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ABSTRACT. We solve a mixed spatial duopoly with a generic log-concave con-
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ples show that the inefficiency may increase as the distribution becomes more
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1 Introduction

In the analysis of mixed duopoly, the mixed spatial duopoly model exhibits a
distinctive feature: when the strategic interaction between a public (welfare-
maximizing) firm and a private (profit-maximizing) firm is modeled according
to a Hotelling-type framework, the market outcome is efficient (Cremer et al,
1991). Under the usual assumptions of quadratic transportation costs, constant
production costs, unit demand, full market coverage and uniform consumers’
distribution, a public and a private firm competing over prices and locations
along a linear city end up choosing the locations at which the transportation
costs are minimized and welfare is maximized. This is in sharp contrast with
the results of other mixed duopoly set-ups, where under both quantity and price
competition the existence of a public firm is not sufficient to guarantee that the
market outcome be efficient. Indeed, one of the main normative implications of
the efficiency result is that, in contrast to common findings in mixed markets
analysis, in mixed spatial duopoly there is no advantage for the government to
optimally manipulate the public firm objective function, e.g. through a partial
privatization policy (Lu and Poddar, 2007).

The efficiency property has been shown to be robust to the existence of cost
differentials (Matsumura and Matsushima, 2004) and to the hypothesis of se-
quential choice of locations, provided the public firm be the leader (Matsumura
and Matsushima, 2003), while it vanishes when the assumption of unit demand
is replaced with that of price-elastic demand at each location (Kitahara and
Matsumura, 2013). In this paper we assess its robustness with respect to a
fundamental element of any spatial model, namely the shape of the consumers’
distribution. By solving a mixed spatial duopoly for generic log-concave distri-
butions, we are able to show that the market outcome is typically inefficient,
and that the well-known efficiency property is strictly related to the distribution
being uniform.

In particular, in section 2 we discuss the solution of a mixed spatial duopoly
for a large set of consumers’ distributions, and we compare the outcome of the
strategic interaction between the public and the private firm with the socially
efficient outcome. In section 3 we provide some examples of this comparison
with notable distributions. We conclude in Section 4.

2 Mixed spatial duopoly with non-uniform dis-
tribution

We consider a mixed spatial duopoly of the Hotelling type: a private profit-
maximizing firm (firm 1) competes in prices and locations along a linear city of
unit length with a public welfare-maximizing firm (firm 2). In order to focus
on the role of the consumers’ distribution, we preserve the following standard
hypotheses: (a) firms share the same technology and produce at constant unit
costs, normalized to zero; (b) consumers’ transportation costs are quadratic



in distance; (¢) the gross consumer surplus is always greater than the price
gross of the transportation cost, so that each consumer buys one unit of the
good. We depart from previous analyses by relaxing the hypothesis of uniform
distribution. Rather, we assume the following:

Assumption 1. For any location z € [0,1], a log-concave density f (z) of
consumers is defined with the following properties: (i) f () > 0 for all z € [0, 1],
and f (z) >0 for all z € (0,1); (i) if f(0) =0 then lim,_o+ f’ (z) > 0.

Given this set-up, in the next subsection we discuss the solution of the two-
stage game in prices and locations between the private firm and the public
firm. In subsection 2.2 we solve for the efficient solution and verify under which
conditions the two solutions coincide.

2.1 The non-cooperative equilibrium

Denote with x; and x5 the distances of firms 1 and 2 from the the left end point
0, and assume, without any loss of generality, that z; < x2.! Given quadratic
transportation costs, and the prices p; ad py set by the firms, the location z of
the consumer who is indifferent between patronizing either firm satisfies:

P+ (z—21)? =pa+ (w2 — 2)°

so that
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Accordingly, the demand functions faced by the firms are respectively:

z 1
Dlz/f(x)dx:F(z), Dzz/f(x)d:zrzlfF(z)
0 z

where F' : [0,1] — [0,1] is the cumulative consumers’ distribution. Therefore,
the objective function of firm 1 is:

1 =p1F(2) (2)

Since firm 2 maximizes welfare - the sum of both firms’ profits and the con-
sumers’ net surplus - its objective collapses to minimizing total transportation
costs 1"

z 1
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INotice that we are not imposing any a priori boundary on the location of firms. Following
Cremer et al (1991), we assume that firms have different locations. This is confirmed at
equilibrium.



