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 22 

Abstract  23 

Although arsenic (As) toxicity in soil vary depending on its chemical forms and 24 

oxidation states, regulatory limits for this compartment rely on total As content. 25 

Conventional methods of total As determination are expensive and time-consuming. 26 

The development of predictive techniques might enable a speditive assessment of As 27 

contamination in those scenarios, such as thermal spring sites, where exposure to the 28 

metalloid poses a threat to human health. The objective of this study was to assess the 29 

suitability of Visible Near Infrared spectrophotometry for predicting the total As content 30 

in highly calcareous thermal spring soils and the same aim was pursued for those 31 

elements (i.e. Al, Fe and Mn) the chemistry of which is tightly connected with that of 32 

As. A Partial Least Square approach, including cross-validation and external 33 

independent test, was used to relate the concentrations of the target elements to spectral 34 

data. The most accurate prediction was found for As with Pearson’s coefficient, RMSE, 35 

RPD and SEP being equal to 0.94, 69.65, 2.9 and 66.99, respectively. Less accurate 36 

predictions were found for Al (r=0.88; RMSE= 11014; RPD = 1.96; SEP=11014), Fe 37 

(r=0.93; RMSE = 6921.1; RPD = 2.45; SEP=6462.4), and Mn (r= 0.92; RMSE = 38 

542.01; RPD= 2.43; SEP=529.79).  39 

 40 

Keywords: As polluted soil; Hyperspectral spectrophotometry; Visible Near Infrared; 41 

hot springs; speditive soil analysis  42 

 43 

1. Introduction 44 
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Arsenic (As) is a toxic element with carcinogenic capability in humans, causing cancer 45 

of the skin, lungs, liver, and bladder (WHO, 2001). Its toxicity depends mainly on its 46 

chemical form (organic or inorganic) and oxidation state (Bissen and Frimmel, 2003). 47 

The widespread occurrence of As is due to both natural processes and anthropogenic 48 

sources. In soil and related environments, the transformation and mobility of As is 49 

governed by abiotic and biotic processes (Huang and Gobran, 2005; Violante et al., 50 

2008). Several studies demonstrated the close association of As with soil colloids, such 51 

as clay minerals, Al, Fe and Mn (hydro)oxides and carbonates (Sadiq, 1997; Mehmood 52 

et al., 2009). The adsorption capacities of these colloids are affected by pH and redox 53 

conditions in soil and by dynamically changing factors, such as crystallinity, hydration, 54 

isomorphic replacement and changes in cation coordination. For this reason, the 55 

adsorption of As in soil has been defined as a complex and, sometimes, controversial 56 

issue (Sadiq, 1997). In general, the surfaces of Al and Mn (hydro)oxides have been 57 

shown to play a role in As adsorption only in acidic soils (Mehmood et al., 2009). 58 

However, it has been shown that specific adsorption (ligand exchange mechanism) or 59 

chemisorption processes might occur on surfaces of these constituents (Sadiq, 1997). 60 

Moreover, chemisorption of As oxyanions on the surfaces soil colloids, especially those 61 

of Fe oxide/hydroxides and carbonates, is deemed to be a usual mechanism for As solid 62 

phase formation (Sadiq, 1997; Yang and Donahoe, 2007). Under alkaline conditions, 63 

the desorption of arsenate from iron-oxide surfaces is favoured (Dixit and Hering, 2003; 64 

Mamindy-Pajany et al., 2009) since at pH > 8.0 the negative net surface charge of iron 65 

oxide repels negatively charged ions such as arsenate. 66 

Goldberg and Glaubig (1988) reported that calcite decreased the mobility of As under 67 

alkaline conditions via the incorporation of the metalloid into its lattice structure. The 68 
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affinity of As for calcite surface sites, at alkaline pH, was also confirmed by 69 

Alexandratos et al. (2007) who showed the ability of the metalloid to form an inner-70 

sphere complex at the calcite surface. 71 

The development of rapid techniques for assessing As contamination in soil, such as 72 

hyperspectral spectrophotometry, would have significant advantages over conventional 73 

methods. The ultimate benefits of these alternative approaches would be to reduce 74 

analytical costs and introduce a rapid and easy to use measurement technique. Inorganic 75 

toxic elements in soils are absorbed or bound by spectrally active constituents (Song et 76 

al., 2012) and the visible–near infrared (VIS-NIR) region has been reported to enable a 77 

reliable determination of some of them (Kemper and Sommer, 2002; Wu et al., 2005). 78 

