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ABSTRACT 

The reliability of gas turbine health state monitoring and forecasting depends on the quality of sensor measurements directly taken 

from the unit. Outlier detection techniques have acquired a major importance, as they are capable of removing anomalous measurements 

and improve data quality. To this purpose, statistical parametric methodologies are widely employed thanks to the limited knowledge of 

the specific unit required to perform the analysis. The backward and forward moving window (BFMW) k-ů methodology proved its 

effectiveness in a previous study performed by the authors, to also manage dynamic time series, i.e. during a transient. However, the 

estimators used by the k-ů methodology are usually characterized by low statistical robustness and resistance. 

This paper aims at evaluating the benefits of implementing robust statistical estimators for the BFMW framework. Three different 

approaches are considered in this paper. The first methodology, k-MAD, replaces mean and standard deviation of the k-ů methodology 

with median and mean absolute deviation (MAD), respectively. The second methodology, ů-MAD, is a novel hybrid scheme combining 

the k-ů and the k-MAD methodologies for the backward and the forward windows, respectively. Finally, the bi-weight methodology 

implements bi-weight mean and bi-weight standard deviation as location and dispersion estimators.  

First, the parameters of these methodologies are tuned and the respective performance is compared by means of simulated data. 

Different scenarios are considered to evaluate statistical efficiency, robustness and resistance. Subsequently, the performance of these 

methodologies is further investigated by injecting outliers in field data sets taken on selected Siemens gas turbines.  

Results prove that all the investigated methodologies are suitable for outlier identification. Advantages and drawbacks of each 

methodology allow the identification of different scenarios in which their application can be most effective.  
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NOMENCLATURE 

c parameter of the bi-weight methodology  

k acceptability threshold for the k-ů test criterion 

m outlier magnitude factor 

med median  

N number 

s noise factor  

ίӶ standard deviation 

Ȅ bi-weight standard deviation 

u weight  

w number of measurements in the window sample 

x measurement in the time series 

ὼӶ mean 

ὼ bi-weight mean  

Subscripts and Superscripts 

b backward window  

f forward window  

Acronyms  

GT gas turbine  

FNR false negative rate  

FPR false positive rate  

MAD median absolute deviation 

SD  standard deviation 

TPR true positive rate  

 

INTRODUCTION  

The energy market demand sets high requirements to the productivity of gas turbine (GT) units, requiring high availability and 

efficiency levels to achieve cost effectiveness. Furthermore, the complexity of the units implies a high level of insight on the health state 
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and condition of the turbines. For these reasons, the activity of researchers and company R&D departments focuses on the development 

of tools for monitoring, diagnostics and trending of the health state of GT fleets installed worldwide [1, 2, 3, 4, 5]. Data processing by 

means of software tools aimed at GT health analysis usually relies on direct measurements acquired by different types of sensors installed 

in the GT unit.  

However, the environment in which sensors operate can be extremely harsh. Among other causes, high temperatures, enhanced fluid 

speed and unsteady operation of the units may cause hardware degradation and failures of measurement devices, thus severely affecting 

the quality of sensor data [6]. The input of low quality data for GT health analysis affects the reliability of results, implying misleading 

performance assessments and erroneous anomaly calls. False positives constitute a severe issue for O&M companies as they may lead 

to excessive deployment of maintenance operations, causing unnecessary downtime, extra costs and loss of reputation towards 

customers.  

For these reasons, the application of methods at intermediate stage between data acquisition and GT health analysis is fundamental 

to enhance input data quality, thus posing outlier identification as a promising field of research for both GT users and manufacturers [7, 

8, 9, 10]. In order to be suitable for industrial applications, anomaly identification techniques require simplicity of tuning. In fact, even 

if detection capabilities are somewhat related to the number of model parameters, in most cases this is seen more as a source of issues 

rather than a benefit. Statistics-based methodologies perfectly fit this target, with a less demanding tuning procedure than heuristics 

based techniques or complex thermodynamic models. Furthermore, the specific knowledge about the unit required to perform the 

analysis can be almost null. This feature enhances the applicability of statistical methodologies to different GT units without any 

substantial modification in their tuning. In fact, outliers are identified as a consequence of excessive deviation from a statistical model 

derived from available observations, by means of direct statistical inference [11, 12, 13, 14] or derived from autoregressive models [15, 

16, 17, 18]. However, tuning complexity and poor performance achieved on large data sets reduce the attractiveness of autoregressive 

models techniques for industrial applications.  

