
	
	

Results of an Interlaboratory Comparison of Analytical Methods for 1	
quantification of anhydrosugars and biosugars in atmospheric aerosol 2	

 3	

M. Chiara Pietrogrande*a, Elena Barbarob, M. Chiara Bovec, Giuseppe Clauserd, Cristina Colombie, 4	
Lorenza Corbellaf, Eleonora Cucciae, Stefano Dalla Torreg, Stefano Decesarih, Paola Fermof, 5	
Andrea Gambarob, Vorne Gianellee, Pierina Ielpoi, Roberto Larcherj, Paolo Lazzerid, Dario 6	
Massabòc, Gerardo Melchionnaj, Tiziana Nardini, Marco Paglioneh, Cinzia Perrinog, Paolo Pratic, 7	
Marco Visentina, Nicola Zancah, Roberta Zangrandol 8	

 9	
a Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di 10	
Mortara 17/19 - 44121 Ferrara, Italy 11	

b Department of Environmental Sciences, Informatics & Statistics, University Ca' Foscari of 12	
Venice, Via Torino 155, 30170 Venice Mestre, Italy 13	
  14	
c Department of Physics, University of Genoa, Via Dodecaneso, 33, 16146 Genoa, Italy 15	
 16	
d Agenzia Provinciale Protezione Ambiente, via Lidorno 1, 38123 Trento, Italy 17	
 18	
e ARPA Lombardia, Via I. Rosellini 17, 20124 Milan, Italy 19	
 20	
f Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy 21	
 22	
g National Research Council (CNR) Institute of Atmospheric Pollution Research Rome, Piazza 23	
Aldo Moro 7, 00185 Rome, Italy 24	
 25	
h National Research Council (CNR) Institute of Atmospheric Sciences and Climate (ISAC), Via 26	
Gobetti 101, 40129 Bologna, Italy 27	
 28	
i National Research Council (CNR) Water Institute Research – CNR, Viale de Blasio 5, 70132 Bari, 29	
Italy. 30	
 31	
jEdmund Mach Foundation Research and Innovation Centre, Via Edmund Mach 1, 38010 San 32	
Michele all'Adige (TN), Italy 33	
 34	
kARPA Piemonte, Via Sabaudia 165, 10095 Grugliasco (TO), Italy 35	
 36	
lInstitute for the Dynamics of Environmental Processes-CNR, Via Torino 155, 30172 Venice-37	
Mestre, Italy 38	
 39	
	40	
*Corresponding Author: Prof. M. Chiara Pietrogrande, email: mpc@unife.it 41	
 42	
 43	
 44	
 45	
 46	
 47	
 48	
 49	



1	
	

Highlights 50	
 51	
• An intercomparison study was performed in 10 Italian laboratories for quantifying sugars in 52	

PM. 53	

• Gas and Liquid chromatography and NMR methods were used for analysis of 26 ambient and 3 54	

synthetic PM filters. 55	

• Different separation and detection systems yielded comparable results for most of the samples. 56	

• Low interlaboratory variability (RSD% from 25% to 46%) and good accuracy (ε% within 57	

±20%) were found. 58	

 59	
 60	
ABSTRACT 61	

An interlaboratory comparison was performed to evaluate the analytical methods for quantification 62	

of anhydrosugars – levoglucosan, mannosan, galactosan – and biosugars – arabitol, glucose and 63	

mannitol – in atmospheric aerosol. The performance of 10 laboratories in Italy currently involved in 64	

such analyses was investigated on twenty-six PM (particulate matter) ambient filters, three synthetic 65	

PM filters and three aqueous standard solutions. 66	

An acceptable interlaboratory variability was found, determined as the mean relative standard 67	

deviation (RSD%) of the results from the participating laboratories, with the mean RSD% values 68	

ranging from 25% to 46% and decreasing with increasing sugar concentration. The investigated 69	

methods show good accuracy, evaluated as the percentage error (ε%) related to mean values, since 70	

method biases ranged within ±20% for most of the analytes measured in the different laboratories. 71	

The detailed investigation (ANOVA analysis at p < 0.05) of the contribution of each laboratory to 72	

the total variability and the measurement accuracy shows that comparable results are generated by 73	

the different methods, despite the great diversity in terms of extraction conditions, chromatographic 74	

separation − more recent LC (liquid chromatography) and EC (exchange chromatography) methods 75	

compared to more widespread GC (gas chromatography) − and detection systems, namely PAD 76	

(pulsed amperometric detection) or mass spectrometry. 77	

 78	
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 85	

Capsule 86	

An interlaboratory study evaluated comparability of common analytical methods used to quantify 87	

sugars in ambient aerosol filter samples, as relevant markers of biomass burning and biogenic 88	

emissions. 89	

 90	

INTRODUCTION 91	

There is a general consensus that emissions from residential wood combustion strongly impact air 92	

quality, especially during the winter seasons, when the domestic burning of wood logs, briquettes, 93	

chips and pellets represents an important renewable energy source. In fact, biomass combustion in 94	

domestic appliances has been demonstrated to contribute significantly to emissions of the total 95	

PM2.5 and PM10 and also to contain numerous toxic/carcinogenic components with a potentially 96	

high impact on human health (Calvo et al. 2013; Perrone et al. 2013; Xu et al. 2015). Therefore, 97	

there are increasing efforts in the monitoring of the contribution of such emissions, that is based on 98	

the quantification of the chemical tracers for biomass burning useful to estimate both open and 99	

residential biomass combustion to fine particle concentrations. The key tracer is levoglucosan - with 100	

minor quantities of its isomers mannosan, galactosan - as primarily produced during biomass 101	

combustion as the pyrolytic decomposition product of cellulose and hemicellulose (Calvo et al. 102	