The spectral changes in this region are primarily due to iron-containing minerals, such 79 

as, for instance, hematite and goethite (Wu et al., 2005). Moreover, the presence of 80 

various vibrational features of the soil mineral components [e.g., Fe–oxygen (O), Al–O, 81 

Si–O, and hydroxide (OH)] have been shown to contribute to the VIS-NIR spectral 82 

characterization of soils. Although As is spectrally neutral within the VIS-NIR region, 83 

the spectral signatures of As-binding minerals were successfully used for the indirect 84 

estimation of the metalloid in remote sensing applications (Choe et al, 2008). On the 85 

same basis, the As content in soil was predicted with good accuracy by the use of VIS-86 

NIR spectral reflectance (Stazi et al., 2014); in that case, however, the soil had a clay 87 

loam texture and was artificially spiked with As.  88 

To date, the diffuse VIS-NIR spectral reflectance method has not been applied to the 89 

prediction of As in naturally-contaminated and highly calcareous soils. This is the case 90 

of thermal spring sites of volcanic origin characterized frequently by the geogenic 91 

accumulation of As. As a matter of fact, several areas around the world are 92 
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characterized by the widespread presence of As-contaminated geothermal systems 93 

(López et al., 2012; Ormachea et al., 2015; Bundschuh and Maity, 2015).  Moderate to 94 

high levels of As, in fact, are common in soils around thermal spring sites which are 95 

attended by people for recreational purposes. Thus, to address exposure risks to As of 96 

the attendees of these sites, it is important to monitor frequently its concentration 97 

through the use of speditive approaches, such as proximal sensing techniques. In 98 

addition to ingestion, in fact, the exposure pathways of As also involve dermal contact 99 

(Kamunda et al., 2016) and the hazards derived from short-term exposure to this 100 

metalloid in contaminated soil has been reported (White, 1999).  101 

For these reasons, this study was aimed at assessing the feasibility of VIS-NIR image 102 

based reflectance technique in predicting the concentration of As in highly calcareous 103 

soils collected from the immediate proximity of the thermal springs of the Viterbo area 104 

(Baiocchi et al., 2012). Moreover, the prediction ability of the technique was also 105 

assessed for Al, Fe and Mn concentrations, taking into consideration their 106 

aforementioned interactions with As in soil. To this aim, hyperspectral VIS-NIR 107 

spectrophotometry was combined with multivariate statistical analysis, based on partial 108 

least squares (PLS) regression. 109 

 110 

2. Materials and Methods 111 

2.1 Study area and soil sampling 112 

This study was conducted in the Bullicame thermal springs area (Viterbo, Central Italy). 113 

Viterbo is a naturally As-rich area, as a result of the geochemical mobilization of this 114 

metalloid through hydrothermal processes that lead to the up-flow of thermal waters 115 

with an As concentrations up to 300 µg L-1. The area is characterized by sandy-loamy 116 

soils classified as Haplic Calcisol (FAO WRB, 1998) where the presence of this 117 
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metalloid is due to a primary enrichment from volcanic parent material and to a 118 

secondary enrichment caused by the rising of deep fluids generated by the hydrothermal 119 

geological activity. Soil samples were collected, at 0-20 cm depth, in 5 different sites 120 

namely S1, S2, S3, S4 and S5 from the closest to farthest distance (till 350 m) from the 121 

water springs in order to have an As concentration gradient. In particular, after the 122 

removal of the turf, 9 soil cores (approx. 500 g of soil’s fresh weight) were collected 123 

with the aid of a soil corer from each site and each one was transferred to a labelled bag; 124 

as a consequence, 45 samples were obtained in total. All the samples underwent air-125 

drying at room temperature for 4 days prior to sieving (2-mm) and, finally, crushing 126 

with a planetary ball mill (RETSCH PM 100, RETSCH GmbH, Haan, Germany). Each 127 

soil sample was split into two aliquots, one of which destined to chemical determination 128 

of soil physico-chemical properties and the other one to spectral measurements.  129 

