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ABSTRACT4

A new approach toward a fully CAD-integrated structural analysis of arched masonry struc-5

tures is proposed and a new MATLABr-based computational tool, named ArchNURBS, is de-6

veloped. It is addressed to professionals dealing with restoration or structural rehabilitation of7

historical constructions, who need to assess the safety of masonry arches under assigned load8

distributions. By using it, they can easily produce estimates of the carrying capacity of curved9

masonry members, and specifically arches of arbitrary shape. A Computer Aided Design (CAD)10

environment, which is very popular among professionals, can be employed to provide a Non-11

Uniform Rational B-Splines (NURBS) representation of the arch geometry. On the basis of such12

a representation it is then possible to perform both an elastic isogeometric analysis and a limit13

analysis of the structure up to the collapse load. Moreover, the developed tool is also devised14

for handling the presence of Fiber-Reinforced Polymers (FRP) reinforcement strips at the extra-15

dos and/or the intrados. This allows for the design of properly dimensioned reinforcement and16

its verification according to current building codes. The entire procedure relies upon a sound17

theoretical background. ArchNURBS is going to be freely distributed as an open-source project18

(http://sourceforge.net/projects/archnurbs/).19
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reinforced polymers21

INTRODUCTION22

The paper is concerned with an ancient topic, the analysis of the structural behavior of curved23

masonry members like arches, which is here being revisited through modern tools, leading to the24

development of a new MATLABr-based open-source computational tool named ArchNURBS for25

the safety assessment of masonry arches.26

Currently, there is a large amount of literature regarding the analysis up to collapse of masonry27

arches and several methods are available for the assessment of the mechanical behaviour of his-28

torical masonry constructions. The interested reader is addressed to (Roca et al. 2007) and (Tralli29

et al. 2014) for an extensive state-of-the-art survey. A number of commercial software products30

which allow evaluating the bearing capacity of a masonry arch have been developed (LimitState31

Ltd. 2007; Gelfi 2008; AEDES 2014). However, these computer codes mainly cover those cases in32

which the arch shape can be assimilated to a polyline. Nonetheless, even though many arches may33

be correctly represented by a polyline, there is a wide class of arches which are not. For instance,34

this is the case of either masonry arches where the dimensions of the blocks are much smaller than35

the arch characteristic dimensions (see, for example, the three-centered masonry arch of Llanell-36

tyd Bridge, Wales, portrayed in Fig. 1a) or arches composed by rounded stone voussoirs (see, for37

example, the arch of Porta Asinaria in Rome, Italy, depicted in Fig. 1b). Furthermore, a suitable38

approach capable of accurately and efficiently analyzing these cases is still lacking. Computer39

Aided Design (CAD) is a natural environment for developing a tool for the analysis of masonry40

arches which is both efficient and intuitive for professionals in the field of structural engineering41

and structural rehabilitation of historical masonry constructions, among which the use of CAD42

design representation techniques is widespread.43

A CAD geometric representation of curved masonry members of arbitrary shape can be ob-44

tained through the use of Non-Uniform Rational B-Splines (NURBS) which consist of rational45

basis functions built upon common B-Splines basis functions in such a way that a given set of46

points lying in a known range is suitably approximated with a sufficiently high degree of regu-47
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larity. Development of NURBS began in the 1950s and was carried out by engineers (mostly in48

the car manufacturing business) who needed a mathematically precise representation of free-form49

surfaces like those used for ship hulls, aerospace exterior surfaces, and car bodies, which could be50

exactly reproduced whenever it was technically needed. NURBS are commonly used in Computer51

Aided-Design (CAD), -Manufacturing (CAM), and -Engineering (CAE) systems and are part of52

numerous industry-wide standards. They can be efficiently handled by computer programs and yet53

allow for easy human interaction. In general, editing NURBS geometries is highly intuitive and54

predictable. Moreover, NURBS exactly represent particular geometries such as circles, parabolas55

and ellipses (Piegl and Tiller 1997).56

In the last decade, NURBS have been extensively studied and developed for both describing57

the geometry of a structural model and for representing (with the role of basis functions) the dis-58

placement field within the Finite Element Method (FEM) (Hughes et al. 2005). Even if the use59

of polynomial functions belonging to the spline family for the approximate solution of boundary60

value problems dates back almost four decades (see e.g. (Prenter 1975; de Boor 1978; Benedetti61

and Tralli 1989; Gontier and Vollmer 1995)) this new method, which is known as Iso-Geometric62

Analysis (IGA), was precisely developed to cover the wide existing gap between the worlds of63

FEM and CAD (see e.g. (Hughes et al. 2005; Bazilevs et al. 2006; Cottrell et al. 2009; Benson64

et al. 2010; Auricchio et al. 2012)). As it is well-known, the term isogeometric is referred to a co-65

incidence of the geometric model, which is built in a CAD environment, and the structural model66

(i.e. the FEM model) used for performing stress analysis. In traditional FEM analysis structural67

model and geometric model never coincide since they are both representations of a true object but68

relying on different basis functions. This, in turn, produces accuracy-related issues in the com-69

putations, particularly for curved thin structures. Besides, if NURBS are used as basis functions,70

their smoothness is inherited by the FEM model, too: this is particularly important because it al-71

lows circumventing some serious difficulties in developing finite elements, e.g. flexible beams and72

plates where both bending and shear deformation must be accounted for. Moreover, the better a73

function is approximated, the smaller the error affecting its derivatives: since stress fields are not74
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the primary solution variables, but need to be computed by differentiating displacements through75

post-processing techniques, smoother displacement fields ensure a more accurate approximation76

of the stresses.77

On the other side, the growing interest in the preservation of masonry structures gave, in the78

past, an impulse towards the development of new efficient tools for evaluating the ultimate load-79

bearing capacity of these structures, in particular of masonry arches. From a mechanical point of80

view, the analysis of masonry arches begins with the contributions of the late 1600s English school81

