able to self-recover at positive pressures.

One might be tempted to consider the square pore surface optimal for superhydrophobic

applications. However, it must be remarked that for a prescribed thickness W pore surfaces

have a much higher solid fraction f (Table 1) – the ratio between the solid surface wet by

the liquid in the Cassie-Baxter state Awet over the nominal surface Anominal – which might

affect their functional properties. For example, the apparent contact angle θ is an important

parameter to characterize emerged applications of superhydrophobicity, i.e., those involving

a rough surface immersed in air and in contact with liquid drops: typically, the higher θ

the better is the surface at repelling drops. In the Cassie-Baxter state the apparent contact

angle is given by1 cos θ = f(cos θY + 1) − 1, where f is the solid fraction. Thus, for a

given surface chemistry, encoded by θY , the emerged superhydrophobicity, θ, increases with

decreasing solid fraction. The apparent contact angle of the four surfaces considered here is

θcircular = 154◦, θsquare = 158◦, θridges = 164◦ and θpillars = 175◦. A quantitative comparison

for the effect of morphology on drag is more complex but experimental and theoretical works

have shown that pillars and ridge surfaces are better suited for these applications than the

others considered here. For instance, Ref.51 numerically investigates the case of laminar

flows, predicting slip lengths of 30 nm for pillars, 7 nm for ridges, and 2 nm for square

pores with the same f as the present work. For turbulent flows, ridges perform best among

the investigated textures.10 Our results suggest that a single elementary texture is unable to

satisfy all the requirements of superhydrophobic surfaces: resistance to wetting, self-recovery,

high contact angle and/or low drag, etc.

Here we propose a modular design for achieving optimal characteristics for emerged and

submerged applications of superhydrophobic surfaces. This approach consists in combining

two texture morphologies with the same characteristic length on the same surface: a square

pore combined with pillars or with ridges (Fig. 2e-f). This approach is inspired by the

observation that the regions of the textures responsible for the recovery and that for the

functional properties of the surface are separated in space: recovery is determined by the
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morphology and geometry of the bottom while functional properties are controlled by the

characteristics of the top of corrugations, i.e., by the cavity mouth. In particular, since the

recovery transition state consists of a small bubble at one of the bottom corners of the pore

(φg = 0.046, Fig. 2b), a shallow pore is sufficient to induce self-recovery. Thus, the idea is to

install pillars or ridges on top of the pore to obtain a modular surface with, at the same time,

optimal functional and recovery properties. The two modular surfaces we consider have the

same overall height of the pillar and ridge surfaces, with the bottom half consisting of the

square pore and the top half of pillars or ridges.

In the modular surfaces one might observe the formation of a new (meta)stable state,

that we denote as intermediate Cassie-Baxter (iC); this state corresponds to a configuration

in which the meniscus is pinned at the top of the square pore, see Fig. SI4 in the Supp. Info.

Thus, depending on the pressure, with modular surfaces the system might have to overcome

two barriers, W → iC and iC → C, during the recovery process. The largest of the two

barriers determines the recovery time. The dependence of the two barriers on the pressure

might be different; for both modular surfaces the intrusion pressure is determined by the

WiC barrier. Concerning the extrusion pressure, the relevant barrier is ∆Ω†iCC for the square

pore/pillar surface and ∆Ω†WiC for the square pore/ridge one.

As expected, the square pore/pillar surface (Fig. 2e) presents a low W→iC barrier, below

6.5 kBT (φg = 0.03), with a corresponding transition time of 7 ns (Table 2). However, at

ambient conditions the intermediate Cassie-Baxter state is separated from the true Cassie-

Baxter state by a barrier of 115.45 kBT , much lower than the single barrier of the system with

only pillars, but still corresponding to the very large recovery times τ ∼ 1039 s. This means

that along the process the meniscus remains trapped at the intermediate Cassie-Baxter state

and recovery takes place only at very negative pressures, P ext = −7.1 MPa. However, at

these pressures the true Cassie-Baxter state is neither stable nor metastable, and the system

evaporates1.