 130 

2.2 Soil chemical analysis 131 

Total organic carbon (TOC) and total nitrogen (TN) were determined using an 132 

elemental analyzer (Thermo Soil NC Flash EA1112). Total carbonate content was 133 

measured by the Calcimetry method. Active CaCO3 was determined with 0.1 M NH4-134 

oxalate (Drouineau, 1942). 135 

Active and exchangeable acidity were measured on sieved soil suspended either in a 136 

solution of deionised water (active) or in 1 N KCl (exchangeable), respectively, in 1:2.5 137 

(w/v) ratio. The pH was measured in the supernatant with a pH meter (pH 211, Hanna 138 

Instruments). All analyses were performed on the original samples. 139 

The elements under study were extracted with a microwave-assisted digestion. Nitric 140 

acid (69% HNO3) was of SupraPur grade (Merck, Darmstadt, Germany). High-purity 141 

water (18 MΩ cm) from a Milli-Q water purification system (Millipore, Bedford, USA) 142 
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was used for dilution of the standards, for preparing samples throughout the chemical 143 

process, and for final rinsing of the acid-cleaned vessels, glasses, and plastic utensils. 144 

The external calibration solutions were prepared from standard certified multi-elemental 145 

solutions (CaPurAn, CPA chem, Bulgaria) and Milli-Q water containing 3% HNO3. 146 

As2O3 standard was purchased from CaPurAn. Yttrium was used as the internal 147 

standard. 148 

The purity of the plasma torch argon was greater than 99.99%. The accuracy of the 149 

determinations was assessed using the trace metals loamy sand 3 standard reference 150 

material (CRM034–Fluka). 151 

 152 

2.3 Digestion procedure and Al, Fe, As and Mn quantification in soil 153 

The soil aliquot destined to metal(loid) analysis was subjected to coning and quartering 154 

and the resulting material (approx. 20 g) was digested in duplicate. Each sample (500 155 

mg) was transferred directly into a PTFA microwave-closed vessel and the SupraPur 156 

grade nitric acid (HNO3 69%) (Merck, Darmstadt, Germany) solution (10 ml) was 157 

added to each vessel. The heating program was as follows: from 25 to 165 °C in 10 min, 158 

hold at 165 °C for 2 min; increase from 165 °C to 180 °C in 6 min and, finally, hold at 159 

180 °C for 10 min. After the digestion procedure and subsequent cooling, the digested 160 

samples were diluted to a final volume of 50 ml with High-purity water (18 MΩ cm) 161 

from a Milli-Q water purification system (Millipore, Bedford, USA). Blanks were 162 

prepared for each batch of samples. The acid digestion of the soils samples was 163 

performed using a commercial high-pressure laboratory microwave oven (Mars plus 164 

CEM, Italy) operating at an energy output of 1800 W.  165 
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For elements determination, an inductively coupled plasma optical emission 166 

spectrometer (ICP OES) with an axially viewed configuration (Optima 8000DV, Perkin 167 

Elmer) and equipped with a Scott nebulizer, was used. For the detection of the elements 168 

under study, the following emission lines were chosen: Al (237.31 nm), As (193.7 nm), 169 

Fe (238.2 nm) and Mn (257.6 nm). The external calibration solutions were prepared 170 

from standard certified multi-elemental solutions (CaPurAn, CPA Chem, Bulgaria) and 171 

Milli-Q water containing 3% HNO3. As2O3 standard was purchased from CaPurAn. 172 

Yttrium was used as the internal standard. The purity of the plasma torch argon was 173 

greater than 99.99%. The accuracy of the determinations was assessed using the trace 174 

metals loamy sand 3 standard reference material (CRM034–Fluka). The 2 175 

aforementioned mineralized solutions related to each sampling point were analysed in 176 

duplicate thus resulting in 4 ICP-OES determinations per sampling point.  177 

A sequential extraction of soil was done in order to highlight the distribution of As with 178 

reference to its association with solid phases. A specific procedure for calcareous soils 179 

was carried out according to Matera et al. (2003), with minor modification. The 180 

extraction scheme released the following eight fractions: water-soluble As, As soluble 181 

in MgCl2, As bound to carbonates, As bound to Mn-oxides, As bound to amorphous Fe 182 

oxides, As bound to crystalline Fe oxides, As bound to organic matter and sulphides, 183 