In this sense, the k-ů methodology proved to be particularly attractive for assessing the reliability of gas turbine sensor readings [12]. 

In [19], the authors derived direct and generally applicable guidelines for tuning the methodology and developed a backward and forward 

moving window scheme (BFMW) that also allowed the application to dynamic time series, i.e. during a transient. The methodology 

infers the statistical feature of a certain portion of the time series, defined by the backward and forward moving window size, by adopting 

sample mean and standard deviation (SD) as location and scale estimators. As these estimators present limitations, mainly in terms of 

statistical robustness and resistance, this paper aims at evaluating the benefit of implementing robust statistical estimators for the 
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acceptability rule of the k-ů methodology. Therefore, different statistical methodologies for outlier detection are implemented and their 

performance is compared to that of the BFMW k-ů methodology. 

This paper sets as a part of wider frame of research, which documents the efforts made by Siemens to continuously improve 

automated data processing to ultimately enhance data quality and detect failures. The implementation of automated processing 

techniques, without the involvement of frequent human decisions, is in fact crucial, considering that tens of gigabytes of data are 

collected on a daily basis from Siemens units. The research frame, in which this paper is set, includes two additional works by the 

authors. In [19], which is introductory to the current paper, two improved approaches are considered in addition to the standard k-ů 

methodology and the moving window approach is found to be the best on simulated data. In the current paper, different solutions to 

improve the methodology proposed in [19] are evaluated, in order to implement the best performing statistical methodology in a 

comprehensive tool for Detection, Classification and Integrated Diagnostics of Gas Turbine Sensors (named DCIDS). The tool, 

described and tested in [20], assesses the reliability of GT sensor measurements by using both single-sensor and multi-sensor analysis. 

Furthermore, the DCIDS tool is able to classify anomalies according to their characteristics and identify different fault scenarios. The 

performance of the tool is assessed by analysing different types of field measurements taken on several Siemens gas turbines.  

This paper is organized as follows. The first section provides an overview of the key features of the statistical estimators considered 

in the analysis. Tuning guidelines of general validity for gas turbines applications are reported in the subsequent section, together with 

a first assessment of the capabilities of the methodologies against simulated data. Then, performance is compared by means of field data 

from Siemens units with outliers injected at randomly selected time points. The paper also includes a discussion about results together 

with best practices to fully exploit the potential of all the considered methodologies. These guidelines represent the main achievement 

and novel contribution of this paper.  

 

RESISTANT STATISTICAL METHODOLOGIES FOR ANOMALY DETECTION 

The performance of statistical estimators is commonly evaluated in terms of efficiency, robustness and resistance. 

Efficiency is defined as the measure of sampling variability, i.e. the influence of sample elements on the estimation. It is usually 

expressed as a percentage referred to the sampling variability of the traditional estimator, i.e. sample mean and SD referred to a perfectly 

Gaussian distribution [6]. For this reason, it is commonly defined as Gaussian efficiency. 

Robustness describes the ability of a model or test to effectively perform, while its variables or assumptions are altered. In fact, given 

a set of random observations, it is necessary to formulate assumptions regarding the characteristics of their underlying probability 

distribution. An estimator is ñrobustò if its efficiency holds despite such assumptions are completely unfulfilled.  
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Resistance refers to the capability of a statistical technique of keeping the estimation uninfluenced by the presence of outliers in the 

sample [21]. An indicator of the resistance of an estimator is the breakdown point, defined as the percentage of sample data points that 

can be replaced with arbitrary numbers without affecting the estimate value [22]. 

Sample mean and SD are well-known location and scale estimators for randomly distributed data sets. Under the assumption of 

homogenous, i.e. stationary, time series with Gaussian distributed samples, these estimators are known to be particularly effective and 

easy to compute [6]. In [19], the authors demonstrated the effectiveness of sample mean and SD for anomaly identification in dynamic 

time series, so proving to be suitable for processing gas turbine measurements. The methodology, named Backward and Forward Moving 

Window (BFMW) k-ů, implements these estimators by means of a parametric test criterion applied in a two-sided moving window time 

frame. According to the (BFMW) k-ů approach, an observation xt is considered reliable if the following acceptability rule holds: 
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The BFMW k-ů methodology (hereafter simply referred as k-ů) proved its effectiveness towards simulated dynamic time series in 

[19], achieving large percentages of detection combined with small percentages of false positive calls.  