(Hooke, Gregory) who stated the analogy between the inverted shape of a catenary and an arch82

subjected to compressive stresses. Nowadays a sound theoretical framework for the evaluation of83

masonry arches exists and it can be affirmed (following Huerta (Huerta 2001) and Como (Como84

2013)) that the modern theory of limit analysis of masonry structures, which has been developed85

mainly by Heyman (Heyman 1966; Heyman 1982), is a powerful tool for properly understanding86

and analyzing curved masonry structures. Many other methods of analysis, other than limit anal-87

ysis, can be used, of course, for determining the ultimate load carrying capacity of masonry arch88

bridges, e.g. non-linear FEM analysis, discrete element analysis, hybrid discrete/finite element89

methods etc. (see, for instance, (Crisfield 1997; Cundall and Strack 1979; Munjiza 2004)) and a90

number of commercial FEM codes have been developed (e.g. DIANA). However, with such meth-91

ods the collapse load is identified as a by-product of an indirect (and potentially long) iterative non92

linear analysis procedure, which is often prone to numerical instabilities. Moreover, a non-linear93

incremental analysis of a masonry structure requires the definition of many material parameters94

which have to be precisely known in order to get reliable results. Finally, limit analysis may sim-95

ply be extended to the case of masonry having a limited compressive strength (see e.g. (Livesley96

1992; Orduna and Lourenço 2003)) and to the case of FRP (fiber-reinforced polymers) reinforced97

arches (see e.g. (Caporale et al. 2006; Basilio et al. 2014; Briccoli Bati et al. 2013)).98

Nevertheless, a NURBS-based approach to limit analysis is still lacking. Moreover, a software99

product for the structural analysis of masonry arches which is capable of dealing with complex100

geometries which are not adequately approximated by a polyline has not been devised yet. Such a101
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tool should allow the user to import the exact arch geometry, which can be easily generated within102

a CAD environment using NURBS curves. In addition, the tool should allow the user to carry103

out both an elastic and a limit analysis of the arch to be studied in order to assess its mechanical104

response respectively under service loads and at failure. In order to reach a new level of accuracy105

and to make the usage of the software simple and intuitive, such analyses should be based on the106

NURBS representation of the arch geometry.107

In this paper, a new open-source CAD-based tool for the analysis of masonry arches which108

is specifically addressed to professionals in the field of structural engineering and structural re-109

habilitation of historical masonry constructions is proposed. The tool, named ArchNURBS and110

developed in MATLABr environment, is based on a combination of IGA and limit analysis, both111

relying on the NURBS representation of the arch which can be easily obtained from CAD design112

products which are very popular among professional architects and civil engineers. As already113

discussed, NURBS representation of the arch guarantees a higher accuracy of analysis, especially114

when compared to a standard polyline representation of the same arch. An isogeometric finite ele-115

ment elastic analysis of the arch can be useful to assess the response of the arch under usual service116

loads which should not push the thrust line out of the arch depth. Even if standard curved finite ele-117

ments could be used to accurately analyze an arbitrarily shaped arch, these tools are quite advanced118

and often out-of-reach for a professional engineer or architect, whereas IGA allows for greater ac-119

curacy without requiring the final user any particular effort. On the other hand, a NURBS-based120

limit analysis is used for assessing the ultimate bearing capacity of the arch. Therefore, the pro-121

posed tool allows for a fast evaluation of the safety level of a masonry arch under various loading122

conditions. Furthermore, algorithms which allows to take into account the effect of masonry crush-123

ing, sliding between blocks and additional FRP reinforcements placed either at the intrados or at124

extrados of the arch have been devised and implemented.125

Such a tool could be particularly appreciated if one considers, for instance, the widespread126

damages that the 2012 Emilia (Italy) earthquake produced to ancient historical buildings, with a127

great loss for the Italian cultural heritage; after the earthquake, professionals engineers and archi-128
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tects have been called to assess the safety of a huge number of ancient masonry constructions,129

where arched and vaulted systems are recurrent, and to devise effective seismic retrofit interven-130

tions. Another reason lies in the fact that since the exact shape of the arch to be studied is usually131

not known in advance, a precise surveying of the structure is needed. This surveying is often132

carried out through the use of laser scanning techniques which may be imported in a CAD envi-133

ronment as a cloud of points. A CAD exact representation of the arch geometry is then possible134

and constitutes the basis upon which both an elastic and a limit analysis can be performed in an135

integrated way.136

ArchNURBS is the first computational tool proposed in literature which allows for the eval-137

uation of the load bearing capacity, and thus of the safety level, of arbitrarily loaded masonry138

arched structures, starting from a NURBS representation of the real arch generated within a CAD139

environment. To this aim, a new NURBS-based approach to limit analysis has been devised and140

extensions which allows to include finite masonry compressive strength, sliding between blocks141

and FRP reinforcement have been added to it. Finally, an isogeometric analysis has been made142

possible within ArchNURBS in order to allow the user to evaluate the elastic structural response143

of the arch under the action of service loads.144

The paper is organized as follows: in Section 2 a synthetic survey on how the geometric shape145

of a masonry arch can be described by a NURBS representation is given. The adopted struc-146

tural models and isogeometric elastic analysis are then recalled and commented upon in Section 3.147

In Section 4 we address the limit analysis based on the NURBS geometry representation of the148

arch and its application to the case of FRP reinforced arches and to masonry arches with a lim-149

ited compressive strength. Section 5 is devoted to presenting a comparison with experimental re-150

sults taken from literature and some meaningful numerical examples, all of them developed within151