2015; Herich et al. 2014; Kourtchev et al. 2011; Puxbaum et al. 2007). 103	

Despite regulations being needed to increase the incentives to take these compounds into 104	

consideration, tools that facilitate accurate monitoring of them are also important. Although several 105	

procedures have been applied to analyze sugars in atmospheric aerosol, the absence of a 106	

standardized method leaves still open the question of whether results generated by a given method 107	

accurately depict the true concentration of each sugar in the aerosol and whether the results from 108	

various methods are comparable (Kourtchev et al. 2007; Schkolnik and Rudich 2006; Yttri et al. 109	

2015). Because NIST Standard Reference Materials of Fine Particulate Matter are available only for 110	

three anhydrosugars sugars (i.e., SRM2786 e SRM2787) and matrix effects caused by non-target 111	

background interferences may lead to the reporting of inaccurate concentrations, interlaboratory 112	

comparison studies are the best means to assess the comparability of the reported data on a 113	

compound-by-compound basis (Lundstedt et al. 2014; Vanderford et al. 2014; Yttri et al. 2015). 114	

The present paper describes an interlaboratory study with the objective to compare the performance 115	

of 10 laboratories for quantifying sugars in ambient aerosol using the most common methods in 116	

ongoing research and monitoring efforts, as reported in the scientific literature so far. They are gas 117	

chromatographic methods that have been the well-established for many years (Fabbri et al. 2008; 118	
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Hsu et al. 2007; Pashynska et al. 2002; Pietrogrande et al. 2013) and liquid chromatographic 119	

methods that were more recently developed and are actually gaining attention (Barbaro et al. 2015; 120	

Caseiro et al. 2007; Piazzalunga et al. 2012; Piot et al. 2012; Yttri et al. 2015). The investigated 121	

methods differ to a large extent with respect to crucial parameters, such as extraction procedure and 122	

derivatization agent, chromatographic separation and detection systems, which are variously 123	

combined in the investigated procedures. This adds additional strength to any conclusion to be 124	

drawn from the study.  125	

In order to investigate the possible effect of unknown interferences in the complex PM matrix, the 126	

study was performed on different sample types, i.e., aqueous standard solutions, synthetic PM 127	

filters and PM ambient filters.  128	

 129	

EXPERIMENTAL SECTION 130	

Participating laboratories/Methods. Ten laboratories located in different cities in Italy 131	

participated in the current intercomparison exercise. A brief overview of the various analytical 132	

methods is given in Table 1 − including information about the instrument used for separation and 133	

detection of the analytes, the solvent(s) and experimental condition used for extraction and whether 134	

analytes derivatization was applied – and the details on the analytical performance of each method 135	

and the quality of quantification standards are presented in the Supplementary Information (Table 136	

S1). Most of the participating laboratories used high-performance anion-exchange chromatography 137	

(EC), demonstrating that such recent instruments are actually being more widespread employed for 138	

analysis of sugars in aqueous extracts. EC systems were coupled with pulsed amperometric 139	

detection (EC-PAD) (Piazzalunga et al. 2012) or with mass spectrometric detection (EC-MS) 140	

(Barbaro et al. 2015). Another procedure is based on High Performance Liquid Chromatography 141	

combined with Mass Spectrometry (HPLC-MS, lab LC-MS) (Piot et al. 2012). Two gas 142	

chromatography-mass spectrometry (GC–MS) methods were investigated, as well established 143	

methods for separation and quantification of sugars in environmental samples. They make use of 144	

solvent extraction followed by derivatization with N,O-bistrimethylsilyltrifluoroacetamide 145	

(BSTFA) in combination with trimethylchlorosilane (TCMS) in order to increase the volatility and 146	

thermal stability of the molecules and to reduce their surface interactions (Fabbri et al. 2008; 147	

Pietrogrande et al. 2013). 148	

Finally, a methodology based on proton nuclear magnetic resonance spectroscopy (1H-NMR) was 149	

considered, as a very different non-destructive method used for the characterization of organic 150	

compounds in many applications and since the last fifteen years even for organic aerosol 151	

characterization (lab NMR). It allows direct analysis of samples avoiding separation due to the 152	
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selectivity of the spectroscopic detection provided by specific signals in the spectrum given by 153	

organic compounds (Decesari et al. 2006; Paglione et al. 2014. 154	
 155	

Samples preparation and shipment. The intercomparison study was performed on different 156	

sample types representing gradually more complex matrices in order to investigate the possible 157	

contribution of the sample components to the performance of the analytical methods: 1) aqueous 158	

standard solutions, 2) synthetic PM filters and 3) PM ambient filters. 159	

Three aqueous standard solutions were prepared with known concentrations of six sugars at three 160	

concentration levels (low, medium, high) covering the air concentration values typically found in 161	

Italy (Bernardoni et al. 2011; Bigi et al. 2012; Khana et al. 2016; Lonati et al. 2007; Piazzalunga et 162	

al. 2012; Pietrogrande et al. 2016) (Supplementary Information, Table S2). Based on the 163	

levoglucosan concentration, different levels of the other sugars were computed as a relative ratio: 164	

0.12 for mannosan and 0.06 for arabitol, mannitol, galactosan, and glucose. These standard 165	

solutions were distributed to the participating laboratories, with the exception of laboratories using 166	

GC- based techniques.  167	

Three synthetic PM filters were prepared by squirting aqueous standard solutions of the six sugars 168	

at 3 different levels onto the quartz filters (samples check L, check M and check H, respectively). 169	

An ultrasonic nebulizer (Spectrosonic, Spectro) was used following a procedure described in detail 170	

in the Experimental Section of the Supplementary Information (Preparation of synthetic PM filters).  171	

A total of twenty-six ambient PM2.5 samples collected in two different locations in Northern Italy − 172	