Residual As. 184 

 185 

2.4 VIS-NIR Spectral analysis 186 

Each soil sample was placed and replicated into two borosilicate optical-glass Petri 187 

dishes (Duraplan®) and then displaced against a black background. Since punctual 188 

spectral analysis is extremely less informative than image analysis, a HSI 189 

(Hyperspectral Imaging) scanner was adopted to acquire a whole hyperspectral image of 190 
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the two Petri dishes, belonging to each sampling site. These instruments are highly 191 

informative generating huge amount of data per acquisition. Each scan produces the so-192 

called data hypercube were, the x and y axes represent the pixel position values within 193 

the acquired image, and the third axis (λ) represents the spectral values obtained step by 194 

step (5 nm in this case) following the instrument spectral resolution. Indeed, two 195 

circular ROI (Region of Interest) were extracted and the resulting pixels were averaged 196 

step by step obtaining a 2D matrix. This approach produces extremely stable results in 197 

comparison with conventional punctual systems that suffer from the variability owing to 198 

the acquired small point. 199 

In detail, for the spectral analysis was used a Spectral Scanner (DV Optics, Padua, Italy) 200 

able to acquire whole images with spectral range from 420 to 950 nm (spectral 201 

resolution equal to 5 nm) as previously reported by Menesatti et al. (2010). The VIS-202 

NIR spectrophotometer utilized is made of four components: 1) a sample transportation 203 

platter; 2) a collimated illumination system (Fiber-lite, Dolan-Jenner, Mass., USA) 204 

equipped with a 150 W halogen lamp and illuminating through an optical fiber opening 205 

measuring 200 x 2 mm (LxW) with an angle of 45º with respect to the transportation 206 

plate to minimize light divergence; 3) an imaging spectrographs (ImSpec V10; Specim 207 

Ltd, Oulu, Finland) paired with a standard C-mount zoom interchangeable lens; 4) 208 

digital camera (charge coupled device, CCD, monochrome camera, Toshiba-Teli 209 

CS8310BC). Each frame acquired contains, as explained above, a line of pixels in one 210 

dimension (which represents the spatial axis) plus the spectral pixels in the other 211 

dimension (which represents the spectral axis), thus, providing full spectral information 212 

for each pixel line. The reconstruction of the entire image (hyperspectral) of each 213 

sample is carried out by the software that allows a line by line scanning of the sample 214 

and an “ex post” reconstruction of the sample. The resolution of the line was equal to 215 
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700 pixels by 10 bits. This system was used in a laboratory shielded against light to 216 

minimize ambient noise. The spectral values acquired were expressed in terms of 217 

relative reflectance calibrating the system with white and black references. 218 

For each hyperspectral image, a Region of Interest (ROI) of near 70 x 70 pixels (4900 219 

pixels) was selected by a trained operator in order to determine the average VIS-NIR 220 

spectral reflectance. This was extracted from the central part of each sample image to 221 

avoid any interfering effects (e.g. shadows) of the Petri dish. 222 

 223 

2.5 Statistical analysis 224 

Data were subjected to analysis of variance followed by multiple pair-wise comparisons 225 

by the post-hoc Tukey test. Data were also mean centered and unit variance-scaled (soft 226 

scaling) and then subjected to principal component analysis (PCA) by the use of the 227 

Modde 13.0 software package (Umetrics, Umea, Sweden). The possible presence of 228 

either moderate or strong outliers in scores was assessed by the squared prediction 229 

errors of residuals and Hotelling (T2) of t-scores, respectively (MacGregor and Kourti 230 

1995). At the variable level, variable power (VP), defined as the explained standard 231 

deviation, was calculated by equation: 232 

(1)   
SV

SV
VP

j

j

0
1  233 

where SVj is the residual standard deviation of the jth variable and SV0
j is its initial 234 

standard deviation, which is equal to unity for all variables after soft scaling. 235 

