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Abstract

Signal Transducer and Activator of Transcription 5 (STAT5) protein, a component of the STAT 

family of signaling proteins, is considered to be an attractive therapeutic target because of its 

involvement in the progression of acute myeloid leukemia. In an effort to discover potent 

molecules able to inhibit the phosphorylation-activation of STAT5, twenty-two compounds were 

synthesized and evaluated on the basis of our knowledge of the activity of 2-(3′,4′,5′-

trimethoxybenzoyl)-3-iodoacetamido-6-methoxybenzo[b]furan derivative 1 as a potent STAT5 

inhibitor. Most of these molecules, structurally related to compound 1, were characterized by the 

presence of a common 3′,4′,5′-trimethoxybenzoyl moiety at the 2-position of different 

benzoheterocycles such as benzo[b]furan, benzo[b]thiophene, indole and N-methylindole. Effects 

on biological activity of the iodoacetamido group and of different moieties (methyl and methoxy) 

at the C-3 to C-7 positions were examined. In the series of benzo[b]furan derivatives, moving the 

iodoacetylamino group from the C-4 to the C-5 or C-6 positions did not significantly affect 

antiproliferative activity. Compounds 4, 15, 20 and 23 blocked STAT5 signals and induced 

apoptosis of K562 BCR–ABL positive cells. For compound 23, the trimethoxybenzoyl moiety at 

the 2-position of the benzo[b]furan core was not essential for potent inhibition of STAT5 

activation.

*Corresponding author. rmr@unife.it (R. Romagnoli).. 

Appendix A. Supplementary data
Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.ejmech.2015.11.022.

HHS Public Access
Author manuscript
Eur J Med Chem. Author manuscript; available in PMC 2017 January 27.

Published in final edited form as:
Eur J Med Chem. 2016 January 27; 108: 39–52. doi:10.1016/j.ejmech.2015.11.022.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1016/j.ejmech.2015.11.022


Keywords

STAT5 inhibitors; BCR/ABL expressing leukemia; Apoptosis; Structure-activity relationship; In 
vitro antiproliferative activity

1. Introduction

The ultimate goal of research in cancer therapy is to develop treatments that specifically 

target the cancer cell while leaving normal cells intact. The introduction of the BCR–ABL 

tyrosine kinase inhibitor imatinib in chronic myelogenous leukemia (CML) therapy has been 

a major advance in leukemia treatment [1–3]. However, clinical drug resistance often can 

develop through the acquisition of BCR–ABL gene mutations, which make this oncoprotein 

refractory to inhibition by imatinib or other tyrosine kinase inhibitors, such as nilotinib and 

dasatinib. In addition, BCR–ABL independent mechanisms of resistance were also 

described [4–6]. Therefore, the hunt for better effective agents is ongoing.

The identification of novel compounds modulating the expression/activity of molecular 

targets downstream to BCR–ABL could be a new approach in the treatment of CML 

resistant to BCR–ABL targeted molecules. In fact, the mechanism through which BCR–

ABL contributes to malignant transformation is dependent from the ability of this 

oncoprotein to activate a variety of signaling pathways and downstream targets such as 

STAT5, RAS, phosphatidylinositol-3′-kinase (PI3K), and others [7–10]. Many studies have 

shown that constitutive activation of the gene Signal Transducers and Activators of 

Transcription 5 (STAT5) plays an important role in the pathogenesis of CML induced by 

BCR–ABL [11–14], as well as in acute myeloid leukemias (AML) [15–17] and in 

polycythemia rubra vera [18,19]. STAT5 is the component of a family of seven proteins 

(STAT1-6) critical for the pathogenesis of many tumors [20–22], but these proteins are 

largely dispensable in normal adult cells [23], suggesting that they could be targets with a 

high therapeutic index[24–26]. STAT proteins transduce signals from the cell surface to the 

nucleus, where they regulate the expression of genes that control proliferation, survival, self-

renewal, and other critical cellular functions [27]. Under normal physiological conditions, 

the activation of STATs is tightly regulated. In cancer, by contrast, STAT proteins, 

particularly STAT3 and STAT5 [28], become activated constitutively, thereby driving the 

malignant phenotype of cancer cells [29–32].

In order to be functional, STAT5 protein must first be activated. This activation is carried 

out by kinases associated with transmembrane receptors at the cell surface. First, ligands 

(cytokines, growth factors) binding to these transmembrane receptors on the outside of the 

cell activate Janus kinase 2 (JAK2), which in turn adds a phosphate group to a specific 

tyrosine residue on the receptor. STAT5 then binds to these phosphorylated-tyrosines using 

their SH2 domain. The bound STAT5 is then phosphorylated by JAK2, and the 

phosphorylated STAT5 (pSTAT5) finally goes on to form either homodimers, STAT5–

STAT5, or heterodimers, STAT5–STATX with other STAT proteins [33,34]. The STAT5 

dimer then translocates to the nucleus, where STAT5 binds to a consensus DNA sequence 
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and promotes expression of specific STAT5 target genes (e.g., Bcl-xl, c-Myc, pim-1, p21, 

MCL-1, Osm and JAB).

Differently from normal cells, in which STAT5 is activated by JAK2, in CML the product of 

the fusion protein BCR–ABL directly activates the STAT5 protein. Activated STAT5 seems 

to plays a crucial role in growth and survival of CML cells, suggesting that drugs able to 

inhibit STAT5 activation could be useful for the treatment of this type of leukemia, 

especially for CML resistant to BCR–ABL targeted molecules [35]. However, despite many 

years of intensive research devoted to the discovery of small molecules targeting STAT5, 

none of the direct inhibitors of STAT5 [36–42] have been approved for clinical use in 

oncology.

Previously we synthesized a new series of 2-(3′,4′,5′-trimethoxybenzoyl)-3-amino-

benzo[b]furan compounds that showed cytotoxic activity in BCR–ABL expressing cells 

[43]. Among them, we identified the 2-(3′,4′,5′-trimethoxybenzoyl)-3-iodoacetamido-6-

methoxybenzo[b]furan derivative 1 (TR120) as a potent inductor of apoptosis in the BCR–

ABL-positive K562 and KCL-22 cell lines and in their imatinib resistant counterpart K562-

R and KCL22-R cells in vitro (Chart 1). Compound 1 induced a marked decrease in the 

pSTAT5 level in these cell lines, along with a block of cells in G1, a decrease in cyclin D 

expression and an increase in the percentage of apoptotic cells [44]. Preliminary structure-

activity relationship (SAR) analysis indicated that the iodoacetamido function at the C-3 

position of the benzo[b]furan ring system was essential for STAT5 inhibitory activity, while 

the corresponding bromoacetylamino and chloroacetylamino analogs were inactive. The 

activity of compound 1 as a STAT5 inhibitor caused us to undertake a further SAR study, by 

the design and synthesis of different series of derivatives. All the synthesized compounds 

were characterized by the presence of an electrophilic iodoacetamido function that can 

potentially react with essential thiol groups in the STAT5 functional domains and thus alter 

their function.

By the preparation of the corresponding isomeric analogs 2 and 3, which retain the 

iodoacetylamino moiety at the C-3 position of 2-(3′,4″,5-trimethoxybenzoyl)benzo[b]furan 

skeleton, we turned our attention to the position of the methoxy group, by moving it to either 

the C-5 or C-7 position of the benzo[b]furan system, respectively. Compound 4 was 

unsubstituted on the benzene portion of the benzo[b]furan ring. Since the iodoacetylamino 

had proved to be favorable for activity, through the synthesis of compounds 5–12 we 

investigated the effect on biological activity of moving the iodoacetylamino function from 

the 3 to the 4, 5, 6 or 7-position of the 2-(3′,4′,5′-trimethoxybenzoyl)benzo[b]furan nucleus. 

Finally, we prepared a set of 2-(3′,4′,5′-trimethoxybenzoyl) benzoheterocyclic derivatives 

structurally related to 1, obtained by replacing the original benzo[b]furan nucleus with 

various bio-isosteric benzoheterocycles such as indole (13), N-methylindole (14, 15) and 

benzo[b]thiophene (16–20). Besides the methoxy group, another substituent examined was 

the weak electron-donating methyl substituent in the benzene portion of the 

benzo[b]heterocyclic system. Since the 3,4,5-trimethoxyphenyl group is found in many 

antitubulin compounds, such as colchicine, podophyllotoxin and combretastatin A-4 (CA-4) 

[45], by the synthesis of compounds 21–23 we investigated the influence of the 3,4,5-

trimethoxybenzoyl group at the 2-position of the 3-iodoacetylamino benzo[b]furan 
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derivative 4 on STAT5 inhibitory activity, by the substitution of this moiety with a 3,4-

dimethoxybenzoyl (21), 4-methoxybenzoyl (22) or benzoyl (23) group.