ArchNURBS. Finally, conclusions will be drawn in Section 6.152

GEOMETRY DESCRIPTION153

ArchNURBS is a structural analysis tool for masonry arches having arbitrary shape based154

on a NURBS representation of the arch geometry which can be easily obtained within a CAD155

6



design environment. Description and computation of geometries in commercial CAD packages are156

based on B-splines and NURBS. More precisely, NURBS basis functions are built on B-splines157

basis functions which are piecewise polynomial functions defined by a sequence of coordinates158

Ξ = {ξ1, ξ2, ..., ξn+p+1}, also known as the knot vector, where the so-called knots ξi ∈ [0, 1] are159

points in a parametric domain whereas p and n denote the polynomial order and the total number160

of basis functions, respectively. The distance between two consecutive knots is named knot span161

and it represents the equivalent of the element domain in traditional finite elements. Once the order162

of the basis functions and the knot vector are known, the i-th B-spline basis function Ni,p can be163

computed by means of the Cox-de Boor recursion formula (Cox 1972; de Boor 1978), which is not164

reported here for the sake of brevity.165

As previously mentioned, B-splines are the starting point for the computation of the NURBS166

basis functions. Indeed, given a set of weights wi ∈ R, the NURBS basis functions Ri,p read167

Ri,p(ξ) =
Ni,p(ξ)wi∑n
i=1Ni,p(ξ)wi

. (1)168

NURBS share many properties with B-spline basis functions (Piegl and Tiller 1997). Among these,169

they are all non-negative, they have a compact support and build a partition of unity (PoU), that is170

n∑
i=1

Ni,p(ξ) =
n∑

i=1

Ri,p(ξ) = 1 (2)171

for each ξ ∈ [0, 1] (see (Hughes et al. 2005)). Hence, it is noteworthy from Eqs. (1) and (2)172

that B-spline basis functions can be thought of as NURBS basis functions when all weights wi are173

equal to one. However, NURBS basis functions have the great advantage of representing exactly174

the geometry of a wide set of curves such as circles, ellipses and parabolas (Piegl and Tiller 1997)175

and of the surfaces which can be generated by them.176

Geometries which can be represented with B-spline and NURBS are obtained as linear combi-177

nations of basis functions (Piegl and Tiller 1997; Farin 2002). For instance, if we consider a set of178

B-spline basis functions Ni,p (the same holds for the NURBS basis functions) with i = 1, ..., n,179
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it is possible to define a curve C(ξ) ∈ Rd as180

C(ξ) =
n∑

i=1

Ni,p(ξ)Bi, (3)181

where coefficients Bi ∈ Rd are known as control points (in the following, d = 2 is assumed since182

this work focuses on planar curves). Differently from standard Lagrange and Hermite approxi-183

mations, B-spline geometries do not usually interpolate these points. The continuity of the curve184

follows from that of the adopted basis functions (Hughes et al. 2005) which, in general, is C p−1
185

throughout the domain. However, if a knot has multiplicity m, the continuity decreases m times at186

that point (see (Piegl and Tiller 1997)).187

Modeling CAD geometries inevitably involves several ingredients, such as knots, order of the188

approximation and control points. However, in many practical applications only few of these189

parameter are known a priori. In reverse engineering processes, for example, CAD models are190

created by interpolating or approximating a set of points Pi ∈ R2 usually obtained from the191

real object by means of laser scanner records. Nonetheless, the parameterization of the input data192

for B-spline and NURBS geometries addresses a crucial issue concerning the quality of the final193

curve. Hence, there have been several attempts to improve the accuracy of B-spline and NURBS194

approximations and interpolations (de Boor 1978; Hartley and Judd 1980; Lee 1989; Sarkar and195

Menq 1991; Farin 2002). In particular, some of these parameterization techniques, such as the196

uniform method, the arch-length method and the centripetal method are available in several CAD197

programs (Autodesk, Inc. 2007).198

The easiest way to assess the quality of the computed curve is to evaluate the distance between199

the CAD geometry C(ξ) and the analytical representation of the real curve F(ξ). Therefore, the200

distance between these two curves at the parametric point ξ is calculated as201

d(ξ) = min
ξ

{ |C(t) − F(ξ)| } . (4)202

Once the value of d(ξ) has been evaluated for n given data points, the errors in the L∞ norm may203
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be defined:204

E∞ =
n

max
i=1

{dn} , (5)205

and in the L2 norm:206

E2 =

[
1

n

n∑
i=1

d2n

]2

. (6)207

Thus, for the sake of completeness we investigate the quality of the NURBS curve reported in208

Figure 2 in approximating a three-centered (or polycentric) arch composed of three circular arcs209

jointed together with C 1 continuity. The radius Ri and the center of each portion are also shown.210

The NURBS curve has been drawn in AutoCAD R© 2013 by interpolating the set of points Pi211

indicated by red circles in Figure 2 with cubic NURBS basis functions. In particular, the position212

of these points has been calculated by dividing each of the three circular arcs in equal parts. Table 1213

summarizes both the maximum (i.e. E∞) and the mean (E2) errors obtained by approximating the214

exact geometry of the polycentric arch with its polyline and NURBS representations. As it is215

expected, the error decreases with the number of interpolating points and NURBS representation216

proves more accurate.217

LINEAR ELASTIC ANALYSIS218

As previously stated, a linear elastic analysis of a masonry arch may still be meaningful for219

several arches undergoing service loads, which usually are considerably lower than collapse loads220

and might not push the thrust line out of the shape of the arch. ArchNURBS allows for an elastic221

isogeometric analysis (IGA) of the masonry arch under study, based on its NURBS representation.222

In this Section an introduction to the IGA of a plane curved Timoshenko beam (Cazzani et al.223