A partial least squares (PLS) regression (Wold et al., 2001; Antonucci et al., 2011; 236 

Febbi et al., 2015) approach was adopted to build prediction models. The employed 237 

protocol involved (1) extraction of raw spectra (X block); (2) digitization of the dataset 238 

of the concentrations of the target elements determined as described in Subsection 2.3 239 
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(Y block); 3) data fusion of the two datasets (X and Y blocks) in a single one for each 240 

regression model to be extracted; (4) partitioning of the sample set relying on joint X 241 

and Y blocks (SPXY) as described by Harrop Galvao and collaborators (2005); (5) split 242 

of the datasets into two subsets, one of which referred to as model set (MS) for the 243 

model (75%) and the other one (test set, TS) for the independent validation test (25%); 244 

(6) cross-validation of the models, (7) application of pre-processing algorithms to both 245 

X and Y; (8) application of PLS (modelling and testing) and, finally, (9) calculation of 246 

the following efficiency parameters of prediction: bias error, standard error of prevision 247 

(SEP), correlation coefficient (r), root mean square error (RMSE), ratio of percentage 248 

deviation (RPD) according to the the RPD classification proposed by Williams (1987) 249 

and the Variable Importance in Projection (VIP) score. 250 

All the statistical analyses were performed by using the software packages (MATLAB 251 

R 2013a, Mathworks, Natick, Mass., USA) and PLS Toolbox 6.5.4 (Eigenvector 252 

Research Inc., Wenatchee, Wash., USA). Several combinations of different pre-253 

processing types and Latent Vectors were tested by a routine written in MATLAB with 254 

an ensuing production of a large number of models. Among these alternative models, 255 

for each of the target element (As, Al, Fe and Mn), the best one was selected on the 256 

basis of maximization of r and RPD (calculated to RMSE of test subset) with 257 

concomitant minimization of SEP and bias error for prediction of their respective 258 

concentrations. The VIP scores were taken into consideration in order to estimate the 259 

relevance of each variable in the projection made by the PLS model and, therefore, for 260 

the variable selection (Taiti et al., 2014). A variable with a VIP score with value close to 261 

or greater than 1 can be considered important in a specific model (Chong and Jun 2005). 262 

 263 

3. Results and Discussion 264 
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 265 

3.1 Soil analysis 266 

The main chemical properties of the soils collected from the area of the thermal springs 267 

near Viterbo are reported in Table 1. The soils were slightly/moderately alkaline with 268 

slight albeit significant differences among some samples. TOC contents were very low, 269 

ranging from 3.4 to 16.8 g kg-1. The contents of total CaCO3, which was the 270 

predominant constituent in the soils under study, varied widely from 135 to 744 g kg-1, 271 

depending on the sampling site. Total As contents in the five soils under study were by 272 

far outside of the concentration range (1-20 mg kg-1) of typical uncontaminated soils set 273 

for this metalloid for agricultural soils (García-Sánchez et al., 2010) and the soil 274 

guidelines (25 mg kg-1) set by the Canadian Council of Ministers of the Environment 275 

(CCME, 1999/2002) for protection of human health. In fact, with the only exception of 276 

the S5 soil, the As content of which was 78.6 mg kg-1, the remaining soils exhibited 277 

concentrations higher than 150 mg kg-1, as shown in Table 1. However, the labile forms 278 

of As are mainly responsible for its toxic and harmful effects on both environment and 279 

human health. Table 1 shows that among the relatively mobile As fractions, the 280 

abundances of which were expressed in percent terms with respect to the total As 281 

content, the dominant fraction was that associated with the carbonates (easily 282 

exchangeable) and ranged from 46.5 to 72.5% for the S5 and S4 soils, respectively. The 283 

cumulative abundances of all the relatively mobile fractions of As ranged from 65.4 to 284 

83.6%, indicating that the metalloid had high bioavailability and mobility in the tested 285 

soils. These results confirm the potential hazard to human health due to the exposure to 286 