Milan (sixteen filters) and Borgo Valsugana, Trento (ten filters) − were analyzed to represent 173	

different levels of the target sugars as well as different chemical composition of other contaminants. 174	

Milan, the biggest city of Northern Italy, is characterized by high PM levels emitted by different 175	

anthropogenic sources (Bernardoni et al. 2011; Bigi et al. 2012; Lonati et al. 2007). The PM2.5 176	

filters were sampled at an urban background station using a high volume automatic outdoor sampler 177	

to collect air volumes of ≈717 m3 per day on quartz microfiber filters. Each filter had an exposed 178	

surface area of 154 cm2 from which 1.5 cm2 punches were taken and sent to the participating 179	

laboratories (PM samples MI 1-16). 180	

Borgo Valsugana is a small town of about 7000 inhabitants situated in the Alps, at an altitude of 181	

400 m in a narrow part of a valley where atmospheric pollutants stagnate during wintertime and 182	

where the use of wood burning for domestic heating is extremely diffused (Herich et al. 2014; 183	

Khana et al. 2016). A low volume sequential outdoor sampler was used to collect air volumes of 184	

≈55 m3 per day on 47 mm diameter quartz fiber filters. Ten PM2.5 samples sent to the participating 185	
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laboratories were prepared by combining 3 punches (each of 0.5 cm2 surface) taken from 3 different 186	

filters (samples TN 1-10).  187	

A levoglucosan concentration ranging from ~60 ng m-3 to ~1500 ng m-3 was expected in ambient 188	

PM2.5 samples, based on literature data (Bernardoni et al. 2011; Bigi et al. 2012; Herich et al. 2014; 189	

Khana et al. 2016; Lonati et al. 2007; Pietrogrande et al. 2015). 190	

The procedure of sample collection is described in detail in the Experimental Section of the 191	

Supplementary Information (Collection and preparation of ambient PM filters).  192	

The samples sent to each participating laboratory were wrapped in aluminum foils and then placed 193	

in a zip-lock polyethylene bag. Each receiving laboratory was requested to store the samples in a 194	

freezer at -18°C until analysis. The dead-line for reporting the results was set to be within 90 days 195	

after shipment. 196	

 197	

Data Analysis and statistical evaluation of the results. The whole dataset of the participating 198	

laboratories was pretreated by eliminating outlying data points (detected by using the Chauvenet's 199	

criterion) (Tailor 1997) and properly handling values below detection limit (substituted with a value 200	

of half of the detection limit). The median, mean and standard deviation (SD) were calculated for 201	

each of the analyzed samples, i.e., 26 real-word PM2.5 samples, 3 synthetic filters and 3 aqueous 202	

standard solutions. The interlaboratory precision was estimated by computing the relative standard 203	

deviation (RSD%) for each analyzed sample and the accuracy of each measured result was 204	

evaluated by the percentage error (ε%) related to median values.  205	

In addition, for each sugar, the outcomes of the intercomparison were investigated as laboratory 206	

aggregated results: the concentrations of 29 filters (i.e., 26 ambient and 3 synthetic filters) measured 207	

in each laboratory were grouped and the mean and 95%-confidence limits of the data were 208	

calculated.  209	

All the details on data analysis are reported in the Experimental Section of the Supplementary 210	

Information (Data Analysis).  211	

One-way ANOVA (ANalysis Of VAriance) was applied to single out statistically significant 212	

differences among the mean of various laboratories, by choosing a confidence level of 95%. N-way 213	

ANOVA was used to determine which factors or combinations of factors are associated with the 214	

differences. The investigated factors were the separation techniques (i.e., EC, GC, LC) and the 215	

detection systems (i.e., PAD, MS, 1H-NMR) used in each analytical method (Table 1) and the 216	

sample type for each analyzed sample, i.e., MI, TN, check, solution. 217	
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The Principal Component Analysis (PCA) was applied to the dataset as an exploratory tool for 218	

singling out the relationships among the objects (analyzed samples) and the variables (laboratories) 219	

(Massart et al. 1997). 220	

All the details on data analysis are reported in the Experimental Section of the Supplementary 221	

Information (Statistical evaluation of the results).  222	

All mathematical and statistical computations were performed using the MATLAB 7.5.0 software 223	

program. 224	

 225	

RESULTS AND DISCUSSION 226	

Among the 10 participating laboratories, all reported levels for levoglucosan, whereas seven 227	

returned concentrations of mannosan and galactosan and only five of the participating laboratories 228	

analyzed arabitol, glucose and mannitol. For this reason, the results have been separately evaluated 229	

for levoglucosan and the two groups of sugars (i.e., anhydrosugars and biosugars). 230	

 231	

Interlaboratory precision: results for levoglucosan. The levoglucosan concentrations measured 232	

for each ambient and synthetic filters by each lab are shown in Figure 1, where the mean and 233	

standard deviation vales for each sample are reported. From these data, the interlaboratory precision 234	

was evaluated by computing the mean concentrations along with the relative standard deviation 235	

(RSD) among the labs’ results for each sample. These data are summarized in Table 2 and reported 236	

in detail in the Supplementary Information Tables S3 and S4. 237	

The calculated mean concentration of levoglucosan ranged from 0.05 µg punch-1 (filter samples MI 238	

2, Table S4) to 13.60 µg punch-1 (filter sample TN 1). This range corresponds to an ambient 239	

concentration of levoglucosan ranging from 7 to 2000 ng m-3, under the sampling procedures used 240	

in this study. These values represent the range previously observed in cold seasons in the 241	

investigated area, with extremely high values at TN (Trento, Borgo Valsugana site), that are 242	

consistent with the strong contribution of wood burning for domestic heating in a location close to 243	

the Alpine region (Bigi et al. 2012; Herich et al. 2014; Khana et al. 2016).  244	