2014c) is given. Interesting studies on IGA of curved rods (even though Kirchhoff-Love rods) in224

the three dimensional space may be found in (Greco and Cuomo 2013; Greco and Cuomo 2014).225

In addition, some recent investigations of the application of IGA for the analysis of strongly curved226

beams are contained in (Cazzani et al. 2014b; Cazzani et al. 2014a).227

As it is depicted in Figure 3, we consider a Cartesian reference system O(x, y) and a local228

reference system O′(t′, n′) where t′ and n′ are the unit-tangent and the unit-normal vectors to the229
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beam axis. Further, we introduce the curvilinear abscissa s ∈ [0, l] which spans the centroidal line230

of the plane curved beam, whose length is l, is defined by the parametric representation231


x(s) =

n∑
i=1

Ni,p(s(ξ))xi and

y(s) =
n∑

i=1

Ni,p(s(ξ)) yi

(7)232

where xi and yi are the control points coordinates. Thus, the unit tangent and normal vectors of a233

NURBS curve at a parametric point s are calculated as (Lipshultz 1969)234

t′ =
(x,s , y,s)√
x2
,s + y2,s

(8)235

and236

n′ = (y,s , −x,s) ·
x,ssy,s − x,sy,ss(

x2
,s + y2,s

)2 (9)237

where comma denotes differentiation. Further, the curvature radius reads238

R(s) =

(
x2
,s + y2,s

)3/2
|x,s y,ss − x,ss y,s|

. (10)239

In order to describe the kinematics of a curved Timoshenko beam we consider the displacement240

and the load vectors241

u = [u, v, φ]T and p = [qt, qr, m]T , (11)242

referred to the local reference system (where (·)T denotes the transpose). In particular, u and v are243

the tangential and normal displacement of the cross-section centroid, φ the cross-section rotation,244

qt and qr the tangential and radial distributed loads and m the distributed bending couples. Hence,245

by assuming small deformations, the equilibrium, compatibility and constitutive equations for the246
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plane-curved Timoshenko beam are247

N,s − T

R
+ qt = 0, T,s +

N

R
+ qr = 0 and M,s − T + m = 0, (12)248

249

ε = u,s − v

R
, γ = v,s +

u

R
+ φ and χ = φ,s, (13)250

251

N = EAε, T = GAksγ and M = EJχ, (14)252

where the generalized stresses N , T and M denote the axial force, the shear force and the bending253

moment, whereas the generalized strains ε, γ and χ are the axial, the shear and the curvature254

deformations. Finally, symbols E, G, A, J and ks are respectively the Young’s modulus, the shear255

modulus, the cross sectional area, the area moment of inertia and the shear-correction factor.256

The first step towards a finite element solution of the problem is represented by the definition257

of the total potential energy of the system258

Π =
1

2

∫ l

0

(
EAε2 +GAksγ

2 + EJ χ2
)

ds −
∫ l

0

(qtu + qrv + mφ) ds. (15)259

Subsequently, by making use of the iso-parametric formulation, the discrete displacement field260

uh(ξ) ∈ R2 is defined as261

uh(ξ) =
n∑

i=1

Ni,p(ξ)ui, (16)262

where ui = [ui, vi, φi] are the displacements at the control points Bi. It is worth noticing that,263

according to Eq. (3), the displacement field in Eq. (16) has been discretized with B-spline basis264

functions. Nonetheless, NURBS basis functions might have been used in cases where a NURBS-265

described curve is given. Hence, by making use of Eqs. (15) and (16) the discrete solution of the266

problem is defined as:267

argmin
u, v, φ

{ ne∑
e=1

[
1

2

∫ ξe+1

ξe

[
EA

(
εh
)2

+GAks
(
γh

)2
+EJ

(
χh

)2 ]
ds−

∫ ξe+1

ξe

pT uh ds
]}

, (17)268

where ne is the number of spans whereas ξe and ξe+1 are the knots which correspond to the e-th269
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span. Once the numerical solution uh is known, the generalized stresses and strains are calculated270

by means of Eqs. (13) and (14). Therefore, N , T and M and ε, γ and χ are defined with the271

same NURBS basis functions used for approximating the displacement field uh. Accordingly, the272

computation of the thrust line, which descends from the ratio M/N , is straightforward.273

As in standard finite element discretizations, the numerical solution can be improved by refin-274

ing the approximation. In particular, in IGA there are three different refinement techniques. The275

first two are knot insertion (h-refinement) and polynomial order elevation (p-refinement) which276

do not alter the geometry and the continuity of the curve. The third method,which is known as277

k-refinement, consists in order elevation of the basis functions and consequent knots insertion.278

This increases the continuity of the approximation without changing the geometry (Hughes et al.279

2005; Cottrel et al. 2007). In ArchNURBS each of these methods may be used.280

LIMIT ANALYSIS281

As already discussed, limit analysis is a powerful tool to assess the structural safety level of a282

masonry construction. It is well established that when mechanism and equilibrium formulations of283

limit analysis are linearized, they produce dual Linear Programming (LP) problems (Charnes and284

Greenberg 1951). In particular Livesley (Livesley 1978) has shown that the equilibrium formula-285

tion can be applied to masonry arches. It involves the discretization of the arch into a number of286

rigid blocks. Many researchers have developed procedures to model masonry arches as discrete287

rigid blocks: among them we recall (Delbecq 1980; Boothby 1994; Gilbert and Melbourne 1994).288

In ArchNURBS a joint equilibrium formulation, similar to that originally adopted by Lives-289

ley (Livesley 1978) and then proposed for masonry arches in (Gilbert 2007) is used. It should be290

incidentally observed that, while an equilibrium formulation has been formally used, assuming a291

finite number of blocks (and hence of interfaces) provides actually an upper bound estimate of the292

collapse multiplier.293

The adopted model relies on the following traditional assumptions, originally proposed by294