2. Chemistry

The synthesis of eight of the twenty-two compounds (2–4 and 16–20) was previously 

described by our research group [46]. The new iodoacetylamino benzo[b]furan derivatives 

5–12 and 21–23 as well as the iodoacetamido indole analogs 13–15 were synthesized 

following the procedure described in Scheme 1. The acylation of amino benzo[b]furans 24–

31 and 35–37 or amino indoles 32–34 [47] with bromoacetyl bromide in CH2Cl2 furnished 

the desired bromoacetamido intermediate 38–45, 49–51 and 46–48, respectively. The final 

iodo derivatives 5–15 and 21–23 were obtained from the corresponding bromo intermediates 

38–51 through an exchange reaction using sodium iodide in N,N-dimethylacetamide at room 

temperature.

3. Biological results

3.1. In vitro cytotoxic activity

Table 1 shows the cytotoxic effects evaluated as IC50 (concentration able to inhibit cell 

growth by 50%) and AC50 (concentration able to induce apoptosis in 50% of the cells) of 

iodoacetamido derivatives 2–23 against K562 cells exposed to each derivative for 48 h, 

using analog 1 and imatinib mesilate as reference compounds. As shown in Table 1, the IC50 

values of the new series ranged from 0.07 to 18 μM, and the AC50 values ranged from 0.2 to 

48 μM (except for compound 12, which was inactive at 50 μM). Out of the twenty-two 

derivatives, twelve (4–9, 11, 13, 15, 17, 18 and 20) exhibited good activity with IC50 values 

lower than 1.0 μM.

The most active cytotoxic agent identified in this study was the 2-(3′,4′,5′-

trimethoxybenzoyl)-3-methyl-5-(iodoacetylamino)-6-methoxybenzo[b]furan derivative 6, 

which showed an IC50 1.8- and 3.1-fold lower than those of the reference derivatives 1 and 

imatinib, respectively. As an apoptotic agent, 6 was 1.8- and 2.7- times more active than 1 
and imatinib, respectively. Compound 6 differed from 1 in the position of the iodoacetamido 

group and from compound 5, which had the iodoacetamido group in the same position as 6, 

in having a methyl substituent at position 3. It should be noted that, simply moving the 

iodoacetamido group, resulted in a 3.3-fold loss in antiproliferative activity, comparing the 

IC50 obtained with 5 versus that obtained with 1.

For the 3-iodoacetamido benzo[b]furan derivatives 1–3, a comparison of substituent effect 

revealed that the cytotoxic activity was dependent on the methoxy substitution and on its 

location on the benzene portion of the benzo[b]furan moiety, with the most favorable 

position being C-6 (reference compound 1). The IC50 obtained with 1 exceeded that 

obtained with the C-5 or C-7 methoxy counterparts 2 and 3 by more than one and two-orders 

of magnitude, respectively. A 7.5-fold reduction of activity was also observed following 

removal of the C-6 methoxy group of 1, to furnish derivative 4.
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The IC50 and AC50 values obtained showed that the position of iodoacetylamino group on 

the benzo[b]furan system greatly affected antiproliferative activity, with the C-7 

iodoacetylamino derivative 12 being inactive (IC50 > 50 μM), while the C-3, C-4, C-5 and 

C-6 iodoacetamido derivatives 4, 8, 9 and 11, respectively, had comparable activity, with 

IC50 values ranging from 0.6 to 0.9 μM. These compounds all differed from 1, in addition, 

by the absence of a methoxy substituent on the benzo[b]furan moiety. The activity of the 5-

iodoacetamido derivative 9 was 30-fold reduced by the introduction of a methyl group at the 

C-3 position of benzo[b]furan nucleus (compound 10). However, this methyl substituent was 

also present, along with the 6-methoxy group, in the most active agent in the series, 

compound 6, while only the 6-methoxy yielded the less active compound 5.

Comparing derivatives 5 and 9 with their 3-methyl congeners 6 and 10, respectively, the 

introduction of a methyl at the C-3 position of compound 5 increased antiproliferative and 

apoptotic activity 6- and 8-fold, while an opposite effect was observed for compound 9, in 

which the C-3 methyl substitution produce a 30- and 10-fold reduction in cell growth 

inhibition and apoptotic potency, respectively.

Comparing the C-3 iodoacetamido derivatives without substituents on the benzene portion 

of benzoheterocyclic system (4, 13, 14 and 16), activity increased with indole (13) > 

benzo[b]furan (4) > N-methylindole (14) >> benzo[b]thiophene (16), with IC50 values of 

0.5, 0.9, 4.3 and 18 μM, and AC50 values of 2.4, 6.5, 8.2 and 28 μM, respectively. While the 

N-methylindole derivative 14 was 8-fold less active in comparison with the N-unsubstituted 

congener 13 (IC50: 4.3 and 0.5 μM, respectively), a 5-fold improvement in antiproliferative 

activity (IC50 = 0.8 μM) was observed for the parent compound 15, obtained by the 

introduction of a methoxy group at the C-7 position of the N-methylindole nucleus of 14. 

From the SAR point of view, replacing benzo[b]furan with benzo[b]thiophene (compound 

16) increased IC50 and AC50 values 20- and 4.3-fold as compared with 4, indicating that 

sulfur and oxygen atoms are not bioequivalent when the iodoacetylamino moiety was 

located at the C-3 position, while the corresponding C-5 iodoacetylamino benzo[b]furan and 

benzo[b]thiophene isomers 9 and 17, respectively, showed similar antiproliferative and 

apoptotic activities. The data also indicated that the introduction of the weak electron-

releasing methyl group at the C-6 position of 16, to afford the derivative 19, resulted in a 

marked increase of the cytotoxic and apoptotic activity. Moreover, shifting the methyl 

substitution to C-7, as in compound 20, further enhanced potency, with 20 2.5-fold more 

active than 19 (IC50 = 0.4 and 1.0 μM, respectively; AC50 = 2.8 and 4.7 μM, respectively).

Returning to the benzo[b]thiophene derivatives, for compound 16, the least active in the 

group, simply moving the iodoacetylamino group from the C-3 to the C-5 position, to 

furnish derivative 17, led to a 22.5- and 6.7-fold increase in the cell growth inhibition and 

apoptotic activities. In addition, compound 18, bearing a methoxy substituent at the C-7 

position, had activity similar to that of both 17 and 19, but this activity was 2-fold lower 

than that of the corresponding benzo[b]furan analog 7. In the benzo[b]thiophene group, the 

most active compound was 20, with a methyl substituent at position 3 (about twice as active 

as compounds 18 and 19, with a methoxy at position 7 or a methyl at position 6, 

respectively).
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In a comparison of the cytotoxic and apoptotic activities of compounds 4 and 23, we found 

that the replacement of the trimethoxybenzoyl with a benzoyl moiety (compounds 4 and 23, 

respectively) maintained the IC50 and AC50 values, indicating that the trimethoxybenzene 

moiety was not required for activity in this compound class. However, both a single 

methoxy in the 4′ position (22) and two methoxy groups at the 3′ and 4′ positions (21) led to 

small and large losses of activity, respectively, in comparison with compounds with either 

the trimethoxybenzene (4) or unsubstituted benzene (23).

3.2. Analysis of cell cycle effects and pSTAT5 expression

Once the antiproliferative activity was determined, we examined the influence of the most 

active compounds (showing an IC50 ≤ 1 μM) on the cell cycle (Fig. 1, Table 2) and on 

pSTAT5 expression (Fig. 2, Table 3) in K562 cells. Analysis of cell cycle effects was 

carried out by flow cytometry after staining cells with propidium iodide; pSTAT5 

expression was determined by flow cytometry after staining cells with a fluorochrome-

conjugated anti-pSTAT5 monoclonal antibody. In Fig. 2, the curves expressing the 

fluorescence of cells stained with a fluoresceinated anti-pSTAT5 after a 24 h exposure to 

each compound (thick lines) were compared to those expressing the fluorescence of 

untreated cells stained with an anti-pSTAT5 (dotted lines) and to those stained with an 

isotype monoclonal antibody (thin lines). Although somewhat different multiples of the IC50 

values shown in Table 1 were used in the studies presented in Figs. 1 and 2, ranging from 

1.9 for compound 7 to 7.1 for compound 6, these concentrations were minimally cytotoxic at 

24 h, as opposed to the 48 h used in the antiproliferative studies.

The most active antiproliferative molecule 6 (IC50 = 0.07 μM; AC50 = 0.25 μM) caused an 

increase in the percentage of cells in the G2M phase of cell cycle (Fig. 1d, Table 2), and 

morphological examination of treated cells showed most cells were blocked in metaphase 

(data not shown). These findings indicate that compound 6 acts in cells as an antimitotic 

agent. Moreover, compound 6 was moderately active in decreasing the expression of 

activated STAT5 (pSTAT5) (Fig. 2c, Table 3; 44% inhibition relative to the untreated cells). 