Overall, the mean RSD of the laboratories for each sample was 41% (Supplementary Information 245	

Table S3) showing an acceptable interlab variability, in comparison with the intralab precision 246	

reported by individual methods, showing that most methods had RSD values of ≤10% 247	

(Supplementary Information Table S1). A close inspection of RSD as function of solute 248	

concentration shows that interlaboratory precision increased with levoglucosan concentration, with 249	

a RSD close to 30% for the samples with concentrations higher than 3 µg punch-1 (Table S4).  250	
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Larger interlab variability was found for the Milan samples (mean RSD ~45%, Table S3) in 251	

comparison with those from Trento with similar levoglucosan concentration (mean RSD ~35%, 252	

Table S3). Such additional may be ascribed to the lack of homogeneity in analyte concentration on 253	

the large surface (154 cm2) filters used for collecting PM samples in Milan. A homogeneity test was 254	

performed on such filters in the lab EC-PAD2 by submitting to levoglucosan analysis 15 punches 255	

taken from the same filter (test repeated on 3 different filters). A mean relative standard deviation of 256	

7% ±3% was obtained, that gives an indication that most of the variation increase in the Milan data 257	

could be attributed to the inherent variability in the large filters, in agreement with what was before 258	

reported by Yttri et al. (2015).  259	

In order to investigate the contribution of the intrinsic variations of the different methods, the 260	

intercomparison study was performed also on three aqueous standard solutions containing known 261	

amounts of levoglucosan. Only eight of the participating laboratories delivered such data, since the 262	

two GC-based methods are excluded as the sample preparation methodology requires solvents 263	

instead of water for the extraction procedure (Table 1). In general, the obtained results show good 264	

interlaboratory precision (RSD%~17%) independent of analyte concentration (Supplementary 265	

Information Table S3 and Table S4).  266	

The contribution of each laboratory to the total variability was investigated in detail by reporting the 267	

outcomes of the study as laboratory aggregated results by grouping the concentrations of the 29 268	

filters measured in each laboratory (Table 2). One-way ANOVA analysis was applied to the data in 269	

order to single out significant differences in the mean values of each laboratory (ANOVA Tables 270	

are reported in the Supplementary Information Table S6 only for the statistically significant models 271	

at confidence level of 95%). A multiple comparison procedure was then applied to identify the 272	

laboratories that produced such significantly different results (p < 0.05). The labs EC-PAD4, EC-273	

PAD5 and GC-MS2 were found to deliver significantly lower results and the lab NMR higher data 274	

(values in bold in Table 2). 275	

Then N-way ANOVA was applied to separately single out the different factors that contribute to the 276	

variability of the final results, namely the sample type and the procedure characteristics, as reported 277	

in Table 1. The data of the NMR lab were excluded from such a computation for the lack of result 278	

generalization, since only one lab using 1H-NMR detection without preliminary separation was 279	

included in this study. Two separated two-way models were investigated using pairs of factors 280	

(separation-sampling site and detection-sampling site), since the three-way models based on all 281	

factors show missing factor combinations. The ANOVA Tables of the two models show that the 282	

sampling site is the only parameter having a significant effect (p ~ 0) on the measurement 283	

variability, while differences in separation techniques – IC, LC and GC – as well as in detection 284	
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systems – PAD and MS – don’t significantly (p < 0.05) affect the mean values measured in the nine 285	

investigated laboratories. 286	

Interlaboratory precision: results for anhydrosugars. Mannosan and galactosan were analyzed 287	

in 7 of the ten participating laboratories, excluding labs EC-PAD4, EC-PAD5 and NMR 288	

(concentration values reported in Figures 2 and 3, mean and relative standard deviation summarized 289	

in Table 2 and reported in detail in the Supplementary Information Tables S3 and S5).  290	

The calculated mean concentration ranged from 0.02 to 2.0 µg punch-1 for mannosan − 3 - 300 ng 291	

m-3 in ambient air – and from 5 to 800 ng punch-1 − 0.7-130 ng m-3 − for galactosan (Table S5). 292	

These values are consistent with those observed in Italian urban and rural areas, in particular during 293	

wintertime characterized by a strong impact of wood burning (Bernardoni et al. 2011; Bigi et al. 294	

2012; Khana et al. 2016; Lonati et al. 2007; Piazzalunga et al. 2012; Pietrogrande et al. 2016).  295	

Similar interlaboratory precision was found for the 2 anhydrosugars (total mean RSD% = 38%), 296	

that is close to the  mean RSD% = 34% obtained for levoglucosan in the same laboratories. 297	

When the data are grouped according to sample types, a pattern similar to that of levoglucosan is 298	

observed, with larger variability for PM filters collected in Milan described by a mean RSD% value 299	

of 40% and 46% for mannosan and galactosan, respectively (Supplementary Information Table S3).  300	

Five of the participating laboratories analyzed the aqueous standard solutions of mannosan and 301	

galactosan, i.e., EC-PAD1, EC-PAD2, EC-PAD3, EC-MS and LC-MS (detailed results in 302	

Supplementary Information Tables S3 and S5). The data show an excellent precision for galactosan 303	

(i.e., RSD% = 12%), and still better for mannosan (RSD% = 6%).  304	

The concentration data of the 29 filters measured in each laboratory were aggregated by laboratory 305	

in order to single out the contribution of each laboratory to the total variability (Table 2). The good 306	

comparability among the procedures is supported by similar mean values among the laboratories 307	

with no statistically significant difference (p < 0.05) singled out by one-way ANOVA analysis. 308	

 309	

Interlaboratory precision: results for biosugars. The study was extended to the most common 310	

saccharides present in vascular plants and microorganisms (i.e. arabitol, glucose and mannitol). 311	