Heyman (see (Heyman 1969)) for the limit analysis of masonry arches:295
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1. sliding failure of adjacent units in the arch cannot occur;296

2. masonry has zero tensile strength;297

3. masonry has infinite compressive strength.298

Therefore, a procedure based on an equilibrium formulation and the above assumptions for the299

limit analysis of masonry arches is set out as follows.300

The structure is divided into c elements (blocks) in much the same way as for elastic analysis.301

Subsequently to this subdivision, d = c+ 1 interfaces are generated. For each block the equations302

of equilibrium are written, in such a way as to express contact forces q = [Ti, Ni,Mi] (which303

are respectively the shear force, the axial force and the bending moment) acting on the i-th inter-304

element boundary and any external load acting on the element f , which can be either a dead load305

fD or a live load λfL. Such equations may be expressed as:306

Aq− λfL = fD, (18)307

where A is a suitable (3c × 3d) equilibrium matrix containing the direction cosines of the unit-308

normal vector n′ of the transversal section at each contact interface. These equations are the equi-309

librium constraints of the problem.310

Yield constraints, in the no-tension material hypothesis, are then defined on q:311

Mi ≤ 0.5Niti

Mi ≥ −0.5Niti

∀ contact i = 1, ..., c , (19)312

where ti is the depth of the arch section at contact i. Finally the limit analysis problem for pro-313

portional loading is now written as Maximize the load factor λ, subject to the equilibrium con-314

straints (18) and to the yield constraints (19):315

max{λ}. (20)316
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Using this formulation the LP problem variables are the contact forces (T1, N1,M1, ..., Tc, Nc,Mc)317

and the unknown load factor λ. In ArchNURBS the linear programming problem is solved through318

the MATLABr function linprog.m which is part of the MATLABr Optimization Toolbox.319

The yield constraints expressed in eq. (19) are valid only if the material exhibits an unlimited320

compressive strength. If, instead, it is assumed that masonry has a limited (i.e. finite) compressive321

strength σcrush, and that thrust is transmitted, from one block to the next one, through a rectangular322

crush block, then, as it is suggested in (LimitState Ltd. 2011), Eq. (19) may be replaced by:323

Mi ≤ Ni

(
0.5ti −

Ni

2σcrush b

)
Mi ≥ −Ni

(
0.5ti −

Ni

2σcrush b

)
∀ contact i = 1, ..., c, (21)324

where σcrush is the masonry compressive strength and b is the width of the arch transversal section.325

However, the constraints in Eq. (21) are non-linear. Therefore, in order to continue using a Linear326

Programming (LP) solver, these constraints need to be approximated by a set of linear constraints327

(see e.g. (Gilbert 2007; LimitState Ltd. 2011)).328

In order to minimize the number of constraints in the problem (and to maximize computational329

efficiency) an iterative solution algorithm which involves only refining the representation of the330

failure envelope where required is used. The algorithm can be summarized in the following steps:331

1. Initially solve the global LP problem with the original linear constraints (19) plus the addi-332

tional linear constraint Ni < Ni,max on each contact i, where Ni,max is the maximum axial333

force which the arch section can resist to before crushing occurs;334

2. Substitute Ni from the last solution into the inequality constraints, eqs. (21), for each con-335

tact i. If a constraint is violated, calculate the violation factor ei, i.e.336

ei =
|Mi|

Ni

(
0.5ti − Ni

2σcrush b

) , (22)337

and store, from the previous solution, the values of axial force corresponding to contacts338
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where violation has occurred. These values are denoted by Ni,0;339

3. For each contact with ei ≥ 1.0 (i.e. such that violation occurs) set an additional linear340

constraint which is tangential to the original failure envelope described by eqs. (21) at the341

point corresponding to N = Ni,0;342

4. Solve the new global LP promblem;343

5. Repeat from step 2 until the maximum value of ei < 1+ tol where the tolerance tol is taken344

as a suitably small value.345

Moreover, if sliding between blocks has to be taken into account, additional sliding yield con-346

straints to the linear programming problem (20) are needed. As suggested in (Melbourne and347

Gilbert 1995), it is possible to assume a simple associative friction model defining the following348

linear constraints:349

Ti ≤ µiNi

Ti ≥ −µiNi

∀ contact i = 1, ..., c , (23)350

where µi is a suitable friction coefficient for each contact interface i. This particular friction351

model has been chosen for simplicity reasons whereas in literature more advanced models exist,352

which involve non-associative friction laws and the use of both non-linear programming methods353

(see e.g. (Ferris and Tin-Loi 2001; Orduna and Lourenço 2003)) and iterative linear-programming354

methods (Gilbert et al. 2006). Nevertheless, applying the iterative procedure devised in (Gilbert355

et al. 2006) to brickwork masonry arch bridges analyzed previously with an associative friction356

model, (Gilbert and Ahmed 2004) found that the non-associative bridge strength predictions were357

at most 6 percent lower, largely justifying the initial associative friction assumption.358

For the sake of simplicity, backfill (which is considered as a dead load and thus enters in359

Eq. (18)) is modeled as an external vertical force acting upon each block; it is given by the weight360

of the volume of the backfill portion lying above each block and is applied to the center of mass361

of the same volume. As discussed in (Callaway et al. 2012), it is necessary to point out that362

the influence of the backfill on the load capacity of masonry arches is a very complex topic. In363

literature, much more sophisticated models for backfill exist, which are capable of taking into364
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account effects like load diffusion and the gradual build-up of passive pressures (see e.g. (Gilbert365

et al. 2007; Cavicchi and Gambarotta 2005)).366

Finally, it is possible to modify the limit analysis in order to take into account the presence367

of Carbon Fiber Reinforced Polymer (CFRP) reinforcement strips at the intrados and/or at the368

extrados of the arch. Many researchers have proposed different solutions to this problem (see,369

e.g. (Briccoli Bati et al. 2013; Basilio et al. 2014; Caporale et al. 2006; Caporale and Luciano370