1The Cassie-Baxter state for the pillar surface considered in this work is (meta)stable with respect to
evaporation only up to ∼ −1MPa
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The iC → C barrier is associated to the depinning of the meniscus from the center of

the edges of the pore. This suggests that reducing the number of edges, e.g., by combining

the square pore with ridges, one could obtain a self-recovery surface without intermediate

states (Fig. 2f). As expected, the modular square-pore/ridge surface presents no major

differences from the square-pore/pillar and square-pore ones in the first part of the grand

canonical potential profile, when the meniscus is within the pore. However, at variance with

the square-pore/pillar surface, the barrier between the internal and external Cassie-Baxter

states is negligible at ambient conditions, and the system is capable of full self-recovery. It is

worth remarking that the for square-pore/ridge the intermediate Cassie-Baxter state exists

only at pressures greater than ca. 3.5 MPa.

In summary, the modular square-pore/ridge surface combines self-recovery properties

characterized by positive extrusion pressure (P ext = 2.0 MPa, associated to the W→iC step

of the path) to good functional properties, e.g., an apparent contact angle of θ = 164◦.

Further analysis shows that textured surfaces of this morphology can achieve self-recovery

at ambient conditions up to a characteristic length of S ∼ 20 nm (see Fig. SI5 of Supp. Info).

This size is typically smaller than the one achievable for the fabrication of complex textures

by top down approaches, such as photolithography.56–58 To go beyond this limitation, in

the future we plan to study textures of simpler fabrication based on the modular principles

established in this work. Nevertheless, larger modular textures, within the range accessible

by photolitography, enhance and facilitate the recovery with active approaches (see Fig. SI7).

It must be remarked that novel specialized techniques59 are very promising for the fabrication

of nanoscopic textured surfaces and might be used to implement the modular design proposed

here.

Comparison with molecular dynamics

The sharp-interface model adopted for modeling the continuum multiphase system implies a

number of approximations which might affect the value of the wetting and recovery barriers,
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especially at the nanoscale. Thus, to validate the results discussed above we have performed

atomistic simulations of the recovery of the modular square-pore/ridge surface. The atomistic

square-pore/ridge surface, shown in Fig. SI2, is obtained from a face-centered cubic crystal of

Lennard-Jones (LJ) particles with a 0.36 nm lattice parameter. The solid particles interact

with the oxygen atoms of the water molecules by a modified LJ potential, which allowed us

to tune the Young contact angle of the material to the same value used in the continuum

calculations. More details are given in the Method section. The atomistic texture pitch,

thickness and hight are S = 29 atoms, W = 6 atoms and H = 25 atoms, of which 11

are relative to the pore. These correspond to slightly different values to those used in the

previous section, namely S = 10 nm, W = 2 nm, and H = 9 nm, of which 4 nm are

relative to the pore and 5 nm to the ridge. The direct comparison of atomistic results with

continuum calculations in Fig. 3 has been performed using these latter values.

We prepared the system in the Wenzel state (Fig. 3a) and ran a constant pressure and

temperature simulation at ambient conditions (further details in the Method section). Soon

after the beginning of the simulation the gas fraction φg in the corrugation increases to

values corresponding to the formation of a supercritical bubble, indicating the presence

of a negligible recovery barrier, of the order of the thermal energy of the system, kBT .

The recovery accelerates during the process (φ̈g > 0) and, in agreement with continuum

predictions, the system does not remain pinned at the internal Cassie-Baxter state. Finally,

when the meniscus reaches the top of the ridges, φg shows damped oscillations resulting from

the combined effect of inertia of the system, the pinning of the meniscus at the corners of

ridges, and the viscosity of liquid.

To explain the recovery dynamics and draw a more direct comparison with the free-energy

sharp-interface calculations we computed the atomistic free energy profile as a function

of the liquid fraction by restrained molecular dynamics (see section Methods for details).

Atomistic and sharp-interface results are consistent both from the point of view of the

recovery mechanism (Fig. 3c-d) and of the energetics (Fig. 3b). For both models the recovery
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starts with the formation of a gas bubble at a corner of the square pore. The bubble then

spreads along the bottom corners of the pore one after the other, until it forms a circular

bubble with the liquid touching the bottom wall at the center of the pore. The bubble grows

further until it detaches from the bottom wall of the textures and the flat meniscus rises

along the pore. Once at the top of the pore, the meniscus gets pinned at an intermediate

position but the pinning force is very small and the recovery continues with an almost-

flat meniscus moving up along the ridges until full recovery of the Cassie-Baxter state is

achieved. Concerning the energetics, atomistic and sharp interface model Ω are in very good

agreement (Fig. 3b), below the error of atomistic simulations. The atomistic model shows no

metastable Wenzel state, i.e., there is no barrier between the Wenzel state, φg = 0, and the