The price stage At the price stage, minimization of (3) by the public firm
yields the following FOC:

oT dz

oo =1 OV g (=2 = =)’ =0

Since the SOC is verified, this implies that independently of the shape of f(-)
the reaction function of firm 2 is:

pP2=n (4)

As to the private firm 1, profit maximization requires:

omy 0z

— =F(2)+ z)7=— =0
apl ( ) plf( )apl
which, using (1), boils down to:?
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Given (4) and (5), we can now establish the following Proposition.

Proposition 1. For all f (-) satisfying Assumption 1 there exists a unique Nash
equilibrium in prices for any pair of locations (1, x2).

Proof. By total differentiation of (5), the slope of the reaction function of firm
17 D1 (p2)7 is
(1 _ ﬂﬂ&l)
dpy f(z) f(2)
F(z) f'(z
1 (1-F5358)
due to the log-concavity of f(-). Assume now that ps = 0. Since x; < xq,
there always exists a positive price p; which ensures positive profits to firm 1 by
attracting customers located near the left end of the linear city. Therefore, the
best reaction to ps = 0 is some p; (0) > 0. Given that along (5) dp;/dps < 1,
there exists a unique price p2 such that p; (p2) = p2 and both (4) and (5) are
verified.H

Therefore, the Nash equilibrium in prices is:

zita,
;512152:%(%2—%1) (6)

2 As to the SOC for firm 1,

e G <—f(z)+F(z) f’(;)}) <0

a3 (w2 —x1)

since log-concavity implies F'f’ < f2.



The location stage At the location stage, the public firm minimizes (3) with
respect to x2, and the private firm maximizes (2) with respect to x1, by taking
into account the solution of the price stage — which implies z = Z (x1,29) =
(x1 + x2) /2. Therefore, the public firm’s FOC at the location stage is:

1 2
3—5;2/2 (xxz)f(x)d:ru/o zf(x)dr —zo[1 - F(2)] =0

where p = fol x f(x)dz is the average consumers’ location. Integrating by parts,
we obtain:

p—2FE)+5(z) —22(1-F(2)) =0 (7)
where S(z) = [ F(x)dz. Equation (7) can be rewritten as:

4—2F(E) 1 SE) ,
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As to the private firm, its optimal location satisfies:

FOLGN, 206
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Equations (7’) and (8) allow us to establish the following Proposition.

Proposition 2. For all f (-) satisfying Assumption 1, there exists a sub-game
perfect Nash equilibrium in prices and locations at which zo > z7.

Proof. In order to prove Proposition 2 we show that there is a pair (27, z3)
with a3 > «7, which satisfies (7") and (8), and the SOCs are verified at that
solution. We proceed by steps.

STEP 1. By substituting x1 = 2z — x4, equation (8) can be rewritten as:

<2e<2>><x22>l;g)) ~0 (®)

where 0 (2) = F (2) f' (2) /f (2)*. By substituting (7) in (8), we can establish
that an equilibrium exists if there is a location z* € (0,1) at which

L (u—FFE)+S(3) .\ F(3
(29(2))< - F0) > -

and the SOCs are satisfied. Define now the continuous function:

o (u—FFE+SG) L\ FO)
o= -0 (e -2) - 7

Notice that:



(1) limz_o+ ¢ (2) > 0, since limz_o+ F (2) /f (2) = 0,> and limz_o+ 0 (2) < 1
by log-concavity;

(4i) limz_,1- ¢ (1) < 0, since limz_,;- (2 — 0 (2)) > 0 by log-concavity,

lims - ((u— 2F(2) + S() /(1 - F(2))) —2) = 0,  and lims -y F (2) / (2) <
0.