Of interest, the two isomeric derivatives 5 and 7 (IC50 = 0.4 μM; AC50 = 2 μM) caused a 

modest increase in the proportion of cells in S phase and were unable (7) or only modestly 

able (5; 29% inhibition) to modify the expression of pSTAT5. In contrast, the 

benzo[b]thiophene derivative 20 induced a block of cells in G1 and a complete 

disappearance of activated pSTAT5 (Fig. 2m and Table 3). Compounds 9 (IC50 = 0.6 μM; 

AC50 = 2.9 μM) and 13 (IC50 = 0.5 μM; AC50 = 2.4 μM) induced modest decreases in 

pSTAT5 expression (19 and 30% inhibition, respectively) and also caused modest increases 

in the proportion of cells in S phase (Figs. 1g, i and 2f, h; Tables 2 and 3). Compounds 4, 15, 

20 and 23 blocked cells in G1, and they were markedly active in modulating STAT5. 

Compound 19 showed effects on cell cycle and on pSTAT5 similar to those of 6. 

Compounds 8, 11 and 17 caused modest increases in the proportion of cells in the S phase 

and had only minimal effects on pSTAT5 levels, while compound 18 caused the greatest 

increase in cells in the G2M phase (Fig. 1l, Table 2) and modestly decreased pSTAT5 

expression (Fig. 2k, Table 3; 36% inhibition).
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3.3. Inhibition of tubulin polymerization and colchicine binding

To investigate whether STAT5 modulation was related to an interaction with tubulin, 

compounds 4, 15, 20 and 23, the most active of the series in modulating STAT5, were 

selected to determine their inhibitory effects on tubulin polymerization and on the binding of 

colchicine to tubulin (Table 4). The benzo[b]thiophene derivative 20 was found to be the 

most active derivative in the in vitro tubulin polymerization assay (IC50 = 1.1 μM), 2-fold 

more active than N-methylindole analog 15 and reference compound 1. Compound 20 was 

also more potent than 1 and 15 as an inhibitor of colchicine binding. The two benzo[b]furan 

derivatives 4 and 23 did not alter tubulin assembly at concentrations as high as 20 μM, nor 

did they inhibit colchicine binding to tubulin. Thus, the order of inhibitory effects on tubulin 

polymerization was 20 > 1 = 15 >> 4 = 23. This order of activity as inhibitors of tubulin 

assembly correlates well with their order of activity as STAT5 modulators. We thus 

identified tubulin as an alternative molecular target of compounds 15 and 20, since they 

strongly inhibited tubulin assembly and the binding of colchicine to tubulin. Their activity 

was greater than, or comparable with, that of the reference compound 1. It should be noted, 

however, that neither 15 nor 20 caused an increase of the proportion of cells in the G2M 

phase of the cell cycle, and this is generally a hallmark of well characterized antitubulin 

agents.

4. Discussion

STAT5 activation is correlated with functional effects on cell cycle progression and 

resistance to apoptosis through increased expression of cyclin D1 and Bcl-xl, respectively 

[11,12] and is essential for leukemic cell survival [13,15]. Moreover, many studies have 

shown that the constitutive STAT5 activation induced by the BCR–ABL oncogene plays an 

important role in the pathogenesis of CML [11–13], as shown by evidence that murine 

STAT5-null bone marrow cells were inefficient in generating and maintaining a CML-like 

disease [16].

Previously, we described the cytotoxic activity in BCR–AbL expressing cells of a new class 

of substituted 2-(3′,4′,5′-trimethoxybenzoyl)benzo[b]furan derivatives. The 2-(3′,4′,5′-

trimethoxybenzoyl)-3-iodoacetylamino-6-methoxybenzo[b]furan derivative 1 showed 

somewhat greater antiproliferative activity than imatinib and had the ability to decrease 

intracellular levels of pSTAT5 [45]. With the aim to discover more potent compounds for 

inhibition of the phosphorylation-activation of STAT5, we designed a new series of 2-aroyl 

benzoheterocyclic derivatives structurally related to compound 1 and examined them for 

their ability to decrease pSTAT5 levels in K562 cells. SAR analysis indicated that (i) the 

benzo[b]furan nucleus was not indispensable for STAT5 inhibitory activity, for it could be 

replaced by benzo[b]thiophene or N-methyl indole systems, (ii) the ortho relationship 

between the benzoyl and the iodoacetylamino moieties at the C-2 and C-3 positions, 

respectively, of the benzoheterocyclic nucleus was essential for the STAT5 activity, and (iii) 

replacing the 3′,4′,5′-trimethoxybenzoyl moiety at the 2-position of benzo[b]furan skeleton 

with a benzoyl group maintained STAT5 inhibitory activity.
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Compound 6 was the most active of the series in terms of antiproliferative and apoptosis 

activity (IC50 = 0.07 μM, AC50 = 0.25 μM). Compared to imatinib mesilate (IC50 = 0.22 

μM, AC50 = 0.68 μM) it was 3 times more active as antiproliferative agent and 2 times more 

potent as apoptotic agent. The apoptotic effect observed with compound 6 in K562 cells is 

of interest considering that the Bcr–Abl oncogene expressed in this cell line confers 

resistance toward apoptosis induced by different agents. Although this compound seemed to 

act primarily as an antimitotic agent by blocking cells in the G2M phase, it also reduced the 

intracellular pSTAT5 levels. Compounds 18 and 19 also induced an arrest of cells in the 

G2M phase and were able to reduce the expression of pSTAT5. In contrast compounds 5, 7, 

8, 9, 11, 13 and 17 increased the proportion of cells in the S phase, but these agents had little 

or no ability to modulate STAT5. Compounds 1, 15 and 20 were the most active in 

modulating STAT5 (they caused a complete or potent inhibition of STAT5 

phosphorylation), and they strongly inhibited tubulin polymerization. However, these 

compounds caused a substantial increase in the proportion of cells in the G1 phase but not in 

the G2M phase as usually observed with antitubulin agents. This could be caused by their 

ability to potently inhibit STAT5 activation, thus preventing the G1 to S phase transition. In 

fact, pSTAT5 modulates the expression of genes that are known to regulate growth and 

survival, such as cyclin D1, Bcl-xl, c-Myc, pim-1, and p21 [48,49]. In addition, several of 

the genes modulated by pSTAT5 are known to be associated with lympho-proliferative 

disorders. This includes nucleobindin, which is associated with non-Hodgkin’s lymphoma 

[50] and MIP-1α, which is associated with multiple myeloma [51].

Compared to the reference compound 1, derivative 20 was slightly less cytotoxic, but it was 

able to decrease intracellular pSTAT5 levels more potently than 1 and at a markedly lower 

concentration (1 μM vs 7.5 μM). Except for the two benzo[b]furan derivatives 4 and 23 that 

had good activity in decreasing pSTAT5 expression, but did not show antitubulin activity, 

our data suggest that there is a correlation between antitubulin activity and inhibition of 

STAT5 phosphorylation. This is supported by other studies that show that antimitotic agents 

can modulate STAT5 activity. Previous observations have shown the presence of a 

relationship between STATs nuclear translocation and microtubules. Indeed, the prevention 

of microtubule and microfilament polymerization induced a partial inhibition of STAT5 

nuclear translocation and STAT5 DNA binding activity [52]. Moreover, paclitaxel, a 

microtubule stabilizer, significantly decreased the nuclear translocation of STATs without 

affecting the cytosolic tyrosine phosphorylation of these transcription factors [53]. Lopez-

Perez and Salazar have shown that stimulation of MCF7 cells with epidermal growth factor 

(EGF) promoted an increase in the phosphorylation of STAT5 at Tyr-694 [52]. In addition, 

EGF stimulated STAT5 nuclear translocation and an increase in STAT5 DNA binding 

activity. STAT5 phosphorylation at Tyr-694 was dependent on the integrity of the 

microtubule network, and it was independent of the integrity of the actin cytoskeleton. This 

demonstrated for the first time that microtubules play an important role in STAT5 

activation. Recently, a new microtubule destabilizing agent able to reduce phosphorylation/

activation of a member of the STAT family member was described [54]. These observations 

are consistent with our data that show a correlation between tubulin polymerization 

inhibition and STAT5 phosphorylation/activation.
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5. Conclusions

Among the inhibitors of STAT5 protein, our previous work led to the identification of 

compound 1 as a potent STAT5 inhibitor. This agent contains the 2-(3′,4′,5′-

trimethoxybenzoyl)-3-iodoacetamido-6-methoxybenzo[b]furan ring system. This finding 

prompted us to study this compound class in more detail by the preparation of a series of 2-

(3′,4′,5′-trimethoxybenzoyl) benzoheterocyclic derivatives characterized by the presence of 

benzo[b]furan, benzo[b]thiophene, indole and N-methylindole ring systems and to determine 

which analogs were able to target STAT5 and disrupt STAT5 signaling. For most of the 

synthesized molecules, the 3′,4′,5′-trimethoxybenzoyl substituent was maintained at the 2-

position of the benzoheterocycle, and we examined the effect on biological activity by 

altering the positions of the iodoacetamido group and of methyl and methoxy moieties, 

moving these substituents from the C-3 to C-7 positions. The SAR study indicated that the 

presence of the methoxy group located at the C-6 position of the benzo[b]furan nucleus 

contributed to maximal activity, since the C-5 and C-7 methoxy analogs 2 and 3, 

respectively, were considerably less active than the C-6 methoxy counterpart 1. In the series 

of 5-iodoacetamido benzo[b]furan derivatives 5–7 and 10, the greatest antiproliferative 

activity occurred with the concomitant presence of a methyl and methoxy group at the C-3 

and C-6 positions, respectively, the least when a single methyl group was inserted at the C-3 

position, to yield compounds 6 and 10, respectively, while the C-6 and C-7 methoxy analogs 

5 and 7 were equipotent. The most active compound identified in this study was the 2-(3′,4′,

5′-trimethoxybenzoyl)-3-methyl-5-(iodoacetylamino)-6-methoxybenzo[b]furan derivative 6, 

which was twice as active as 1 with K562 cells.