2012; Caporale et al. 2014)). In the present paper we deal with the problem by modifying the371

original equilibrium formulation including two further variables (Fi,intrados, Fi,extrados) for each of the372

n CFRP reinforced interfaces. These variables represent the inner force acting within the FRP373

strip at the interface at the intrados and at the extrados respectively and enter into the equilibrium374

constraints (18). The new variables are subjected to the additional yield constraints:375

0 < Fi,intrados < Fd

0 < Fi,extrados < Fd

∀ reinforced contact i = 1, ..., n , (24)376

where Fd is the design delamination resistance of the CFRP strip which may be evaluated, for377

example, following the prescriptions contained in Chapter 5 of (CNR2013 ).378

NUMERICAL EXAMPLES379

In this section a comparison with experimental results taken from literature and three numerical380

examples analyzed with the computational tool ArchNURBS are presented. The comparison with381

experimental results allows to validate the numerical results obtained with ArchNURBS. Further-382

more, the influence of the geometric representation of the rigid blocks in which the arch is sub-383

divided on the limit load multiplier λ is discussed. Then, the limit analysis for the three-centered384

arch described in Section 2 and a real world arch are taken into consideration in the second and385

third example, respectively.386
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Comparison with experimental results387

In order to validate the results obtained with ArchNURBS a comparison with the experimen-388

tal tests presented in (Vermeltfoort 2001) and later analyzed in (Milani et al. 2008) is carried389

out. (Vermeltfoort 2001) tested the ultimate strength of a segmental masonry arch with a clear span390

of 3 m, an inner radius of 2.5 m and a sagitta of 0.5 m. The arch is a one-head brick structure with391

depth equal to 0.10 m and width equal to 1.25 m. The test-arch had 51 layers and was built with392

Rijswaard soft mud bricks and 1:2:9 mortar. Brick compressive strength was 27 MPa and mortar393

compressive strength was 2.5 MPa. The test-arch was loaded with four concentrated loads, applied394

by four hydraulic jacks 600 mm centre to centre. In Fig. 4 the geometry of the test-arch and its395

loading conditions are reported. Only the second concentrated load from the left was increased396

until failure, whereas the remaining loads were maintained constant at the values of 5.9, 9.1 and397

9.1 kN respectively. At failure, (Vermeltfoort 2001) observed a four hinges collapse mechanism398

which is depicted in Fig. 5a and measured a collapse load equal to 40.7 kN at the second jack.399

The described test-arch has been modeled within ArchNURBS as a segmental arch formed400

by 51 blocks and the same point loads used by (Vermeltfoort 2001) in the experiments have been401

applied. Only the second point load from the left have been marked as a live load. After a limit402

analysis of the arch, ArchNURBS gives out a collapse value of 40.7 kN for the live load previously403

defined. Thus, the value of the collapse load calculated by ArchNURBS coincides with the col-404

lapse load measured during the experiments. Furthermore, a four hinges collapse mechanism has405

been numerically determined. Fig. 5b depicts the collapse mechanism numerically computed with406

ArchNURBS. The failure mechanism predicted by ArchNURBS is very close to the real failure407

mechanism experimentally observed by (Vermeltfoort 2001) when bringing to failure the test-arch.408

Thus, it can be concluded that ArchNURBS gives an accurate prediction of both collapse load and409

collapse mechanism of the masonry arch under study.410

Influence of the voussoirs geometry411

Many arches in the real-world occurrences are made of stone voussoirs which have a rounded412

shape rather than a quadrangular shape, as shown for example in Fig. 1b, representing the arch of413
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Porta Asinaria in Rome (Italy). When the size of these voussoirs is not small their exact geometric414

representation is of paramount importance in order to obtain accurate estimates of the collapse load415

multiplier λ.416

ArchNURBS allows for an exact description of the arch rounded voussoirs by exploiting the417

features of NURBS geometries generated in CAD environments. On the contrary, most of existing418

commercial software codes approximate the shape of rounded voussoirs with simple quadrangular419

blocks.420

In the case of a uniform vertical live load distribution, if the section depth of the arch is large421

enough (as is, for example, in the arch of Fig 1b) and unless taking into account finite stone422

compressive strength, the arch may result safe for every value of the applied load (Heyman 1969).423

Nevertheless, let us consider a semi-circular arch with mean radius 2.125 m, section depth424

0.250 m and width 0.500 m, loaded with a uniformly distributed vertical live load of 1 kN/m. In425

this case, section depth is not great enough to guarantee the safety of the arch for every value of the426

uniform vertical applied live load and a collapse load multiplier can be determined. The backfill427

height is assumed equal to 3.00 m. The arch is subdivided into ten voussoirs. Material properties428

of the stone-voussoirs and of the backfill are reported in Table 2.429

ArchNURBS, which implements the limit analysis algorithms described in the previous Sec-430

tion, returns a collapse load multiplier λ = 9.8 for the arch model with rounded voussoirs. The431

obtained value is the exact collapse load multiplier for the rounded voussoirs arch here taken into432

consideration.433

On the other hand, if the arch is modeled by means of ten quadrangular voussoirs a collapse434

load multiplier λ = 8.9 is computed (this result has been carried out with the commercial soft-435

ware LimitState:RING 3.0r). Therefore, the geometrical approximation of the rigid blocks with436

quadrangular elements leads to an error of 9.2 % on the estimate of λ.437

Of course, the error could be greatly reduced if an higher number of quadrangular blocks was438

chosen to model the arch but then the number of interfaces between blocks (on which hinges439

positions are constrained to be) would be changed in respect to the original problem. In addition,440
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computational efficiency would be clearly reduced.441