As in this area. 287 

In order to show similarity/dissimilarity relationships among the soils collected from the 288 

five sites of the thermal spring area and to gain insights into the effect of variables on 289 
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their distribution, an unsupervised multivariate approach, based on principal component 290 

analysis, was used. Around 71% of total variance was explained by the first two 291 

components. A neat separation of S2 and S5 soils from S1, S3 and S4 ones was evident 292 

along the first component which explained 55.7 % of total variance (Fig. 1). The most 293 

influential variables in driving this separation were CaCO3, Fe, Al and Mn contents 294 

along with real and potential acidity. The scores of the S1 soil were located in the right 295 

hand quadrant which was diagonally opposite to loadings of Mn, Al, Fe and TOC; as a 296 

matter of fact, the S1 soil exhibited the lowest contents of these parameters. The scores 297 

of both S2 and S5 soils, which were the least As-polluted ones, instead, located, in the 298 

lower left quadrant, which was diagonally opposite to the loadings of total As (Fig.1). 299 

Based on data shown in Table 1, and irrespective of the sampling site, Table 2 shows 300 

the correlation matrix among the physico-chemical variables of the soils under study. 301 

For the elements under study, Fe, Mn and Al showed negative and highly significant 302 

correlations (P<0.001) with CaCO3 and to a lesser extent with active carbonates.  303 

Positive and highly significant correlations (P <0.001) were also observed among the 304 

same elements. Conversely, total As was positively correlated with CaCO3 (P=0.004) 305 

and potential acidity (P=0.009) and negatively correlated with TOC (P=0.005).     306 

 307 

3.2 Vis-NIR reflectance spectrophotometry 308 

The concentrations of the elements under study (i.e., As, Al, Mn, Fe), used for the 309 

model’s construction, are shown in Table S1. 310 

Fig. 2 shows that the average Vis/NIR reflectance spectrum of these soils was 311 

characterized by the presence of weak and broad absorption bands in the visible region 312 

while the signals tended to be narrower and sharper in the near-IR region. The spectra of 313 

the soils under study resembled those reported in other investigations (Wu et al., 2005; 314 
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Choe et al., 2008) which suggested that these broad bands in the 400-900 nm range are 315 

mainly associated with iron, e.g. Fe-O, in iron-bearing minerals (Ben-Dor et al., 1999).  316 

Although metal(loid)s are spectrally featureless within the Vis-NIR region, their binding 317 

to spectrally active components of soil, such as clay, metal (hydro)oxides and organic 318 

matter, can induce spectral variations in these components (Ben-Dor et al., 1999). For 319 

instance, Choe and collaborators (2008) found that the combination of different heavy 320 

metals on the mineral surface promoted changes in the spectral features of oxygen and 321 

lattice OH, the extents of which were found to be linked to actual concentrations of 322 

heavy metals. For this reason, a variety of reflectance spectroscopy-based applications, 323 

relying on the spectral signatures of minerals able to bind/sorb metal(loids), have been 324 

developed either for the indirect detection (Song et al., 2012; Stazi et al., 2014; Wu et 325 

al., 2005) or the mapping of metal dispersion (Choe et al., 2008).  326 

However, as previously noted, the reflectance spectra of soils are generally broad and 327 

non-specific, due to the presence of overlapping peaks of soil constituents. 328 

Consequently, chemometric methods are often required to analyse the spectral 329 

characteristics of soil and to relate them to metal concentrations (Song et al., 2012). In 330 

this respect, principal component regression (PCR) (Pirie et al., 2005), support vector 331 

machine (Stazi et al., 2014) and partial least-squares (PLS) regression (Moros et al., 332 

2009) have been exploited to establish models aimed at estimating the concentrations of 333 

metal(loid)s in soils or sediments.  334 

Among them, the PLS regression approach was adopted in this study, due also its ability 335 

to handle multi-collinearity which is intrinsic to reflectance spectra (Summers et al., 336 

2011). Although PLS regression is reportedly able to handle several response variables 337 

at a time, individual PLS models were established for each of the target elements. Table 338 