A moderate increase of activity was observed moving the iodoacetamido group from the C-3 

to the C-4 position of the benzo[b]furan ring, while only a marginal improvement occurred 

by shifting the iodoacetamido function from the C-4 to the C-5 or C-6 positions (compounds 

4, 8, 9 and 11, respectively). Compound 12, with the iodoacetylamino moiety at the C-7 

position, had no anti-proliferative activity (IC50 > 50 μM). In the series of 3-iodoacetamido 

benzoheterocyclic derivatives 4, 13, 14 and 16, the antiproliferative activity of 

benzo[b]furan derivative 4 was 15-fold greater than that of benzo[b]thiophene counterpart 

16, 2-fold lower than that of indole derivative 13 and 4-fold higher than that of N-

methylindole 14. The marked improvement in activity of compounds 19 and 20 related to 2-

(3′,4′,5′-trimethoxybenzoyl)-3-iodoacetylamino benzo[b]thiophene derivative 16 derives 

from the introduction of a methyl group at the C-6 or C-7 positions of the benzo[b]thiophene 

core, respectively. Among the two isomeric methyl benzo[b]thiophene derivatives, simply 

moving the methyl group from the C-6 to the C-7 position, to furnish derivative 19 and 20, 

respectively, a two-fold improvement of activity occurred.

Four compounds of this series (4, 15, 20 and 23) with substantially greater antiproliferative 

activity than 1 had significant inhibitory activities on STAT5 activation. These compounds, 

like reference compound 1, blocked cells in G1.

As with reference compound 1, derivatives 15 and 20 were able both to decrease the 

pSTAT5 level and to inhibit the assembly of tubulin by interacting with tubulin at the 

colchicine site. For the two benzo[b]furan derivatives 4 and 23, which were less active in 
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modulating STAT5 than 1, 15 and 20, it was possible to achieve a complete separation 

between these two effects, since compounds 4 and 23 had minimal antitubulin activity The 

ability of 2-benzoyl-3-iodoacetamidobenzo[b]furan derivative 23 to reduce markedly the 

expression of activated STAT5 demonstrated that the presence of the three methoxy groups 

on the 2-benzoyl moiety was not essential for anti-STAT5 activity.

We have no specific evidence that our compounds alkylate intracellular proteins, thereby 

interfering with STAT activation, and we feel this possibility is too speculative to discuss at 

this time. The mechanism by which the new molecules 4, 15, 20 and 23 modulates STAT5 

expression remains to be elucidated and is currently under investigation.

6. Experimental section

6.1. Chemistry

6.1.1. Materials and methods—1H NMR and 13C NMR spectra were determined in 

CDCl3 or d6-DMSO solutions and recorded with a Varian VXR-200 spectrometer or a 

Varian Mercury Plus 400 spectrometer. Chemical shifts (δ) are given in parts per million 

(ppm) downfield and J values are given in hertz. Positive-ion electrospray ionization (ESI) 

mass spectra were recorded on a double-focusing ESI Micromass ZMD 2000 mass 

spectrometer. Melting points (mp) were determined on a Buchi–Tottoli apparatus and are 

uncorrected. Elemental analyses were conducted by the Microanalytical Laboratory of the 

Chemistry Department of the University of Ferrara and were performed on a Yanagimoto 

MT-5 CHN recorder analyzer. All tested compounds yielded data consistent with a purity of 

at least 95% as compared with the theoretical values. Reaction courses and product mixtures 

were routinely monitored by TLC on silica gel (precoated F254 Merck plates) and visualized 

with aqueous KMnO4. Flash chromatography was performed using 230–400 mesh silica gel 

and the solvent system indicated in the procedure. All commercially available compounds 

were used without further purification. Organic solutions were dried over anhydrous 

Na2SO4. Petroleum ether refers to the fraction boiling at 40–60 °C.

6.1.2. General procedure A for the preparation of compounds 38–51—To a 

solution of aminobenzoheterocyclic derivative 24–37 (1 mmol) and pyridine (3 mmol, 0.24 

mL) in dry CH2Cl2 (5 mL), bromoacetyl bromide (0.25 mL, 3 mmol) was added at 0 °C. 

After 1 h at the same temperature, the reaction mixture was diluted with CH2Cl2 (5 mL), 

washed with water (5 mL), dried over Na2SO4 and concentrated in vacuo. The crude residue 

was purified by flash chromatography on silica gel.

6.1.2.1. 2-Bromo-N-(6-methoxy-2-(3,4,5-trimethoxybenzoyl)benzo-furan-5-
yl)acetamide (38): Following general procedure A, the crude residue purified by flash 

chromatography using ethyl acetate: petroleum ether 1:1 (v:v) as eluent furnished 38 as a 

white solid. Yield: 83%; mp 185–187 °C. 1H NMR (CDCl3) δ: 3.94 (s, 6H), 3.96 (s, 3H), 

4.03 (s, 3H), 4.07 (s, 2H), 7.15 (s, 1H), 7.27 (s, 2H), 7.48 (s, 1H), 8.69 (s, 1H), 8.82 (bs, 1H). 

MS (ESI): [M+1]+ = 478.1 and 480.1.

6.1.2.2. 2-Bromo-N-(6-methoxy-3-methyl-2-(3,4,5-trimethoxybenzoyl)benzofuran-5-
yl)acetamide (39): Following general procedure A, the crude residue purified by flash 
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chromatography using ethyl acetate: petroleum ether 1:1 (v:v) as eluent furnished 39 as a 

yellow solid. Yield: 81%; mp 128–130 °C. 1H NMR (CDCl3) δ: 2.60 (s, 3H), 3.93 (s, 3H), 

3.95 (s, 6H), 4.01 (s, 3H), 4.08 (s, 2H), 7.04 (s, 1H), 7.36 (s, 2H), 8.65 (s, 1H), 8.86 (bs, 1H). 

MS (ESI): [M+1]+ = 491.1 and 493.2.

6.1.2.3. 2-Bromo-N-[7-methoxy-2-(3,4,5-trimethoxybenzoyl)-1-benzofuran-5-
yl]acetamide (40): Following general procedure A, the crude residue purified by flash 

chromatography using ethyl acetate: petroleum ether 4:6 (v:v) as eluent furnished 40 as a 

cream colored solid. Yield: 68%; mp 192–194 °C. 1H NMR (CDCl3) δ: 3.95 (s, 3H), 3.96 (s, 

6H), 4.04 (s, 3H), 4.07 (s, 2H), 7.17 (s, 1H), 7.28 (s, 2H), 7.42 (s, 1H), 7.53 (s, 1H), 8.22 (bs, 

1H). MS (ESI): [M+1]+ = 478.3 and 480.3.

6.1.2.4. 2-Bromo-N-(2-(3,4,5-trimethoxybenzoyl)benzofuran-4-yl) acetamide (41): 
Following general procedure A, the crude residue purified by flash chromatography using 

ethyl acetate: petroleum ether 1:1 (v:v) as eluent furnished 41 as a yellow solid. Yield: 74%; 

mp 163–164 °C. 1H NMR (CDCl3) δ: 3.95 (s, 3H), 3.97 (s, 6H), 4.11 (s, 2H), 7.37 (s, 2H), 

7.48 (m, 2H), 7.59 (s, 1H), 7.74 (m, 1H), 8.53 (bs, 1H). MS (ESI): [M+1]+ = 448.5 and 

450.5.

6.1.2.5. 2-Bromo-N-[2-(3,4,5-trimethoxybenzoyl)-1-benzofuran-5-yl] acetamide (42): 
Following general procedure A, the crude residue purified by flash chromatography using 

ethyl acetate: petroleum ether 4:6 (v:v) as eluent furnished 42 as a brown solid. Yield: 78%; 

mp 68–70 °C. 1H NMR (CDCl3) δ: 3.94 (s, 3H), 3.96 (s, 6H), 4.11 (s, 2H), 7.34 (s, 2H), 

7.42 (dd, J = 8.0 and 2.0 Hz, 1H), 7.52 (s, 1H), 7.59 (d, J = 8.0 Hz, 1H), 8.18 (d, J = 2.0 Hz, 

1H), 8.32 (bs, 1H). MS (ESI): [M+1]+ = 448.4 and 450.4.