In Figures 6b-c a comparison between the two arch models is shown along with a plot of the442

corresponding thrust line.443

Three-centered arch444

As shown in Fig. 1a, three-centered arches are recurrent in many masonry structures. The445

three-centered arch described in Section 2 is examined, as an example, in this Subsection. In446

particular, its depth and width are assumed equal to 0.560 m and 0.500 m, respectively. The exact447

arch geometry has been generated within a CAD environment using NURBS curves and then448

imported in ArchNURBS. Material properties used for masonry and for the backfill are reported449

in Table 2. The masonry mechanical properties chosen are typical for low quality masonry as450

suggested in the explicative circular (CIRC2009 ) related to the Italian Building Code (NTC2008451

).452

The arch is supposed to be loaded by a downward linear uniform live load of 1 kN/m. This load453

is amplified by a load multiplier λ. The arch has been subdivided into 90 rigid blocks. First, limit454

analysis is performed without considering any backfill. In this case the collapse load multiplier is455

λ = 0.78. As it is illustrated in Figure 7a the resulting collapse mechanism is a symmetrical five456

hinges mechanism. The corresponding thrust line and position of hinges at collapse is indicated by457

a red line and red circles, respectively. A collapse load multiplier less than 1 indicates that the arch,458

in this configuration, is not safe under the action of the assigned linear uniform load of 1 kN/m.459

The same analysis has been then carried considering a backfill having a height of 4.00 m and a460

specific weight as indicated in Table 2. In this case, despite the collapse mechanism and the posi-461

tion of the collapse thrust line being similar to those obtained in the previous case (see Figure 7b),462

the load multiplier increases to λ = 21.62. Therefore, the particular geometry of the arch studied463

in this example is very sensitive to the stabilizing effect of the backfill.464

A masonry arch from Torre Fornasini465

The third arch here analyzed is a real world masonry arch belonging to the groin vault which466

bears the first story of Torre Fornasini, a historical masonry tower construction in Poggio Renatico467
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(Italy), which was severely damaged by the earthquake which struck Emilia on May 2012. The468

tower, depicted in Figure 8, has been subjected to extensive seismic retrofit intervention which469

comprised reinforcement of the extrados of the vault with Carbon Fiber Reinforced Polymers470

(CFRP) strips (Milani et al. 2014). In particular, the analyzed arch is the segmental arch shown471

in Figure 9a. It is characterized by a span equal to 4.13 m, a midspan rise equal to 1.81 m, a472

depth equal to 0.14 m and a width equal to 0.25 m. After an accurate survey, the exact arch ge-473

ometry has been generated within a CAD environment using NURBS curves and then imported in474

ArchNURBS. Again, material properties assumed for masonry and specific weight for the backfill475

are reported in Table 2. The arch is loaded by a downward acting linear uniform live load equal476

to 1 kN/m multiplied by a load multiplier λ. The arch has been subdivided into 90 rigid blocks.477

First, limit analysis is performed without taking into account any backfill. In this case a solution478

cannot be determined since the arch is not stable under its own weight. Then, the same analysis479

is carried out by considering a backfill with specific weight reported in Table 2 and a maximum480

height equal to 2.15 m. Under these assumptions, the optimization problem can be solved and481

the resulting collapse mechanism is a symmetrical five-hinges mechanism which is depicted in482

Figure 9b. The collapse load multiplier is λ = 1.43. In order to evaluate the effect of the limited483

compressive strength of masonry on the load capacity of the structure the same limit analysis has484

been carried out, allowing for a masonry compressive strength equal to 2.4 MPa, as indicated in485

Table 2 and as prescribed by the explicative circular (CIRC2009 ) related to the Italian Building486

Code (NTC2008 ), following the algorithm described in Section 4.In this case the collapse load487

multiplier drops to λ = 0.86. As it has been explained in the previous Section it is also possible488

to account for the effect of FRP reinforcement. Indeed, during the seismic retrofit intervention a489

200 mm wide strip of carbon fiber tissue (MapeWrap C Uni-AX produced by MAPEI) was ap-490

plied to the extrados of the vault. This tissue has thickness of 0.2 mm, Young’s elastic modulus491

of 230 GPa (for tensile stress only) and ultimate strain of 2%. FRP delamination force has been492

calculated by following the Italian FRP Design Guidelines (CNR2013 ). By performing a limit493

analysis of the FRP reinforced arch, without taking into account the effect of limited compressive494
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strength of masonry, the collapse load multiplier results λ = 5.94. In Figure 9c the symmetric five495

hinges collapse mechanism is shown: in this case the mechanism which develops only after FRP496

delamination has occurred at both sides of the arch. On the other hand, when the effect of finite497

compressive masonry strength is considered and coupled to the FRP reinforcement, the collapse498

load multiplier drops to λ = 3.44. In both cases FRP reinforcement is proven to be very effec-499

tive in enhancing the safety level of the arch under study. Finally, an analysis of the original arch500

without reinforcement has been considered by accounting for possible sliding of masonry blocks501

as explained in Section 4. Therefore, after performing this limit analysis it can be observed that502

adopting a friction coefficient µ = 0.3, as it is widely suggested in literature (see e.g. (Vasconcelos503

and Lourenço 2006)), the original solution does not change: collapse still occurs by formation of a504

five hinges mechanism and the collapse multiplier is still λ = 1.43. Besides, if the friction coeffi-505

cient is reduced to µ = 0.275 it is observed that collapse mechanism modifies since sliding occurs506

at the arch imposts. In this last case the collapse multiplier is λ = 1.02 and the corresponding507