Therefore, continuity of ¢ implies that there exists an internal location Zz*
such that ¢ (2*) = 0, at which ¢’ (Z*) < 0. Given z*, equation (7’) delivers x3,
while ] = 22" — z5. Moreover, z} is strictly greater than x7 since (7’) and (8’)
cannot be both satisfied for x5 = x7
STEP 2. The solution (z7,x3) is an equilibrium if the SOCs of both firms are
satisfied at that solution. This is proved in Appendix A.H

2.2 The efficient solution

We consider now the efficient solution of the above price-location problem. Mini-
mization of transportation costs with respect to prices implies that condition (4)
must hold, so that for any pair of locations efficiency requires z = Z (21, z2) =
(CL‘l + ZL‘Q) /2

As to locations, we first notice that the efficient locations must lie within the
[0,1] interval. The socially optimal choice requires 0T/0z1 = 0 and 9T /Oxs =
0. The latter condition amounts to equation (7’), while the former, using the
definition of Z, can be written as:

(xa =2) F(2) =5(2) =0 (9)

Indeed, the Weierstrass Theorem ensures that the total transportation costs
function has a minimum for z; € [0,1], ¢ = 1,2, z1 < z»; since we can rule out
boundary minima, the system given by (7’) and (9) has an internal solution,
which identifies the efficient location pair (zf",25").5

We now compare the non-cooperative solution with the efficient solution.
The former is given by equations (7’) and (8’), or
uw—2zF(2) 4+ S(2)

(1-F(2))

~ [ p—=ZFZ)+SZ) . F(2)
@ = 2-06)( 30 5 -
(1-F(z))
while the latter solves equations (7’) and (9), or
uw—2F(2)+ S(z)

(1-F(z))

N w—2zF(Z)+S5(Z) . ~ ~
Az) = ( = —Z|F(Z)-S(Z)=0
(1-F(2))

3This follows trivially if f(0) > 0; if £(0) = 0 it can be easily obtained by applying the
Hopital rule under our hypothesis that in this case f’ (0) > 0.
4This relies on the fact that limg S(z) = 1 — p. Indeed, integration by parts of

z—1—
u= fol xf(z)dr yields p=1— fol F(z)dz.

5Boundary minima are excluded by checking that (a) T/dx1 is negative at z1 = 0 and
positive at 1 = x2, and (b) 8T /Ox2 is positive at z2 = 1 and negative at 1 = z2.

T2 =

T2




where the function A (Z) has been obtained by substituting (7’) into (9).
Given that (7’) must hold in both systems, simple inspection clarifies that
the two solutions coincide if:
Ez) ~
™ _ 56
2-0(z) F({®)

Indeed, under a uniform consumers’ distribution —with f (z) =1, f'(x) =0,
F(z) = z and S(z) = 2%/2 — both the above ratios collapse to z/2, and
this ensures that the non-cooperative solution be socially efficient.® In general,
however, this coincidence does not occur and the efficiency property of the sub-
game perfect equilibrium under the uniform distribution must be considered
as an exception rather than the rule. We provide some examples in the next
section.

3 Examples: the Normal and Beta distributions

Tables 1 and 2 show the discrepancy between the sub-game perfect Nash equilib-
rium and the efficient solution for two types of symmetric distributions, namely
the Normal distribution (normalized over the unit interval) and the symmetric
Beta distribution.” In the tables, each column synthesizes the market and effi-
cient solutions under different values of a concentration parameter - the variance
in the case of the Normal distribution, the shape parameter ~ in the case of the
symmetric Beta. It is worth recalling that the Beta distribution collapses to the
uniform distribution for v = 1, so that the first column of Table 2 displays the
benchmark results of the standard formulation of the model.

Table 1: Values of relevant variables under different concentration parameters:
the Normal distribution

0c=0.5 0c=02 o =0.05

aSW 0.27007 0.34552 0.46011

5w 0.72993 0.65448 0.53989

] 0.30040 0.44157 0.48913

x5 0.74112 0.70147 0.55478

F () 0.52426 0.64114 0.67003

T 15116 x 1072 0.24315 0.31190
6The same applies for the linear distribution f(z) = 2z, where both the above ratios

collapse to z/3.

"We use a Normal density defined over [0,1], f(z,0) =

exp (— (z—1/2)%/ (202)> /oV2TE (\/5/40), where E (t) = % f(; e=**dk is the canonical
error function. The symmetric Beta density is g(z,7) = zY~1(1 — x)Y~1/B(y), where
B(y) = jol wY" (1 — u)7 " 1du.