6.1.2.6. 2-Bromo-N-(3-methyl-2-(3,4,5-trimethoxybenzoyl)benzo-furan-5-yl)acetamide 
(43): Following general procedure A, the crude residue purified by flash chromatography 

using ethyl acetate: petroleum ether 1:1 (v:v) as eluent furnished 43 as a pink solid. Yield: 

79%; mp 174–176 °C. 1H NMR (CDCl3) δ: 2.62 (s, 3H), 3.93 (s, 6H), 3.96 (s, 3H), 4.08 (s, 

2H), 7.39 (s, 2H), 7.49 (m, 2H), 8.04 (s, 1H), 8.23 (bs, 1H). MS (ESI): [M+1]+ = 462.4 and 

464.4.

6.1.2.7. 2-Bromo-N-(2-(3,4,5-trimethoxybenzoyl)benzofuran-6-yl) acetamide (44): 
Following general procedure A, the crude residue purified by flash chromatography using 

ethyl acetate: petroleum ether 1:1 (v:v) as eluent furnished 44 as a pink solid. Yield: 84%; 

mp 174–176 °C. 1H NMR (d6-DMSO) δ: 3.78 (s, 2H), 3.88 (s, 6H), 4.10 (s, 3H), 7.27 (s, 

2H), 7.48 (dd, J = 8.6 and 1.8 Hz, 1H), 7.78 (d, J = 8.6 Hz, 1H), 7.85 (s, 1H), 8.18 (s, 1H), 

10.8 (bs, 1H). MS (ESI): [M+1]+ = 448.4 and 450.4.

6.1.2.8. 2-Bromo-N-(2-(3,4,5-trimethoxybenzoyl)benzofuran-7-yl) acetamide (45): 
Following general procedure A, the crude residue purified by flash chromatography using 

ethyl acetate: petroleum ether 1:1 (v:v) as eluent furnished 45 as a purple solid. Yield: 77%; 

mp 156–168 °C. 1H NMR (d6-DMSO) δ: 3.80 (s, 2H), 3.88 (s, 6H), 3.91 (s, 3H), 7.30 (s, 

2H), 7.63 (d, J = 8.4 Hz, 1H), 7.96 (s, 1H), 8.72 (t, J = 8.4 Hz, 1H), 9.13 (d, J = 8.4 Hz, 1H), 

11.3 (bs, 1H). MS (ESI): [M+1]+ = 448.6 and 450.7.
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6.1.2.9. 2-Bromo-N-(2-(3,4,5-trimethoxybenzoyl)-1H-indol-3-yl) acetamide (46): 
Following general procedure A, the crude residue purified by flash chromatography using 

ethyl acetate: petroleum ether 4:6 (v:v) as eluent furnished 46 as a brown solid. Yield: 77%; 

mp 208–210 °C. 1H NMR (CDCl3) δ: 3.89 (s, 6H), 3.93 (s, 3H), 4.06 (s, 2H), 7.07 (s, 2H), 

7.21 (m, 2H), 7.37 (m, 1H), 8.10 (d, J = 8.4 Hz, 1H), 8.62 (bs, 1H), 10.3 (bs, 1H). MS (ESI): 

[M+1]+ = 447.3 and 449.3.

6.1.2.10. 2-Bromo-N-(1-methyl-2-(3,4,5-trimethoxybenzoyl)-1H-indol-3-yl)acetamide 
(47): Following general procedure A, the crude residue purified by flash chromatography 

using ethyl acetate:petroleum ether 1:1 (v:v) as eluent furnished 47 as a brown solid. Yield: 

87%; mp 216–217 °C. 1H NMR (CDCl3) δ: 1.57 (s, 3H), 3.79 (s, 2H), 3.87 (s, 3H), 3.89 (s, 

3H), 3.94 (s, 3H), 7.09 (s, 2H), 7.21 (m, 2H), 7.41 (m, 1H), 7.70 (d, J = 8.2 Hz, 1H), 8.63 

(bs, 1H). MS (ESI): [M+1]+ = 461.4 and 463.4.

6.1.2.11. 2-Bromo-N-(7-methoxy-1-methyl-2-(3,4,5-trimethoxybenzoyl)-1H-indol-3-
yl)acetamide (48): Following general procedure A, the crude residue purified by flash 

chromatography using ethyl acetate: petroleum ether 4:6 (v:v) as eluent furnished 48 as a 

brown solid. Yield: 83%; mp 178–180 °C. 1H NMR (CDCl3) δ: 3.87 (s, 3H), 3.92 (s, 6H), 

3.94 (s, 3H), 3.98 (s, 3H), 4.03 (s, 2H), 6.77 (d, J = 7.6 Hz, 1H), 7.07 (m, 1H), 7.11 (s, 2H), 

7.21 (d, J = 7.6 Hz, 1H), 8.72 (bs, 1H). MS (ESI): [M+1]+ = 491.1 and 493.1.

6.1.2.12. 2-Bromo-N-(2-(3,4-dimethoxybenzoyl)benzofuran-3-yl) acetamide (49): 
Following general procedure A, the crude residue purified by flash chromatography using 

ethyl acetate: petroleum ether 1:1 (v:v) as eluent furnished 49 as a brown solid. Yield: 83%; 

mp 138–140 °C. 1H NMR (CDCl3) δ: 3.98 (s, 3H), 4.00 (s, 3H), 4.14 (s, 2H), 7.04 (d, J = 

8.6 Hz, 1H), 7.33 (m, 2H), 7.52 (dd, J = 5.4 and 2.0 Hz, 1H), 7.78 (d, J = 2.0 Hz, 1H), 8.13 

(dd, J = 8.0 and 1.8 Hz, 1H), 8.48 (d, J = 8.0 Hz, 1H), 11.4 (bs, 1H). MS (ESI): [M+1]+ = 

418.4 and 420.4.

6.1.2.13. 2-Bromo-N-(2-(4-methoxybenzoyl)benzofuran-3-yl)acetamide (50): Following 

general procedure A, the crude residue purified by flash chromatography using ethyl acetate: 

petroleum ether 4:6 (v:v) as eluent furnished 50 as a cream colored solid. Yield: 95%; mp 

140–142 °C. 1H NMR (CDCl3) δ: 3.92 (s, 3H), 4.13 (s, 2H), 7.07 (m, 2H), 7.33 (m, 2H), 

7.54 (dd, J = 6.8 and 2.0 Hz, 1H), 8.31 (dd, J = 6.8 and 1.6 Hz, 2H), 8.47 (dd, J = 8.0 and 1.6 

Hz, 1H), 11.5 (bs, 1H). MS (ESI): [M+1]+ = 388.4 and 390.4.

6.1.2.14. N-(2-Benzoylbenzofuran-3-yl)-2-bromoacetamide (51): Following general 

procedure A, the crude residue purified by flash chromatography using ethyl acetate: 

petroleum ether 2:8 (v:v) as eluent furnished 51 as a yellow solid. Yield: 76%; mp 87–88 

°C. 1H NMR (CDCl3) δ: 4.15 (s, 2H), 7.34 (m, 1H), 7.53 (m, 2H), 7.63 (m, 3H), 8.22 (dd, J 

= 8.4 and 1.6 Hz, 2H), 8.50 (d, J = 8.4 Hz, 1H), 11.4 (bs, 1H). MS (ESI): [M+1]+ = 358.1 

and 360.1.

6.1.3. General procedure B for the synthesis of compounds 5–15 and 21–23—
A mixture of bromoacetamido derivatives 38–51 (1 mmol) and NaI (1.5 g, 10 mmol) in N,N-

dimethylacetamide (5 mL) was stirred at ambient temperature for 18 h. N,N-
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dimethylacetamide was evaporated under reduced pressure, followed by addition of CH2Cl2 

(15 mL) and a solution of Na2S2O3 (10%, 5 mL). The organic layer was washed with water 

(5 mL) and brine (5 mL) and dried over Na2SO4. After evaporation of the solvent, the 

residue was purified by flash chromatography on silica gel.

6.1.3.1. 2-Iodo-N-(6-methoxy-2-(3,4,5-trimethoxybenzoyl)benzo-furan-5-yl)acetamide 
(5): Following general procedure B, the crude residue purified by flash chromatography 

using ethyl acetate:petroleum ether 1:1 (v:v) as eluent furnished 5 as a yellow solid. Yield: 

73%; mp 192–194 °C. 1H NMR (CDCl3) δ: 3.92 (s, 2H), 3.94 (s, 6H), 3.96 (s, 3H), 4.03 (s, 

3H), 7.13 (s, 1H), 7.27 (s, 2H), 7.47 (s, 1H), 8.38 (bs, 1H), 8.68 (bs, 1H). 13C NMR (CDCl3) 

δ: 0.145, 56.48 (2C), 56.60, 61.13, 94.39, 106.99 (2C), 112.94 (2C), 117.47, 119.88, 125.35, 

132.56, 142.42, 150.47, 152.07, 153.18, 153.45, 164.99, 182.73. MS (ESI): [M+1]+ = 526.6. 