However, the employment of mean and SD as estimators may result ineffective in case assumptions regarding the underlying data 

distributions are not completely verified [6]. Despite some specific cases, the set of random observations is assumed as Gaussian 

distributed. In this case, sample mean and SD provide an efficient and unbiased estimate of location and scale with minimum variance 

[23]. However, as deviations from the Gaussian models occur in the data set, the performance of such estimators severely decreases [6, 

22]. Anomalous observations, i.e. outliers, represent a perfect example of deviations from the assumed underlying distribution and their 

negative effect on mean and SD is particularly severe, being the breakdown point for theses estimators equal to 0%. Consequently, the 

performance of the k-ů methodology can be lowered, because of the scarce robustness and null resistance of the estimators implemented 

in its parametric test.  

These considerations suggest potential benefits from the application of robust statistics location and scale estimators in the test 

criterion. This solution aims at the development of a statistical methodology implemented in the BFMW structure with enhanced 

robustness and resistance. However, resistance and efficiency are somewhat competing factors; thus a trade-off solution should be 

searched. Therefore, three alternatives to sample mean and SD in the test criterion are evaluated, implemented and investigated in this 

paper. 

The first alternative to the BFMW k-ů methodology is a well-known robust scale estimator, i.e. the median absolute deviation (MAD) 

[22, 24], which became popular for outlier identification [24, 25] mainly because of its breakdown point, i.e. 50%. In spite of its 
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exceptional robustness, the performance of the MAD in terms of efficiency is not so encouraging, achieving 37% for the Gaussian case 

[25]. Another drawback of the MAD is that MAD is equal to 0 if more than 50% of data are equal [24]. In such a case, observations are 

identified as outliers despite their absolute difference from the median. This phenomenon, called implosion [6], can occur for rounded 

data coming from sensor readings. As the MAD replaces SD in Eq. (1), the median replaces the mean. Therefore, the acceptability 

criterion for the k-MAD methodology can be expressed as:  
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The second alternative to the BFMW k-ů methodology is a hybrid scheme. According to the k-ů methodology, observations prior to 

the one under assessment have already been processed and consequently they can be considered reliable. Therefore, the probability that 

the backward window contains outlier is rather low and the distribution is more likely to verify the Gaussian assumption. Under this 

condition, efficient estimators like mean and SD become more desirable than robust and resistant ones in the backward window. On the 

contrary, outliers can still occur among observations in the forward window, thus potentially affecting the quality of the estimate and 

consequently of the test criterion. In this case, robust estimators with consistent breakdown point, such as the median and the MAD, are 

required to prevent the reliability assessment from being excessively conditioned by outliers. The hybrid scheme consists of the 

application of the k-ů test criterion to the backward window and of the k-MAD test criterion to the forward window. The hybrid ů-MAD 

acceptability rule can be expressed as:  
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This resistance towards the presence of outliers is fundamental, but at the same time the stiffness of median and MAD is likely to 

cause a high number of false positive calls.  

For these reasons, a third alternative to the BFMW k-ů methodology, aimed at being an intermediate solution between the k-ů 

methodology and the k-MAD methodology, can be offered by the bi-weight mean and SD estimators, which present a more adaptive 

behaviour than median and MAD, while keeping a 50% breakdown point. Lanzante et al. [6] demonstrated that the bi-weight estimate 

of dispersion is more efficient than pure MAD in a sample composed of 30 elements, which is very similar to the size of the window 

analysed by the authors in [19] for the BFMW scheme. The estimate is performed by assigning different weights to observations 

according to their proximity to the centre of the distribution, which is inversely proportional to their probability of being outliers. The 

weights are assigned according to a bi-weight function, gradually decreasing as measurements detach from the location estimate until 

they drop to 0 when a certain distance is reached. This threshold value, determined by the parameter c, influences the measure in which 
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each weight ut for each observation xt is assigned and consequently the performance of the methodology, according to Eq. (4).  
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However, despite the interesting property of assigning less impact on measurements with high probability of being outliers, the 

tuning of the methodology may result complex. Directions for tuning are available in literature, but they refer to specific cases of 

application. Hoaglin et al. [26] suggest values of c between 6 and 9. Lanzante et al. adopt c = 7.5, while Kafadar [23] identifies 4-6 as a 

suitable range, concluding that the best performance is obtained with the value of 6.  