3 shows the results of the best PLS models for the prediction of Al, As, Fe and Mn 339 
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concentrations through VIS-NIR spectrophotometric analysis which were selected on 340 

the basis of concomitant maximization of both r and RPD and minimization of SEP and 341 

bias. All the best PLS model (Al, As, Fe and Mn) predictions were achieved by using 342 

autoscaling as the pre-processing for the Y-block. 343 

The best model of Al prediction was reached with 7 latent vectors (LV) yielding r 344 

values equal to 0.92 and 0.88 for the training- and the test-set, respectively, while the 345 

respective RPD values were 2.62 and 1.96. The error parameters (i.e., SEP, RMSE) 346 

were very high in both models and tests. 347 

The best PLS model for As prediction was achieved with 5 LV and yielded high r and 348 

RPD values for the model (0.96 and 3.5, respectively); the values of the same 349 

parameters were 0.94 and 2.9, respectively when the model was validated on the test-350 

set. In addition, the error parameters were low, as shown in Table 3. On the basis of 351 

both r and RPD values, the As prediction capacity of the established model was better 352 

than that reported in other investigations (Song et al., 2012; and Stazi et al., 2014).    353 

As for the Fe and Mn predictions, the r and RPD model values were equal to 0.94 and 354 

0.94 and to 3 and 3.02 respectively. The r and RPD test values were equal to 0.93 and 355 

0.92 and to 2.45 (very good) and 2.43 (very good). 356 

Fig. 3 shows the scatter plots of the predicted versus observed concentrations of the 357 

elements under study and the relative r values. From the distribution of data around the 358 

ideal line represented by the bisector of the diagram, it can be noted that the Al model 359 

led to a slight over-prediction and under-prediction in the lower and upper concentration 360 

range of the observed values, respectively. In the case of As, instead, the model 361 

appeared to overestimate predictions in the upper range of the observed values. The 362 

very close distribution of points around the bisector for Fe and Mn indicated that their 363 
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respective models estimated correctly the respective concentrations over the entire 364 

range. 365 

Fig. 2 shows the averaged spectral reflectance curve VIS-NIR (nm) and, for each 366 

element, the vertical grey bars underline the most relevant variables in the VIS-NIR 367 

spectral range, identified on the basis of the greater than one rule of VIP scores. For 368 

each element, the relevant spectral bands can be summarized as follows: Al, 450-470, 369 

495-510, 590-615, 720-755, 855-880, 890-895 and 910-945 nm; As, 445-515, 585-640, 370 

710-780, 790-795, 870-880 and 890-950 nm; Fe 450-465, 490-515, 590-615, 720-755, 371 

855-880, 890-895, 910-930 and 940-950 nm; Mn 450-505, 595-615, 730, 745, 755, 372 

865-880, 890-895, 910-930 and 940-945 nm. 373 

 374 

4. Conclusions 375 

This study showed that VIS-NIR reflectance spectroscopy combined with PLS 376 

regression was used successfully in predicting the As concentration in naturally-377 

contaminated calcareous soils. The same approach was also useful in predicting the 378 

concentration of elements (i.e., Fe, Mn and Al) involved reportedly in interactions with 379 

the metalloid in soil. Among them, the most accurate predictions regarded both Fe and 380 

Mn. These results suggest that Vis-NIR reflectance spectroscopy methods have great 381 

potential for site-specific soil monitoring in high-risk areas destined to recreational 382 

purposes, such as thermal spring sites. 383 
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Figure Captions  509 

 510 

Fig. 1. PCA correlation biplot of soils (filled circles) of the Bullicame thermal spring 511 

area and physico-chemical variables (shadowed triangles). The Arabic numbers at the 512 

end of each score label refer to the identification of sampling sites (Si). The percentage 513 

of variance explained by the first and second component amounted to 55.7% and 14.9%, 514 

respectively. 515 

 516 

Fig. 2. The averaged spectral reflectance curve in the VIS-NIR region and the VIP 517 

scores. The grey bars outline those spectral variables considered more important in the 518 

model (VIP scores ≥ 1). 519 

 520 

Fig. 3. Scatter plots of observed versus predicted values extracted from Partial Least 521 

Squares best models of Al, As, Fe and Mn concentrations. The dashed line in each 522 

diagram represents the bisector and the inset contains the Pearson correlation coefficient 523 

(r).  524 
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