Table 2: Values of relevant variables under different concentration parameters:
the symmetric Beta distribution

y=1 v=2 v=3

oW 0.25 0.3125 0.34375
5w 0.75 0.6875 0.65625
x 0.25 0.35526 0.39749
T 0.75 0.70446 0.67917
F(x%) 0.5 0.54474 0.57159
TNE _pSW _9

L— o0 3.829 x 1072 0.53809

The two tables exhibit some common patterns. The efficient solution is ob-
viously symmetric, with both firms moving symmetrically towards the centre as
the distribution becomes more concentrated. The market solution is asymmet-
ric. Notwithstanding the symmetry of the distribution and the two firms setting
identical prices, the marginal consumer is located to the right of the modal (and
median) location, so that the market share of the private firm exceeds that of
the public firm.

The intuition behind this result is the following. Assume that the public
firm locates at its socially optimal location. The private firm sets its location
by balancing the marginal gain of moving inwards (the demand effect of reach-
ing a larger share of consumers) and the marginal gain of moving outwards
(the strategic effect of relaxing competition). We know that under the uniform
distribution this balance occurs at the socially optimal location. But when
the distribution of consumers is not uniform and central locations are more
populated than external ones, at its socially optimal location the private firm
perceives that the demand effect outweighs the strategic effect. With respect
to the efficient location, the private firm moves to the right, choosing a more
central location. In order to minimize the transportation costs, also the public
firm moves to the right. This implies that the marginal consumer lies at the
right of the modal location and that the market share of the private firm is
larger than that of its public competitor.

The incentive of the private firm to capture the consumers located in the
central area becomes stronger, the more concentrated is the consumers’ distri-
bution. Indeed, in our examples the share of the market served by the private
firm increases as concentration increases, with the interesting implication that a
greater homogeneity in consumers’ tastes amplifies the percentage welfare loss
(the excess of total transportation costs with the respect to the social optimum)
due to strategic interaction.



4 Conclusions

The main finding of this paper is that under a generic log-concave consumers’
distribution the solution of a mixed spatial duopoly model is inefficient. In our
examples this inefficiency increases as the distribution becomes more concen-
trated. When compared with the existing literature, our results can be looked
at as a warning: in models where heterogeneity is crucial, the robustness of the
results with respect to distributional assumptions is indeed a sensitive issue. In
our case the inefficiency of the market solution has important policy implica-
tions, as it lets us envisage a role for those partial privatization policies which
are ruled out as irrelevant under the uniform distribution assumption.

Appendix A. The Second Order Conditions at the Location Stage

Notice that d%%%l =1—0(2) > 0 by log-concavity. Straightforward calcula-
tions show that the SOC of the private firm requires that:

—0(3) < (3—20(3)) =2 (A.1)

(z2—21)

This is true at equilibrium. Indeed, recalling that (ze —2) = (22 — x1) /2, the
derivative of the ¢ (o) function can be written as:

P (2) =— (252)0(3) + 5 2-0(3)] (252) — 3-20(2)]

so that ¢’ (%) < 0 at equilibrium implies

(@) <B-2@) i - TR R-0E) (A.2)

Since 1 — 0 (2) > 0, inequality (A2) holding at equilibrium implies that also
inequality (A1) is satisfied at equilibrium.
Consider now the public firm, the SOC for which requires

2(1—F(3) > 2255 f (3)

At p(2) =0, (x5 —27) f(Z*) /2 = F(z*)/(2—-0(z%)), so that the above in-
equality is equivalent to

2(1—F(3%)) > 2L

2-6(z")
ie., -
F () < 28555h (A.3)

Notice that log-concavity implies 6'(Z) < [1 — 0 (2)] f (2) /F (%), so that (A2)
implies

—L-0ENFE <B-WEN 7 — ey 203



that is

2—0(z" 1-0(Z") )\ z3—x] £ 2% ~
(1—F((2*))_ F(E(*))) 22 f(Z)<3—29(Z

At ¢ = 0, this expression becomes

2-0")  1-6G")\ FG* .
(lfF((ZE*)) - F(E(f))) 272?2*) <3-20(z")

which implies
~ 7—80(27)+20(z%)?
F( )< 9—90(z*)+20(z*)*
7—80(2*)+260(2*)? 2-6(z%)
900G 12067 < 2529(z) &8

so that (A.3) is verified since
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