In this paper, on the basis of the information available in literature, the parameter c is assumed equal to 6. The acceptability criterion 

for the bi-weight methodology is expressed by replacing mean and SD in Eq. (1) with their counterparts calculated by means of the 

previously described weighting procedure: 
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It can be seen that, if the value of the scale estimator in the test criteria in Equations (1), (2), (3) and (5) is zero, an undetermined 

solution occurs. In order to prevent the denominator from being equal to zero in the test criterion, a non-biasing infinitesimal quantity 

can be added to SD, MAD and bi-weight SD, respectively. The best performing tuning for kb and kf thresholds and an insight on 

capabilities are evaluated for each methodology by means of simulated data. Subsequently, the algorithms will be tested towards real 

datasets with injected outliers used to replace randomly chosen measurements in the time series.  

 

TUNING OF THE RESISTANT METHODOLOGIES BY MEANS OF SIMULATED DATA 

The best performing tuning parameters for the methodologies are determined by means of simulated data. The algorithm for time 

series generation and outlier contamination is the same employed by the authors to investigate the performance of the k-ů methodology 

in [19]. Data are distributed according to a Gaussian distribution with noise expressed as a percentage of the Gaussian standard deviation. 

Outliers are added to the time series with a user specified magnitude (°3%, °4%, °5% and °7% with respect to the mean value) at 

randomly selected time points.  

Three widely-used performance indices, derived from statistical test theory [27], are considered for the quantitative assessment of 

the different methodologies. 

a) True Positive Rate (TPR) i.e. percentage ratio between the true positives identified by the algorithm and the number of total 

observations flagged as anomalies by the algorithm, i.e. the sum of true positives and false positives:  
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b) False Negative Rate (FNR) i.e. percentage ratio between the number of anomalous data incorrectly flagged as reliable and the number 

of true outliers  
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c) False Positive Rate (FPR) i.e. percentage ratio between the number of false positives and the number of true reliable data 
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The simulated data scenarios employed for tuning the methodologies, as well as the field data used for their assessment, were 

carefully selected by the authors so that their morphology could enhance the evaluation of efficiency and resistance by means of the 

three performance indices TPR, FNR and FPR, to comprehensively evaluate the detection capabilities of each methodology. 

Tuning of the methodologies. The optimal tuning identified for the methodologies is reported in Table 1. While the optimal values 

of wb, kb, wf and kf for the k-ů methodology were determined in [19], the parameters for the other techniques have been determined in 

this paper to achieve the maximum TPR and the minimum FNR, as made in [19]. The settings identified as optimal in Table 1 are adopted 

for the subsequent analysis performed in this paper.  

 

Table 1 ï Optimal tuning of the resistant statistical methodologies  

 wb kb wf kf 

k-ů [19] 50 3 25 2 

k-MAD 50 3 25 3 

Hybrid ů-MAD 50 3 25 3 

Bi-weight 50 3 25 3 

 

The performance of the methodologies is investigated towards different simulated scenarios. As the effectiveness of the 

methodologies depends on the characteristics of the estimators implemented in the parametric test, it is important to investigate their 

capabilities towards different criteria. Namely, efficiency is evaluated by simulating the set point change maneuver already employed 
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for the sole k-ů methodology in [19] with 1% data noise. The robustness of the methodologies is evaluated by changing the characteristics 

of the Gaussian distribution used for the generation of the time series. Therefore, the same maneuver used for assessing efficiency is 

also simulated with a significantly higher noise (i.e. 2%). Finally, resistance towards clustered outliers is evaluated by considering a 

restricted portion of a stationary time series with different contamination rates, i.e. percentage of outliers over total data. Similarly to 

[19], the results for FPR are not reported since FPR resulted lower than approximately 0.1% in all the analyzed cases. 