(internal or external) Cassie-Baxter one. This is a small difference from the sharp interface

model, which predicts a small but non-zero barrier. Indeed, this is consistent with the

known limitation of the sharp-interface model that cannot produce a (strict, i.e., barrierless)

spinodal transition, both in bulk, heterogeneous, and confined systems.60,61 In the present

context this does not represent a severe limitation, rather it indicates that the recovery time

predicted by our continuum calculations is an upper limit to the actual value. The absence

of the Wenzel/Cassie-Baxter barrier makes it possible to have a prompt recovery (in the

nanoseconds range) at ambient conditions for a pore/ridge surface of characteristic length

S = 10 nm.

Summarizing, thanks to the separation between the region controlling the recovery –

the intersection between the vertical features of the corrugation and bottom wall – and the

zone determining the functional characteristics of the superhydrophobic surface – the top of

corrugations – one can combine different texture morphologies into a modular surface with

optimal functional and recovery characteristics. In particular, we have shown that ridges

and square pores can be combined to produce self-recovery superhydrophobic surfaces with

very high apparent contact angles.
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Conclusions

In this work, we have investigated the wetting and recovery mechanism and energetics of a set

of nanoscale textured surfaces with different morphologies. We have found that a nanoscopic

size is a necessary but not sufficient condition for the wetting process to be reversible.

Indeed, nanopillars and nanoridges cannot achieve self-recovery after being wet, i.e., there

is no spontaneous recovery at ambient conditions on experimentally relevant timescales. On

the contrary, pore structures, especially the one with square cross section, have very little

recovery barrier and the process takes place readily. The reason for this different behaviour

is related to the area of the hydrophobic solid exposed to the nucleating gas bubble which

starts the recovery process. This solid/gas area of the nucleating bubble, which is maximum

at the corner of the square pore, is the energetic gain balancing the penalty associated to

the formation of a liquid/gas interface characteristic of the nucleus of the new phase.

The optimal morphology for self-recovery, the square pore, is sub-optimal for the func-

tional properties of the surface, e.g., the contact angle or slippage. Considering that at

ambient conditions the critical gas bubble starting the recovery in a square pore is rather

small, with a volume of ∼ 45 nm3, φg = 0.046, we propose a modular morphology, with a

square pore combined with pillars or ridges. The pore/pillar surface presents an intermedi-

ate Cassie-Baxter state resulting from the pinning of the meniscus at the top of the pore.

On the contrary, the pore/ridge surface does not present this problem and it is the optimal

combination for self-recovery and functional properties. Self-recovery for such surfaces can

be achieved for textures of up to 20 nm.

The results discussed above are based on the analysis of a sharp interface model of

the three phase solid-liquid-gas system. These results have been validated by atomistic

simulations of the pore/ridge system, which shows self-recovery on the atomistic timescale

(2 ns). Indeed, the atomistic model of the three-phase system shows a barrier smaller than

that predicted by the sharp interface model, suggesting that actual textured surfaces designed

on the basis of the principles presented in this article might be more efficient at self-recovery
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than estimated from our analysis.

Methods

CREaM

The wetting/recovery path is computed according to the continuum rare-event method

(CREaM).36 The CREaM path is the sequence of liquid/gas interfaces Σlg – the menis-

cus – at a set of values of the gas volume in the cavity φg corresponding to the absolute

constrained minimum (present value of φg) of the grand potential. In practice, CREaM is

an extension of the classical nucleation theory (CNT62–64) to the case of vapor/liquid tran-

sition in a confined system. The numerical minimization of the constrained grand potential

is obtained with the Surface Evolver code.65 The input parameters for the three-phase sys-

tem of Eq. (1) are the Young contact angle, θY = 125◦, the surface tension of the liquid,

γlg = 0.072 N/m, and the difference between the liquid and gas pressures, which at ambient

conditions is ∆P ≈ 0.1 MPa. As shown in Fig. 3, the morphology of the meniscus changes

along the path, reflecting the change of the relative stability among the different bubble

configurations as a function of φg .