collapse mechanism and collapsed thrust line at collapse are shown in Figure 9d. Results from the508

discussed analysis are summarized in Table 3.509

CONCLUSIONS510

This work introduced a new simple CAD-integrated computational tool for the safety assess-511

ment of masonry arches addressed to professionals in the field of structural rehabilitation of his-512

torical masonry constructions which cannot or do not want to get involved into more advanced513

and demanding computational methods. The proposed software, named ArchNURBS, provides514

a simple and very intuitive instrument for the accurate evaluation of the load bearing capacity of515

masonry arches. ArchNURBS has been implemented in MATLABr and is freely available online516

at the address http://sourceforge.net/projects/archnurbs/ as an open-source517

project.518

ArchNURBS is the first computational tool for the analysis of masonry arches proposed in519

literature which is based on a NURBS description of the shape of the arch. Such representation520

can be easily generated in a CAD environment which is very popular among professional engineers521
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and architects, possibly starting from topographical surveying data. NURBS representation allows522

for an exact shape description of the arch, which is especially useful for those arch shapes which523

are not well represented by a polyline. On the basis of such geometric representation, a preliminary524

isogeometric finite element elastic analysis (useful to determine the response under service loads525

which might not push the thrust line out of the shape of the arch) and a NURBS-based limit analysis526

of the masonry arch (which is needed to assess the safety level of the structure) are possible.527

Furthermore, limited compressive strength for masonry, sliding between blocks and presence of528

FRP reinforcement can be dealt with in ArchNURBS.529

A comparison with experimental results has shown that ArchNURBS can predict with great ac-530

curacy the ultimate bearing capacity of masonry arches. In addition, some meaningful examples of531

NURBS-based limit analysis of masonry arches obtained with ArchNURBS have been presented.532

The new approach on which ArchNURBS is based has proved to be effective in providing an533

accurate evaluation of the safety level of masonry arches of arbitrary shape, while requiring the534

professional user little effort compared to existing computational techniques.535
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no of Pi Polyline NURBS
E∞ [m] E2 [m] E∞ [m] E2 [m]

10 9.95e-2 6.61e-2 1.34e-2 1.64e-3
20 2.49e-2 1.66e-2 0.79e-2 3.73e-4
40 0.62e-2 4.15e-3 0.93e-3 2.74e-5

TABLE 1: Maximum and mean errors on the approximation of the polycentric arch with polyline
and

NURBS representations.
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Mechanical Properties Example discussed in Examples discussed in
Section 5.2 Sections 5.3 and 5.4

Masonry Young’s modulus (E) 2800 MPa 1500 MPa
Masonry shear modulus (G) 860 MPa 500 MPa
Masonry mass density (ρm) 1800 kg/m3 1800 kg/m3

Masonry compressive strength (fc) 6.0 MPa 2.4 Mpa
Backfill mass density (ρb) 1600 kg/m3 1600 kg/m3

TABLE 2: Masonry mechanical properties and backfill density for examples in Sections 5.
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FRP
reinforcement

Arch Configuration
Collapse Load
Multiplier λ

no

no backfill and unlimited masonry compressive strength -

backfill and unlimited masonry compressive strength 1.43

backfill and limited masonry compressive strength 0.86

backfill, unlimited masonry compressive strength and limited
friction between blocks (µ = 0.3)

1.43

backfill, unlimited masonry compressive strength and limited
friction between blocks (µ = 0.275)

1.02

yes
backfill and unlimited masonry compressive strength 5.94

backfill and limited masonry compressive strength 3.44

TABLE 3: Collapse load multipliers resulting from limit analysis of the arch analyzed in Section
5.3, belonging to Torre Fornasini (Poggio Renatico, Italy) groin vault, under different assumptions
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(a)
 

(b)

FIG. 1: Examples of historical arched structures: (a) three-centered masonry arch bridge in Llanell-
tyd, Wales (image courtesy of Bill Harvey) and (b) Porta Asinaria rounded stone voussoirs arch in
Rome, Italy (image by authors). Both arches cannot be accurately modeled with polyline geome-
tries.
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FIG. 2: Polycentric arch (solid circles denote the interpolating points Pi)
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FIG. 3: Reference system O(x, y) and local reference system O′(t′, n′)
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geometry and loading conditions.
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FIG. 5: (a) Failure mechanism experimentally obtained from (Vermeltfoort 2001). (b) Nu-
merical failure mechanism (dashed lines) and thrust line at collapse (solid line) computed with
ArchNURBS. Experimental failure photo is reported with the sole aim of showing the capabilities
of the computational tool ArchNURBS (reprinted from (Vermeltfoort 2001), with permission.)
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FIG. 6: Thrust lines for the example arch computed with (a) quadrangular voussoirs (Limit-
State:RING 3.0r) and (b) rounded voussoirs (ArchNURBS) models. Corresponding collapse load
multipliers λ are equal to 8.9 and 9.8, respectively.
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FIG. 7: Three-centered arch analyzed with ArchNURBS: thrust line (solid line) obtained without
backfill (a) and with backfill (b). The collapse load multipliers corresponding to these configura-
tions are 0.78 and 21.62, respectively.
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(a) (b)

FIG. 8: (a) External view and (b) first story masonry groin vault of Torre Fornasini in Poggio
Renatico, Italy (image by authors).
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FIG. 9: A masonry arch from Torre Fornasini in Poggio Renatico, (Ferrara, Italy) and represented
in (a) has been modeled within ArchNURBS. The thrust line (solid line) and the position of the
hinges (solid circles) at collapse are illustrated in (b). Moreover, the solution of the limit analy-
sis has been studied by considering (c) the FRP reinforcement indicated with a solid line at the
extrados (solid squares denote the FRP delamination points) and (d) sliding between blocks (with
µ = 0.275).
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