Glucose has been proposed as source-specific tracers for soil biota released into the atmosphere by 312	

farmland soil suspension and natural soil erosion (Jia et al. 2010; Kourtchev et al. 2011; Medeiros et 313	

al. 2006; Pietrogrande et al. 2015, 2016). In addition, monosaccharides, mainly glucose, can be 314	

emitted as uncombusted material during the burning process of wood, where they are present as 315	

hemicellulose constituents (Medeiros et al. 2006). Sugar alcohols, as arabitol and mannitol, have 316	

been used as biomarkers to estimate atmospheric fungal spore abundance (Jia et al. 2010; 317	

Kourtchev et al. 2011; Medeiros et al. 2006). 318	
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Biosugars were measured in five of the participating laboratories, i.e., labs EC-PAD1, EC-PAD2, 319	

GC-MS2, EC-MS and LC-MS – all mannitol data below the detection limit – (mean concentration 320	

and relative standard deviation reported in Tables 2 and Table S3, Supplementary Information). 321	

In the investigated samples, similar concentrations were found for arabitol and mannitol, with 322	

values ranging from 8 to 200 ng punch-1 (ambient concentration: 1 to 30 ng m-3 ). Nearly double 323	

concentrations were measured for glucose in the 20-400 ng punch-1 range (3 - 60 ng m-3). These 324	

values are consistent with those observed in Italian urban and rural areas: higher values at the Milan 325	

site can be explained by the concomitant contribution of several emission sources (Bernardoni et al. 326	

2011; Bigi et al. 2012; Lonati et al. 2007; Pietrogrande et al. 2015). 327	

The evaluation of the interlaboratory precision showed good reproducibility for arabitol (RSD% ~ 328	

26%) and still acceptable for glucose and mannitol (RSD% ~ 40%, with the exception of the 329	

samples collected at Trento, RDS% = 62%, Supplementary Information Table S3). It must be 330	

underlined that the concentration range investigated for biosugars (0.02-0.2 µg punch-1) was more 331	

limited in comparison with that studied for anhydrosugars (from 0.02 to 2 µg punch-1 and even to 12 332	

µg punch-1 for levoglucosan), as typical levels commonly found in real world samples.  333	

The one-way ANOVA analysis on the results aggregated by laboratories showed that there were not 334	

statistically significant differences (p < 0.05) among the mean values of the 5 laboratories (Table 2). 335	

Concerning the analysis of aqueous standard solutions of biosugars,  excellent precision was found 336	

for glucose and mannitol (RSD% ~6%, Table 2) and good for arabitol (RSD% = 10%).  337	

Despite this study is limited to a few participant laboratories and therefore the comparison with the 338	

other determined sugars is poor, the obtained results confirm the generally good interlaboratory 339	

precision, with none of the participants distinguishing themselves by reporting significantly higher 340	

(or lower) results. 341	

 342	

Measurement accuracy: results for levoglucosan. Measure accuracy was evaluated by percentage 343	

error (ε%) calculated for levoglucosan results of each of the twenty nine filters analyzed in the 10 344	

participating laboratories (ε% calculation and detailed results in the Supplementary Information 345	

Table S4). From these data the mean values were computed for all the samples (total mean, Table 3) 346	

as well as from separated groups (i.e., samples collected at Milan, Trento or synthetic samples) 347	

(Supplementary Information Table S3, mean MI, mean TN, mean check). The mean ε% for the 348	

various samples ranged from -11 to +33 that is consistent with the overall accuracy of each 349	

analytical method (Supplementary Information Table S1). This result is even better by considering 350	

that ε% values decrease to a narrower range from -6% to +12%, for the samples with concentration 351	

higher than 4 µg punch-1. The data show a variation with the sample type, with the filters collected 352	
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in Milan affected by higher errors (ε% ~8%) in comparison with those from Trento (ε% ~-1%) with 353	

similar levoglucosan concentration ≤4 µg punch-1 (mean MI, mean TN). 354	

The original ε% values were aggregated by laboratory and the mean ε% was calculated for each of 355	

the 10 laboratories to separately investigate the accuracy of each laboratory (Table 3). From the data 356	

it can be seen that of the ten participating laboratories, six have mean ε% values within ±25% (labs. 357	

EC-PAD1, EC-PAD2, EC-PAD5, GC-MS1, GC-MS2 and LC-MS), which should be considered a 358	

narrow range. The labs EC-PAD3 and EC-PAD4 delivered less accurate data with ε% values close 359	

to 30% and the NMR lab with ε% higher than 40%. In general, the accuracy found in this study is 360	

better than that (from -63 to 20%) reported by Yttri  et al. (2015) in a similar inter-comparison study 361	

involving 13 laboratories using EC-PAD, EC-MS, LC-MS and GC-MS methods.  362	

The ANOVA of the data singles out statistically significant differences (p < 0.05) among the mean 363	

values of the laboratories (Supplementary Information Table S6). A multiple comparison procedure 364	

showed that such differences are due to the most negatively biased results obtained in the labs EC-365	

PAD4, EC-PAD5 and GC-MS2 (-26.6%, -22.4% and -21.9%, respectively) and the most positively 366	

biased data from the labs NMR and EC-PAD (47.0% and 43.8%, respectively) (values in bold in 367	

Table 3). 368	

Then to identify the contribution to the measure uncertainty of the separation, detection and site 369	

factors, N-way ANOVA was applied to the data of nine labs, excluding the NMR lab, since it is the 370	

only laboratory using an analytical technique without preliminary separation. The ANOVA results 371	

show that differences neither in sample type nor in separation techniques and detection systems 372	

have a significant effect (p < 0.05) on the result accuracy of the nine participating laboratories.  373	