Anal. calcd for C21H20INO7 C, 48.02; H, 3.84; N, 2.67; found: C, 47.88; H, 3.69; N, 2.59.

6.1.3.2. 2-Iodo-N-(6-methoxy-3-methyl-2-(3,4,5-trimethoxybenzoyl) benzofuran-5-
yl)acetamide (6): Following general procedure B, the crude residue purified by flash 

chromatography using ethyl acetate: petroleum ether 1:1 (v:v) as eluent furnished 6 as a 

yellow solid. Yield: 81%; mp 172–174 °C. 1H NMR (CDCl3) δ: 2.59 (s, 3H), 3.93 (s, 8H), 

3.95 (s, 3H), 4.00 (s, 3H), 7.02 (s, 1H), 7.35 (s, 2H), 8.38 (s, 1H), 8.63 (bs, 1H). 13C NMR 

(CDCl3) δ: 0.26, 10.48, 56.41 (2C), 56.54, 61.07, 94.04, 107.36 (2C), 111.37 (2C), 122.13, 

124.84, 128.22, 133.17, 142.11, 148.46, 150.41, 151.49, 152.92, 164.90, 184.01. MS (ESI): 

[M+1]+ = 540.3. Anal. calcd for C22H22INO7 C, 48.99; H, 4.11; N, 2.60; found: C, 48.78; 

H, 3.89; N, 2.48.

6.1.3.3. 2-Iodo-N-[7-methoxy-2-(3,4,5-trimethoxybenzoyl)-1-benzofuran-5-yl]acetamide 
(7): Following general procedure B, the crude residue purified by flash chromatography 

using ethyl acetate: petroleum ether 1:1 (v:v) as eluent furnished 7 as a yellow solid. Yield: 

71%; mp 190–191 °C. 1H NMR (d6-DMSO) δ: 3.79 (s, 3H), 3.85 (s, 2H), 3.88 (s, 6H), 3.97 

(s, 3H), 7.22 (d, J = 1.6 Hz, 1H), 7.29 (s, 2H), 7.80 (d, J = 1.6 Hz, 1H), 7.88 (s, 1H), 10.5 

(bs, 1H). 13C NMR (d6-DMSO) δ: 1.44, 55.96 (2C), 60.12 (2C), 102.94, 104.45, 106.72 

(2C), 117.38 (2C), 128.20, 131.67, 135.82, 141.52, 141.66, 144.96, 151.64, 152.65, 166.54, 

181.97. MS (ESI): [M+1]+ = 526.6. Anal. calcd for C21H20INO7 C, 48.02; H, 3.84; N, 2.67; 

found: C, 47.91; H, 3.70; N, 2.49.

6.1.3.4. 2-Iodo-N-(2-(3,4,5-trimethoxybenzoyl)benzofuran-4-yl)acetamide (8): Following 

general procedure B, the crude residue purified by flash chromatography using ethyl acetate: 

petroleum ether 4:6 (v:v) as eluent furnished 8 as a green solid. Yield: 78%; mp 167–168 

°C. 1H NMR (CDCl3) δ: 3.95 (s, 8H), 3.97 (s, 3H), 7.35 (s, 2H), 7.43 (m, 2H), 7.60 (m,1H), 

7.64 (s, 1H), 8.12 (bs, 1H). 13C NMR (CDCl3) δ: −0.53, 56.39 (2C), 61.07, 107.17 (2C), 

109.69, 114.24, 115.98 (2C), 120.42, 128.86, 131.68, 131.81, 142.59, 151.48, 153.04, 

156.31, 165.51, 182.96. MS (ESI): [M+1]+ = 496.6. Anal. calcd for C20H18INO6 C, 48.50; 

H, 3.66; N, 2.83; found: C, 48.29; H, 3.51; N, 2.62.

6.1.3.5. 2-Iodo-N-[2-(3,4,5-trimethoxybenzoyl)-1-benzofuran-5-yl] acetamide (9): 
Following general procedure B, the crude residue purified by flash chromatography using 

ethyl acetate: petroleum ether 1:1 (v:v) as eluent furnished 9 as a brown solid. Yield: 68%; 

Romagnoli et al. Page 13

Eur J Med Chem. Author manuscript; available in PMC 2017 January 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mp 185–187 °C. 1H NMR (d6-DMSO) δ: 3.79 (s, 3H), 3.86 (s, 2H), 3.89 (s, 6H), 7.29 (s, 

2H), 7.53 (dd, J = 9.2 and 2.0 Hz, 1H), 7.73 (d, J = 9.2 Hz, 1H), 7.91 (s, 1H), 8.27 (d, J = 2.0 

Hz, 1H), 10.5 (bs, 1H). 13C NMR (d6-DMSO) δ: 1.41, 55.98 (2C), 60.12, 106.68 (2C), 

112.41 (2C), 112.97 (2C), 117.30, 120.99, 127.08, 131.74, 135.11, 141.63, 151.72, 152.67, 

166.57, 182.18. MS (ESI): [M+1]+ = 496.5. Anal. calcd for C20H18INO6 C, 48.50; H, 3.66; 

N, 2.83; found: C, 48.31; H, 3.47; N, 2.63.

6.1.3.6. 2-Iodo-N-(3-methyl-2-(3,4,5-trimethoxybenzoyl)benzofuran-5-yl)acetamide 
(10): Following general procedure B, the crude residue purified by flash chromatography 

using ethyl acetate: petroleum ether 1:1 (v:v) as eluent furnished 10 as a pink solid. Yield: 

80%; mp 173–175 °C. 1H NMR (d6-DMSO) δ: 2.52 (s, 3H), 3.79 (s, 3H), 3.86 (s, 6H), 3.88 

(s, 2H), 7.33 (s, 2H), 7.55 (dd, J = 8.8 and 2.0 Hz, 1H), 7.69 (d, J = 8.8 Hz, 1H), 8.17 (d, J = 

2.0 Hz, 1H), 10.5 (bs, 1H). 13C NMR (d6-DMSO) δ: 1.54, 9.82, 56.06 (2C), 60.23, 107.07 

(2C), 110.83, 112.60, 121.20 (2C), 125.99, 128.68, 132.36, 134.98, 141.65, 148.22, 150.20, 

152.61, 166.62, 183.77. MS (ESI): [M+1]+ = 510.7. Anal. calcd for C21H20INO6 C, 49.52; 

H, 3.96; N, 2.75; found: C, 49.37; H, 3.78; N, 2.61.

6.1.3.7. 2-Iodo-N-(2-(3,4,5-trimethoxybenzoyl)benzofuran-6-yl)acetamide (11): 
Following general procedure B, the crude residue purified by flash chromatography using 

ethyl acetate: petroleum ether 1:1 (v:v) as eluent furnished 11 as a yellow solid. Yield: 81%; 

mp 188–190 °C. 1H NMR (d6-DMSO) δ: 3.78 (s, 3H), 3.88 (s, 8H), 7.27 (s, 2H), 7.42 (dd, J 

= 8.4 and 1.6 Hz, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.84 (s, 1H), 8.17 (s, 1H), 10.7 (bs, 1H). 13C 

NMR (d6-DMSO) δ: 1.31, 55.98 (2C), 60.09, 101.52, 106.58 (2C), 116.38, 117.36, 122.54, 

124.06 (2C), 131.94, 139.55, 141.50, 151.28, 152.65, 155.68, 166.95, 181.83. MS (ESI): [M

+1]+ = 496.7. Anal. calcd for C20H18INO6 C, 48.50; H, 3.66; N, 2.83; found: C, 48.27; H, 

3.48; N, 2.59.

6.1.3.8. 2-Iodo-N-(2-(3,4,5-trimethoxybenzoyl)benzofuran-7-yl)acetamide (12): 
Following general procedure B, the crude residue purified by flash chromatography using 

ethyl acetate: petroleum ether 1:1 (v:v) as eluent furnished 12 as a white solid. Yield: 78%; 

mp 193–195 °C. 1H NMR (d6-DMSO) δ: 3.81 (s, 2H), 3.89 (s, 6H), 3.93 (s, 3H), 7.32 (s, 

2H), 7.66 (d, J = 8.4 Hz, 1H), 7.96 (s, 1H), 8.76 (t, J = 8.4 Hz, 1H), 9.09 (d, J = 8.4 Hz, 1H), 

11.2 (bs, 1H). 13C NMR (CDCl3) δ: 1.49, 55.91 (2C), 56.02, 102.25, 103.22, 107.06 (2C), 

126.21, 129.76, 130.01, 132.13, 135.66, 139.75, 141.56, 145.07, 148.01, 152.48, 166.51, 

183.34. MS (ESI): [M+1]+ = 496.1. Anal. calcd for C20H18INO6 C, 48.50; H, 3.66; N, 2.83; 

found: C, 48.30; H, 3.51; N, 2.63.