Molecular dynamics simulations

Molecular dynamics (MD) simulations have been performed using the LAMMPS code.66

Water molecules in the liquid and vapor phases are represented by the TIP4P/2015 model.67

Their interaction with the walls is described by the modified Lennard-Jones (LJ) potential

v(rab) = 4ε
[
(σ/rab)

12 − c (σ/rab)
6], where rab is the distance between the oxygen atom of

water molecules and the LJ atoms of the wall, ε and σ are the characteristic energy and

length of the LJ interaction, respectively, and c is a parameter which is tuned to achieve the

desired θY (see Fig. SI1 in the Supp. Info.). In the present case c = 0.75, corresponding

to θ = 124.8◦. The contact angle is measured by an independent MD simulation in which
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we deposited and relaxed a large (diameter ∼ 6 nm) cylindrical sessile droplet over a flat

surface.

The composite solid-liquid-vapor system is obtained by placing a slab of water molecules

between a textured and flat surface oriented orthogonal to the z direction. Periodic boundary

conditions are applied along the x ad y directions. The atoms of the textured surface are

kept fixed during the simulation while the atoms of the flat surface are allowed to move only

in the z direction. On the atoms of the flat surface is applied a constant force to keep the

liquid at constant 0.1 MPa pressure. The system is kept at constant 300 K by a Nosé-Hoover

chains thermostat.68

The atomistic Ω is computed by numerical integration of the mean force dΩ/dφ, which

is obtained by restrained MD (RMD40,69–71). RMD consists in running simulations guided

by an extended potential v(r) + κ/2(φg(r)− φ∗g)2, where v(r) is the physical potential and

κ/2(φg(r)−φ∗g)2 is the restraining term forcing the system to visit configurations consistent

with the condition φg(r) = φ∗g. Here φg(r) = (NW − N(r))/(NW − NCB) is the atomistic

estimate of the gas fraction in the textures, with N(r) the number of water molecules in the

textures at the present configuration r, and NW and NCB number of molecules when the

system is in the Wenzel and Cassie-Baxter state, respectively, and φ∗g is the present target

gas fraction. In the limit of large κ, dΩ/dφ∗g = −〈κ(φg(r)− φ∗g)〉RMD, where 〈·〉RMD denotes

average over the RMD simulation.69

Acknowledgement

The research leading to these results has received funding from the European Research

Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC

Grant agreement n. [339446]. We acknowledge PRACE for awarding us access to resource

FERMI based in Italy at Casalecchio di Reno.

20



Supporting Information Available

Measurement of the atomistic contact angle; Structure of the atomistic modular textured

surface; test of convergence of the atomistic mean force; some details of the calculation of

free energy profiles via CREaM This material is available free of charge via the Internet at

http://pubs.acs.org/.

References

1. Cassie, A.; Baxter, S. Wettability of Porous Surfaces. Transactions of the Faraday Society

1944, 40, 546–551.

2. Fürstner, R.; Barthlott, W.; Neinhuis, C.; Walzel, P. Wetting and Self-Cleaning Proper-

ties of Artificial Superhydrophobic Surfaces. Langmuir 2005, 21, 956–961.

3. Bhushan, B.; Jung, Y. C.; Koch, K. Micro-, Nano- and Hierarchical Structures for Su-

perhydrophobicity, Self-Cleaning and Low Adhesion. Philosophical Transactions of the

Royal Society of London A: Mathematical, Physical and Engineering Sciences 2009, 367,

1631–1672.

4. Cao, L.; Jones, A. K.; Sikka, V. K.; Wu, J.; Gao, D. Anti-Icing Superhydrophobic

Coatings. Langmuir 2009, 25, 12444–12448.

5. Farhadi, S.; Farzaneh, M.; Kulinich, S. Anti-Icing Performance of Superhydrophobic

Surfaces. Applied Surface Science 2011, 257, 6264–6269.

6. He, M.; Wang, J.; Li, H.; Song, Y. Super-Hydrophobic Surfaces to Condensed Micro-

Droplets at Temperatures Below the Freezing Point Retard Ice/Frost Formation. Soft

Matter 2011, 7, 3993–4000.

7. Samuel, J. J. S.; Ruther, P.; Frerichs, H.-P.; Lehmann, M.; Paul, O.; Rühe, J. A Simple
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