 374	

Measurement accuracy: results for anhydrosugars. The analytical accuracies for mannosan and 375	

galactosan were investigated by computing ε% for the 29 samples analyzed in 7 laboratories (labs 376	

EC-PAD4, EC-PAD5 and NMR don’t measure such analytes) (total mean in Table 3, detailed 377	

results in the Supplementary Information Table S5). Good accuracies were found, as described by 378	

the mean ε% values ranging from -22 to 14% for mannosan (total mean -3.6%) and from -11% to 379	

22% for galactosan (total mean 1.3%). The excellent accuracy is confirmed by evaluating the data 380	

grouped by sample type, since a good precision is observed even for the less concentrated filters 381	

collected in Milan (ε% = -4.7% and 2.8% for mannosan and galactosan, respectively, 382	

Supplementary Information Table S5).  383	

The accuracy of each laboratory was evaluated by aggregating the original ε% values by laboratory 384	

(Table 3). Good accuracy was obtained for mannosan, as described by ε% ranging from -37 to 23%. 385	

Five  of the seven participating laboratories, corresponding to 72% of the laboratories, yielded mean 386	
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ε% values within ±18% range. Indeed, two of them (EC-PAD3 and EC-MS) show an exceptionally 387	

narrower range of ±2%. Similar accuracy was found for galactosan (ε% from -51% to 28%), with 388	

ε% values within ±10% for five laboratories, corresponding to 72% of the laboratories (labs EC-389	

PAD1, EC-PAD3, EC-MS, GC-MS1, GC-MS2 and LC-MS, Table 3 ). These percentage errors are 390	

substantially narrower than those recently reported by Yttri et al. (2015) that found wider errors 391	

ranging from 60 to 69% for mannosan and still wider from to -84 to 68% for galactosan. 392	

The ANOVA of the data singles out similar behavior of mannosan and galactosan accuracy with 393	

significantly (p < 0.05) less accurate results obtained in lab EC-PAD2 (-37.2% and -50.8% for 394	

mannosan and galactosan, respectively) and lab LC-MS (~25% for both sugars), as indicated by the 395	

multiple comparison procedure (values in bold in Table 3). For both sugars, the results of N-way 396	

ANOVA show that among the investigated factors − separation, detection and site – the separation 397	

type displays a significant effect on ε%, as a single parameter (p < 0.002 and p < 0.01, for 398	

mannosan and galactosan, respectively) and as interaction term (site*sep) (p < 0.002 and p < 0.01, 399	

for mannosan and galactosan, respectively) (Supplementary Information Table S6). This effect is 400	

likely due to the large bias of the results obtained with the LC-MS method. However, any general 401	

conclusion cannot be drawn from this study, since only one of the participating laboratories used 402	

this procedure. 403	

The intrinsic accuracy of the different laboratories was evaluated by computing the percentage 404	

error, ε%, for the aqueous standard solutions (related to the true concentration in each solution, as 405	

reported in Supplementary Information Table S1). For levoglucosan, an excellent accuracy (mean 406	

ε% ≤ 3%), independent of standard concentrations, was found  for the 8 participating laboratories 407	

(Supplementary Information Table S3, mean soln, and Table S4, detailed values). Even better 408	

accuracy was obtained for mannosan and galactosan, with mean ε% ≤ 1%, independent of standard 409	

concentrations (Supplementary Information Table S3, mean soln, and Table S5, detailed values).  410	

 411	
Measurement accuracy: results for biosugars. For biosugars, the ε% values computed from the 412	

data of the participating laboratories show an excellent accuracy (ε% within ±8% range), as the total 413	

mean computed on all the samples (within ±5% range, total mean, Table 3) as well as the grouped 414	

values according to sample type (ε% ≤ 7%, Supplementary Information Table S3), indicating that 415	

the measurement accuracy is not affected by the analyte concentration and matrix complexity, 416	

within the concentration range investigated (0.02-0.7 µg punch-1). Within the limits of the low 417	

number of participating laboratories, this is a very comforting result, considering the low 418	

concentration levels of the measured biosugars. 419	
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By  aggregating the original ε% values by laboratory and calculating the mean ε% was for each 420	

sugar, we can observe a general good accuracy for arabitol and mannitol in all the laboratories, as 421	

described by the obtained ε% mostly within ±10% range. (Table 3). Less accurate data were 422	

obtained for glucose, since the mean ε% values ranged from -40% to +20% (Table 3). 423	

The mean values of the laboratories show statistically significant differences (p < 0.05) that were 424	

singled out by ANOVA analysis (Supplementary Information Table S6). The multiple comparison 425	

procedure showed that for arabitol significantly more negatively biased data are obtained from the 426	

lab EC-PAD1 (ε% ~ -20%) in comparison with the other laboratories (value in bold in Table 3). For 427	

glucose, less accurate results were obtained from the labs EC-PAD2 and LC-MS that largely 428	

underestimated the results (ε% = -40% and -30%, respectively) and, regarding mannitol, 429	

significantly more overestimated values were provided by the GC-based method (ε% = 51% for 430	

GC-MS2 lab) (values in bold in Table 3). 431	

For the aqueous standard solutions, the mean percentage error, ε% values shows variable results 432	

with low ε% ≤ 2% for glucose and mannitol, but as high as -10.9% for arabitol (Supplementary 433	

Information Table S3). It must be underlined that these results may be invalided by the limited 434	

number of the laboratories that delivered the results, i.e., 4 for arabitol and glucose and 3 for 435	

mannitol.  436	

Principal Component Analysis of laboratory accuracy. Finally, the PCA analysis was performed 437	

on the accuracy data of the five laboratories that analyzed all the six sugars, i.e., EC-PAD1, EC-438	