6.1.3.9. 2-Iodo-N-(2-(3,4,5-trimethoxybenzoyl)-1H-indol-3-yl)acetamide (13): Following 

general procedure B, the crude residue purified by flash chromatography using ethyl acetate: 

petroleum ether 4:6 (v:v) as eluent furnished 13 as a cream colored solid. Yield: 83%; mp 

215–217 °C. 1H NMR (CDCl3) δ: 3.90 (s, 6H), 3.93 (s, 5H), 7.05 (s, 2H), 7.16 (t, J = 8.4 Hz, 

1H), 7.38 (m, 2H), 8.13 (d, J = 8.4 Hz, 1H), 8.61 (bs, 1H), 10.1 (bs, 1H). 13C NMR (CDCl3) 

δ: −1.04, 56.46 (2C), 61.11, 106.10 (2C), 112.00, 121.13 (2C), 120.96, 121.07, 122.55, 

124.94, 125.05, 127.66, 133.23, 136.26, 153.44, 165.71, 187.34. MS (ESI): [M+1]+ = 495.3. 

Anal. calcd for C20H19IN2O5 C, 48.60; H, 3.87; N, 5.63; found: C, 48.34; H, 3.67; N, 5.38.
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6.1.3.10. 2-Iodo-N-(1-methyl-2-(3,4,5-trimethoxybenzoyl)-1H-indol-3-yl)acetamide (14): 
Following general procedure B, the crude residue purified by flash chromatography using 

ethyl acetate:petroleum ether 4:6 (v:v) as eluent furnished 14 as a yellow solid. Yield: 79%; 

mp 239–241 °C. 1H NMR (d6-DMSO) δ: 3.58 (s, 2H), 3.74 (s, 3H), 3.79 (s, 6H), 3.81 (s, 

3H), 7.07 (s, 2H), 7.16 (t, J = 8.0 Hz, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.55 (d, J = 8.0 Hz, 1H), 

7.61 (d, J = 8.0 Hz, 1H), 10.0 (bs, 1H). 13C NMR (d6-DMSO) δ: 0.112, 31.69, 56.22 (2C), 

60.64, 107.25 (2C), 111.28, 116.93, 120.58 (2C), 122.28, 125.40, 128.82, 133.96, 133.78, 

137.37, 142.38, 153.13, 166.95, 187.05. MS (ESI): [M+1]+ = 509.7. Anal. calcd for 

C21H21IN2O5 C, 48.60; H, 3.87; N, 5.67; found: C, 48.29; H, 3.59; N, 5.40.

6.1.3.11. 2-Iodo-N-(7-methoxy-1-methyl-2-(3,4,5-trimethoxybenzoyl)-1H-indol-3-
yl)acetamide (15): Following general procedure B, the crude residue purified by flash 

chromatography using ethyl acetate: petroleum ether 1:1 (v:v) as eluent furnished 15 as a 

yellow solid. Yield: 81%; mp 245–247 °C. 1H NMR (d6-DMSO) δ: 3.56 (s, 2H), 3.73 (s, 

3H), 3.79 (s, 6H), 3.93 (s, 3H), 4.01 (s, 3H), 6.84 (d, J = 8.8 Hz, 1H), 7.06 (m, 3H), 7.09 (d, 

J = 8.8 Hz, 1H), 9.96 (bs, 1H). 13C NMR (d6-DMSO) δ: −0.45, 34.21, 55.67 (2C), 55.74, 

60.10, 105.58, 106.71 (2C), 112.38, 116.45, 120.61 (2C), 124.00, 126.69, 129.18, 133.02, 

141.91, 147.66, 152.59, 166.38, 186.43. MS (ESI): [M+1]+ = 539.3. Anal. calcd for 

C22H23IN2O6 C, 49.08; H, 4.31; N, 5.20; found: C, 48.89; H, 4.09; N, 5.03.

6.1.3.12. 2-Iodo-N-(2-(3,4-dimethoxybenzoyl)benzofuran-3-yl)acetamide (21): 
Following general procedure B, the crude residue purified by flash chromatography using 

ethyl acetate: petroleum ether 4:6 (v:v) as eluent furnished 21 as a white solid. Yield: 83%; 

mp 174–176 °C. 1H NMR (CDCl3) δ: 4.00 (s, 3H), 4.01 (s, 5H), 4.09 (s, 2H), 7.01 (d, J = 

8.4 Hz, 1H), 7.31 (m, 1H), 7.53 (m, 2H), 7.77 (d, J = 2.0 Hz, 1H), 8.13 (dd, J = 8.4 and 2.0 

Hz, 1H), 8.49 (d, J = 8.0 Hz, 1H), 11.2 (bs, 1H). 13C NMR (CDCl3) δ: −1.15, 56.15, 56.26, 

110.34, 111.98, 112.13, 120.85, 123.60, 125.34, 127.33, 127.40, 129.38, 129.78, 138.85, 

149.12, 153.76, 154.48, 166.11, 184.06. MS (ESI): [M+1]+ = 466.6. Anal. calcd for 

C19H16INO5 C, 49.05; H, 3.47; N, 3.01; found: C, 48.79; H, 3.28; N, 2.89.

6.1.3.13. 2-Iodo-N-(2-(4-methoxybenzoyl)benzofuran-3-yl)acetamide (22): Following 

general procedure B, the crude residue purified by flash chromatography using ethyl acetate: 

petroleum ether 1.5:8.5 (v:v) as eluent furnished 22 as a white solid. Yield: 81%; mp 174–

175 °C. 1H NMR (CDCl3) δ: 3.92 (s, 3H), 4.02 (s, 2H), 7.03 (d, J = 8.8 Hz, 2H), 7.32 (m, 

1H), 7.52 (m, 2H), 8.31 (dd, J = 8.4 Hz, 2H), 8.49 (d, J = 8.4 Hz, 1H), 11.2 (bs, 1H). 13C 

NMR (CDCl3) δ: −1.09, 55.65, 112.18 (2C), 113.99 (2C), 120.87, 123.55, 127.36, 129.34, 

129.72, 132.31, 132.46, 138.82, 154.49, 163.88, 166.12, 184.22. MS (ESI): [M+1]+ = 436.4. 

Anal. calcd for C18H14INO4 C, 49.68; H, 3.24; N, 3.22; found: C, 49.48; H, 3.13; N, 2.95.

6.1.3.14. N-(2-Benzoylbenzofuran-3-yl)-2-iodoacetamide (23): Following general 

procedure B, the crude residue purified by flash chromatography using ethyl acetate: 

petroleum ether 1.5:8.5 (v:v) as eluent furnished 23 as a white solid. Yield: 76%; mp 144–

145 °C. 1H NMR (d6-DMSO) δ: 4.00 (s, 2H), 7.39 (t, J = 7.6 Hz, 1H), 7.59 (m, 3H), 7.71 

(m, 2H), 7.90 (d, J = 8.0 Hz, 1H), 8.02 (dd, J = 8.2 and 1.6 Hz, 2H), 10.7 (bs, 1H). 13C NMR 

(CDCl3) δ: −0.23, 112.44, 122.42, 123.48, 123.73, 126.81, 128.56 (2C), 129.02 (2C), 
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129.10, 133.04, 136.58, 140.46, 153.15, 166.88, 184.16. MS (ESI): [M+1]+ = 406.4. Anal. 

calcd for C17H12INO3 C, 50.39; H, 2.98; N, 3.46; found: C, 50.13; H, 2.79; N, 3.25.

6.2. Biological assays. Materials and methods

6.2.1. Cell lines and culture—The K562 human myeloid cell line was used in this study. 

K562 express the anti-apoptotic oncogene BCR–ABL and high levels of phosphorylated 

STAT5. Cell lines were grown in RPMI 1640 (Gibco Grand Island, NY, USA) containing 

10% FCS (Gibco), 100 U/ml penicillin (Gibco), 100 μg/ml streptomycin (Gibco), and 2 μM 

L-glutamine (Sigma Chemical Co., St. Louis, MO) in a 5% CO2 atmosphere at 37 °C.

6.2.2. Cell growth inhibitory activity—Cytotoxicity was evaluated by the trypan blue 

dye exclusion test. To determine the growth inhibitory activity of the drugs tested, 2 × 105 

cells were plated into 25 mm wells (Costar, Cambridge, UK) in 1 mL of complete medium 

and treated with different concentrations of each drug. After a 48 h incubation, the number 

of viable cells was determined and expressed as percent of control proliferation.

6.2.3. Apoptosis evaluation—Drug induced apoptosis and necrosis was determined 

morphologically after labeling the cells with acridine orange and ethidium bromide and by 

the annexin V detection test. In the morphological test, cells (2 × 105) were centrifuged 

(300× g) and the pellet was resuspended in 25 μL of the dye mixture. Ten microliters of the 

mixture was examined under oil immersion with a 100× objective using a fluorescence 

microscope. Live cells were determined by the uptake of acridine orange (green 

fluorescence) and exclusion of ethidium bromide (red fluorescence) stain. Live and dead 

apoptotic cells were identified by perinuclear condensation of chromatin stained by acridine 

orange (100 μg/mL) or ethidium bromide (100 μg/mL), and by the formation of apoptotic 

bodies. The percentage of apoptotic cells was determined after counting at least 300 cells. 