PAD2, EC-MS, LC-MS and GC-MS2. The model was applied to 18 objects describing the mean 439	

percentage error, ε%, computed from all the filters and separately from the Milan and Trento 440	

samples. In the computed PCA model, the sum of PC1, PC2 and PC3 explained 87% of the total 441	

variance of the data: PC1 =38%, PC2 =28% and PC3 =21%. The simultaneously depiction of the 442	

loadings and scores as a biplot makes it possible to simply visualize the effect of the different 443	

methods on measurement accuracy (Figure 4). The plot shows that the PC1 axis clearly 444	

discriminates two groups of liquid-based procedures, namely EC-PAD2 and EC-MS laboratories, 445	

with positive loadings located on the right side of the plot, and EC-PAD1 and LC-MS laboratories, 446	

with negative PC1 values. The PC2 axis distinguishes the separation methods, with positive 447	

loadings only for the gas-based method GC-MS2.  The proximity among sugar scores and method 448	

loadings depicts how each method over/under estimates the sugar results. Levoglucosan is mostly 449	

overestimated by the EC-MS method (ε% = 47%, Table 3) and underestimated by the EC-PAD1 450	

and GC-MS2 labs (ε% = -7.2% to -21.9%, respectively). Mannosan and galactosan scores show a 451	

similar pattern, being overestimated by EC-PAD1 and LC-MS laboratories, mainly the LC-MS lab 452	

(ε% ~ 25%), and underestimated by the EC-PAD2 lab (ε% = -37.2% and -50.8% for mannosan and 453	
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galactosan, respectively). EC-PAD2 laboratory produces positively biased values of arabitol (ε% = 454	

8.8%) and EC-PAD1 negatively biased results (ε% = -19.6%). Glucose and mannitol scores show a 455	

similar pattern, with overestimated values delivered by the GC-MS2 laboratory, mainly for 456	

mannitol (ε% = 50.9%). In addition, for glucose the EC-PAD2 and LC-MS labs produce negatively 457	

biased results (ε% = -40.3% and -30% for EC-PAD2 and LC-MS, respectively, Table 3). These 458	

results confirm that among the various laboratories the differences in measurement accuracy, 459	

although in general not statistically significant, cannot be attributed to a specific subclass of 460	

analytical methods for the six sugars. 461	

 462	

CONCLUSIONS 463	

In the current study we compared the results of 10 laboratories that analyzed sugars in ambient 464	

aerosol samples using the most common methods reported in the scientific literature so far.  465	

More general conclusions may be drawn for levoglucosan (based on data of ten participating 466	

laboratories) and somewhat less for mannosan and galactosan (seven laboratories), while only 467	

limited information for biosugars (five and four laboratories). 468	

As a general conclusion, the results obtained are encouraging with respect to precision and accuracy 469	

and suggest that levels of the investigated sugars in PM samples obtained by most common 470	

analytical methods provide comparable results. This is proved by good interlaboratory precision of 471	

the various analytical methods, as defined by RSD ranging from 25 to 46%, and acceptable 472	

accuracy varying from -2 to 51%, and within ±20% for 8 of the 10 participating laboratories.  473	

Despite the fact that the investigated methods − in terms of extraction procedure and derivatization 474	

agent, chromatographic separation and detection systems − prevents us from comparing the 475	

performance of different subclasses of analytical methods, some general conclusions emerge from 476	

the data.  477	

First, the procedures involving liquid (EC and LC) and gas chromatography provide similar results, 478	

despite the GC-based procedures are by far the most commonly used one within the research 479	

community and they also have the longest record of use. Consequently, the present results show that 480	

the more recently developed LC and EC methods are suitable to provide reliable results, despite the 481	

shorter experience associated with these less widespread analytical procedures.  482	

Second, the different extraction conditions, i.e., water versus solvent, involving silyl derivatization, 483	

have a negligible influence on the obtained results at the concentration levels investigated in this 484	

study. 485	

Finally, no significant differences can be attributed to the choice of the detection system, such as 486	

PAD or mass spectrometry. 487	



14	
	

However, because of a certain degree of variability between laboratories, results from this study 488	

clearly demonstrate that attention must be payed to quality assurance of each laboratory procedure 489	

in terms of intralaboratory precision and accuracy that are particularly challenging for highly 490	

complex samples such as PM collected in urban sites.  491	

 492	
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Tables, Figures and Caption 637	

Table 1. Overview and short description of the analytical methods used by the participating laboratories in the present 638	
intercomparison: instrument used for separation and detection of the analytes, chromatographic column used for separation, 639	
solvent(s) used for extraction (solvent volume and ultrasonication duration) and whether derivatization of the analytes was applied. 640	

Laboratory 
code 

Analysis Instrument Separation Column Extraction solvent/ 
derivatization 

EC-PAD1 Dionex ICS2500 Metrosep Carb-2- CO3 Trap-1/ water (15 ml, 60’) 

EC-PAD2 Metrohm 886- Metrohm Metrosep Carb-2 CO3 Trap-1/ water (15 ml, 30’) 

EC-PAD316 Dionex ICS1000 Dionex CarboPac PA20  column water (15 ml, 60’) 

EC-PAD416 Dionex - ECD-3000RS Dionex CarboPac PA10  column water (15 ml, 60’) 

EC-PAD516 DC3000 Dionex CarboPac PA10  column water (15 ml, 30’) 

EC- MS19 Dionex ICS 5000 - ESI(-) single 
quadrupole MSQ 

DionexCarboPac 
PA10column (glucose) 
MA1column (others) 

water (7 ml, 14’ x 2) 

GC-MS113 GC-MS (quadrupole) (Agilent) DB-5MS  column 
Acetonitrile (15 ml 20’ x 2) / 