For the annexin V test, cells (1 × 106) were washed with PBS and centrifuged at 200× g for 

5 min. Cell pellets were suspended in 100 μL of staining solution containing FITC-

conjugated annexin V and propidium iodide (Annexin-V-Fluos Staining Kit, Roche 

Molecular Biochemicals, Mannheim, Germany) and incubated for 15 min at 20 °C: Annexin 

V positive cells were evaluated by flow cytometry (Becton–Dickinson).

6.2.4. Flow cytometry analysis of cell cycle and apoptosis—Cells were washed 

once in ice-cold PBS and resuspended at 1 × 106 per mL in a hypotonic fluorochrome 

solution containing propidium iodide (Sigma) 50 μg/mL in 0.1% sodium citrate plus 0.03% 

(v/v) nonidet P-40 (Sigma). After a 30 min incubation, the fluorescence of each sample was 

analyzed as single-parameter frequency histograms using a FACScan flow cytometer 

(Becton–Dickinson, San Jose, CA). The distribution of cells in the cell cycle was determined 

using the ModFit LT program (Verity Software House, Inc.). Apoptosis was determined by 

evaluating the percentage of hypodiploid nuclei accumulated in the sub-G1 peak after 

labeling with propidium iodide.

6.2.5. Flow cytometric evaluation of intracellular proteins—About 1 × 106 cells 

were washed twice with PBS (Sigma) and resuspended in 100 μL cytofix/cytoperm solution 

(Becton–Dickinson) at 4 °C. After 20 min the cells were washed twice with BD Perm/
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Wash™ buffer solution (Becton–Dickinson) and incubated with 20 μL of the specific 

fluorochrome(PE)-conjugated monoclonal antibody anti-p-STAT5 (Becton–Dickinson) at 4 

°C. After 30 min the cells were washed twice and analyzed by flow cytometry. 

Alternatively, the cells were incubated with 2 μL PE-conjugated rat anti-mouse IgG1 

monoclonal antibody (Becton–Dickinson) at 4 °C. After 30 min the cells were washed twice 

and analyzed by a FACScan flow cytometer (Becton–Dickinson).

6.2.6. Effects on tubulin polymerization and on colchicine binding to tubulin—
To evaluate the effect of the compounds on tubulin assembly in vitro [55], varying 

concentrations of compounds were pre-incubated with 10 μM bovine brain tubulin in 

glutamate buffer at 30 °C and then cooled to 0 °C. After addition of 0.4 μM GTP (final 

concentration), the mixtures were transferred to 0 °C cuvettes in a recording 

spectrophotometer and warmed to 30 °C. Tubulin assembly was followed turbidimetrically 

at 350 nm. The IC50 was defined as the compound concentration that inhibited the extent of 

assembly by 50% after a 20 min incubation. The ability of the test compounds to inhibit 

colchicine binding to tubulin was measured as described [56], except that the reaction 

mixtures contained 1 μM tubulin, 5 μM [3H]colchicine and 5 μM test compound.
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Fig. 1. 
Effects of compounds 4–9, 11, 13, 15, 17–20 and 23 on DNA content per cell following 

exposure of K562 cells for 24 h. a) control; b) 4 (3 μM); c) 5 (2 μM); d) 6 (0.5 μM); e) 7 
(0.75 μM); f) 8 (2 μM); g) 9 (2 μM); h) 11 (3 μM); i) 13 (3 μM); j) 15 (2 μM); k) 17 (2 μM); 

l) 18 (2 μM); m) 19 (3 μM); n) 20 (1 μM); o) 23 (5 μM).
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Fig. 2. 
Effects of compounds 4–9, 11, 13, 15, 17–20 and 23 on pSTAT5 expression in K562 cells. 

Intracellular levels of phosphorylated STAT5 were evaluated by flow cytometry after a 24 h 

exposure of cells to each compound as described in Materials and Methods. Thin line: cells 

stained with an isotype monoclonal antibody; dotted line: cells stained with an anti-pSTAT5 

monoclonal antibody; thick line: cells stained with an anti-pSTAT5 monoclonal antibody 

after a 24 h exposure to each compound. a) 4 (3 μM); b) 5 (2 μM); c) 6 (0.5 μM); d) 7 (0.75 
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μM); e) 8 (2 μM); f) 9 (2 μM); g) 11 (3 μM); h) 13 (3 μM); i) 15 (2 μM); j) 17 (2 μM); k) 18 
(2 μM); l) 19 (3 μM); m) 20 (1 μM); n) 23 (5 μM).fied).
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Scheme 1. 
Reagents and conditions. a: BrCH2COBr, Py, CH2Cl2, rt, 1 h; b: NaI, CH3CON(CH3)2, rt, 

18 h.
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Chart 1. 
Structure of reference compound 1 and new iodoacetamido 2-aroyl benzoheterocyclic 

derivatives 2–23 (R = H, if not specified).
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Table 1

Antiproliferative (IC50) and apoptotic (AC50) effects of compounds 2–23 evaluated in K562 cells after a 48 h 

treatment.

Compounds IC50 (μM)
a

AC50 (μM)
b

1 0.12 ± 0.03 0.45 ± 0.05

2 3.2 ± 0.3 7.8 ± 0.9

3 14 ± 2.2 24 ± 2.8

4 0.9 ± 0.3 6.5 ± 0.7

5 0.4 ± 0.07 2 ± 0.6

6 0.07 ± 0.008 0.25 ± 0.05

7 0.4 ± 0.06 2.2 ± 0.4

8 0.8 ± 0.18 4.5 ± 0.6

9 0.6 ± 0.08 2.9 ± 0.3

10 18 ± 4 26.8 ± 5.3

11 0.6 ± 0.08 2.9 ± 0.3

12 >50 >50

13 0.5 ± 0.06 2.4 ± 0.2

14 4.3 ± 0.3 8.2 ± 1.4

15 0.8 ± 0.12 4.6 ± 0.7

16 18 ± 4 28 ± 4.8

17 0.8 ± 0.2 4.2 ± 0.7

18 0.78 ± 0.09 3.7 ± 0.5

19 1 ± 0.3 4.7 ± 0.5

20 0.4 ± 0.08 2.8 ± 0.3

21 22 ± 3.3 48 ± 6.7

22 2.9 ± 0.1 6.8 ± 0.7

23 1 ± 0.3 5.9 ± 0.8

Imatinib 0.22 ± 0.04 0.68 ± 0.08

Data are expressed as the mean ± SE from the dose-response curves of at least two to three independent experiments.

a
Concentration able to inhibit cell growth by 50%.

b
Concentration able to induce apoptosis in 50% of cells.

Eur J Med Chem. Author manuscript; available in PMC 2017 January 27.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Romagnoli et al. Page 27

Table 2

Cell cycle distribution (%) of K562 cells after exposure to compounds.

Compound G1 S G2M

Control 39.27 47.84 12.89

4 75.37 20.98 3.65

5 43.33 52.26 4.41

6 35.78 35.47 28.76

7 34.66 57.32 8.02

8 33.67 53.09 16.24

9 39.48 53.52 7.00

11 37.06 51.30 11.1

13 31.82 57.79 9.39

15 77.64 19.55 2.81

17 32.96 54.92 12.12

18 19.94 33.70 45.36

19 41.47 27.66 30.87

20 79.88 17.13 2.99

23 68.32 20.28 11.40
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Table 3

Median fluorescence values of K562 cells stained with an anti-pSTAT5 antibody after 24 h exposure to 

compounds.

Compounds Median fluorescence

Control (Isotypic MoAb) 44.54

Control (pSTAT5 MoAb) 315.56

1 54.33

4 98.34

5 224.76

6 176.07

7 316.21

8 271.63

9 254.88

11 288.76

13 221.92

15 58.23

17 278.54

18 201.32

19 199.87

20 45.22

23 103.25

Control (Isotypic MoAb) = K562 cells stained with an isotypic MoAb.

Control (STAT5 MoAb) = K562 cells stained with a STAT5 MoAb.

Compound 1 was used at 7.5 μM.
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Table 4

Inhibition of tubulin polymerization and colchicine binding by compounds 1, 4, 15, 20 and 23.

Compound Tubulin assembly
a

IC50 ± SD (μM)
Colchicine binding

b

% ± SD

4 >20 N.d.

15 2.0 ± 0.3 38 ± 0.0

20 1.1 ± 0.06 65 ± 4

23 >20 N.d.

1 1.8 ± 0.1 54 ± 1

N.d.: not determined.

a
Inhibition of tubulin polymerization. Tubulin was at 10 μM.

b
Inhibition of [3H]colchicine binding. Tubulin, colchicine and tested compound were at 1, 5 and 5 μM, respectively.
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