BSTFA derivatization 
 

GC-MS215 GC – MS (ion trap) (Thermo) DB-5MS  column 
Methanol:dichloromethane (9:1, 15 ml, 30’) / 

BSTFA derivatization  

LC-MS  
UHPLC (Ultimate 3000RS) 

HQOMS (Q-Orbitrap) 
RCM-Monosaccharide Ca+2 

(8%) column water (15 ml, 30’) 

NMR20 Varian Unity INOVA 600MHz  water (15 ml, 60’) 

 641	

 642	
 643	
 644	
 645	
 646	
 647	
 648	
 649	
 650	
 651	
 652	
 653	
 654	
 655	
 656	
 657	
 658	
 659	
 660	
 661	
 662	
 663	
 664	
 665	
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Table 2. Results of interlaboratory precision study: concentrations of six sugars analyzed in 29 filters − 26 ambient PM2.5 and 3 666	
synthetic filters – expressed as µg punch-1,  with 1.5 cm2 punch surface area: mean values (mean) and confidence limit (I.C. at p < 667	
0.05). Total values were computed from all the data measured in ten laboratories for levoglucosan, seven for mannosan and 668	
galactosan, five for arabitol and glucose, four for mannitol.  669	
Aggregated laboratory values were computed from the samples analyzed in each laboratory. Values in bold are laboratory means 670	
significantly (p < 0.05) different from the others. 671	

concentration 
(µg punch-1) Total EC-

PAD1 
EC-

PAD2 
EC-

PAD3 
EC-

PAD4 
EC-

PAD5 EC-MS GC-MS1 GC-MS2 LC-MS NMR 

Levoglucosan            

mean 3.61 3.69 3.17 4.06 1.84 2.82 3.52 4.00 2.81 4.27 6.72 

I.C. 1.43 1.64 1.43 1.80 1.05 1.23 1.87 1.47 1.28 1.88 1.60 

Mannosan            

mean 0.48 0.50 0.52 0.72   0.49 0.38 0.40 0.50  

I.C. 0.29 0.22 0.31 0.34   0.25 0.15 0.20 0.22  

Galactosan            

mean 0.20 0.20 0.12 0.22   0.29 0.16 0.24 0.33  

I.C. 0.12 0.09 0.08 0.11   0.13 0.06 0.10 0.12  

Arabitol            

mean 0.12 0.12 0.11    0.06  0.13 0.22  

I.C. 0.12 0.12 0.08    0.04  0.10 0.18  

Glucose            

mean 0.25 0.28 0.14    0.24  0.27 0.15  

I.C. 0.11 0.13 0.14    0.11  0.11 0.10  

Mannitol            

mean 0.15 0.17 0.13    0.10  0.47   

I.C. 0.14 0.15 0.12    0.07  0.30   

 672	

 673	
 674	
 675	
 676	
 677	
 678	
 679	
 680	
 681	
 682	
 683	
 684	
 685	
 686	
 687	
 688	
 689	
 690	
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Table 3. Results of measurement accuracy for six sugars evaluated as mean percentage error (ε%)  computed in 29 analyzed filters − 691	
26 ambient PM2.5 and 3 synthetic filters −: mean values (mean) and confidence limit (I.C. at p < 0.05). Total values were computed 692	
from all the data measured in ten laboratories for levoglucosan, seven for mannosan and galactosan, five for arabitol and glucose, 693	
four for mannitol.  694	
Aggregated laboratory values were computed from the samples analyzed in each laboratory. Values in bold are laboratory means 695	
significantly (p < 0.05) different from the others. 696	

ε% Total EC-
PAD1 

EC-
PAD2 

EC-
PAD3 

EC-
PAD4 

EC-
PAD5 

EC-
MS GC-MS1 GC-MS2 LC-MS NMR 

Levoglucosan            

mean  4.4 -7.2 -6.2 30.2 -26.6 -22.4 47.0 19.1 -21.9 10.8 43.8 

I.C. 4.1 7.3 11.6 16.0 18.0 4.8 12.8 14.9 5.7 11.5 18.2 

Mannosan            

mean  -3.6 10.5 -37.2 2.4   -1.9 -18.4 -12.5 23.2  

I.C. 2.7 5.2 20.7 9.8   19.3 13.6 8.0 13.9  

Galactosan            

mean  1.3 5.7 -50.8 1.0   11.2 -13.3 8.4 27.6  

I.C. 3.5 10.6 16.9 14.7   11.3 11.5 16.5 7.5  

Arabitol            

mean  -0.1 -19.6 8.8    4.6  2.3 17.7  

I.C. 3.9 9.5 14.0    11.3  5.9 12.7  

Glucose            

mean  -4.9 17.1 -40.3    10.5  20.2 -30.0  

I.C. 3.6 11.0 18.8    14.8  10.2 17.2  

Mannitol            

mean  4.5 -4.2 -8.0    -1.4  50.9   

I.C. 11.2 6.7 14.4    13.7  10.1   

 697	

Figure 1. Levoglucosan concentration values measured for each sample by ten laboratories: stars are the mean concentrations and 698	
bars the standard deviation calculated on all non-outlier measurements. 699	
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Figure 2.   Mannosan concentration values measured for each sample by seven laboratories: stars are the mean concentrations and 701	
bars the standard deviation calculated on all non-outlier measurements. 702	

 703	

 704	

Figure 3.  Galactosan concentration values measured for each sample by seven laboratories: stars are the mean concentrations and 705	
bars the standard deviation calculated on all non-outlier measurements. 706	
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Figure 4.   PC2 vs. PC1 biplot of the results of PCA analysis performed on the accuracy of the six analyzed sugars. Blue segments: 719	
loadings, i.e. laboratories; red points grouped in ellipses: scores, i.e., sugars. 720	
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