Efficiency. The considered simulation scenario consists of a dynamic time series with outliers of different magnitudes (°3%, °4%, 

°5% and °7% with respect to the mean value). Simulated outliers represent the 5% of data. The step magnitude during the transient is 

fixed at 10% and Gaussian noise at 1%. A sample of the simulated time series is presented in Figure 1.  

 

 

Figure 1 ï Simulated time series for efficiency evaluation (1% noise; outlier magnitude equal to 7%)  

 

Results regarding TPR and FNR are presented in Figure 2 and Figure 3. The TPR performance for the 7%, 5% and 4% scenarios are 

similar for all the considered methodologies, while differences are highlighted in the 3% magnitude scenario. In fact, the k-ů and the k-

MAD methodologies achieve the highest TPR, which sets at 82% instead of 54% and 41% achieved by the bi-weight and the hybrid 

scheme, respectively.  

The index FNR achieves satisfactorily low values for all the methodologies for outlier magnitudes greater than 4%. On the contrary, 

for outlier magnitude at 3%, FNR values considerably increase to 80%-95%. Across all the considered scenarios, the bi-weight 

methodology achieves the highest FNR, while the k-ů methodology proves the best and even allows FNR equal to 0 in the 5% outlier 

magnitude scenario.  
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Figure 2 ï TPR results for efficiency evaluation  

 

 

Figure 3 ï FNR results for efficiency evaluation  

 

Robustness. The considered simulation scenario is the same as the one considered for evaluating the efficiency, with the only 

difference that Gaussian noise is increased to 2%. A sample of the simulated time series is presented in Figure 4. 

 

 

Figure 4 ï Simulated time series for robustness evaluation (2% noise; outlier magnitude equal to 7%)  
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As it can be seen from Figure 5, the performance of all the methodologies is affected by the significant increase of measurement 

noise (2% in Figure 4 instead of 1% in Figure 1). In particular, the FNR is higher than 95% for all the considered methodologies already 

at 5% outlier magnitude, as shown in Figure 6. The k-ů methodology usually achieves the highest TPR values.  

 

 

Figure 5 ï TPR results for robustness evaluation  

 

 

Figure 6 ï FNR results for robustness evaluation 

 

Resistance. The considered simulation scenario consists of a steady state time series with outlier of magnitude at 5%, imposed to be 

clustered in a data window of 100 observations. Different levels of contamination (5, 10, 25, 35 and 50 outliers out of 100 observations) 

are considered. Gaussian noise is assumed equal to 1%. A sample of the simulated time series is presented in Figure 7, with 50 imposed 

outliers. Results are reported in Figures 8 and 9. It can be seen that the performance of the k-ů methodology is very sensitive to the 

presence of clustered outliers, showing a marked decrease of TPR as the contamination rate increases.  

Furthermore, unlike the previous cases, the k-ů methodology experiences the highest sensitivity of the FNR towards the 

contamination rate. Similar trends are observed for the hybrid scheme and the bi-weight methodology, with the latter performing better 
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than hybrid scheme and k-ů methodology. Instead, the k-MAD methodology proves to be the most resistant towards (i.e. less affected 

by) clustered outliers among the evaluated methodologies, both in terms of TPR and FNR. The methodology holds its performance, 

achieving 95% TPR and 25% FNR until the contamination rate reaches 25%. 

 

 

Figure 7 ï Simulated time series for resistance evaluation (1% noise; outlier magnitude equal to 5%)  

 

 

Figure 8 ï TPR results for resistance evaluation  

 

 

Figure 9 ï FNR results for resistance evaluation  
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ASSESSMENT OF RESISTANT METHODOLOGIES BY MEANS OF FIELD DATA WITH INJECTED OUTLIERS 

Even if simulated data were designed to be representative of actual operating conditions, they still represent an ideal environment, 

whose underlying assumptions may not be verified in field data. For this reason, the capabilities of the resistant methodologies are 

challenged by injecting outliers with controlled magnitude into Siemens field data sets, according to the approach adopted e.g. in [28]. 

In fact, as the position of anomalies is known, it is possible to evaluate TPR, FNR and FPR performance in a less controlled environment.  

The magnitude of inserted outliers is expressed in terms of multiples m of the noise factor s, i.e. the SD of each steady state in the 

time series. Therefore, the value of the observation xt, selected to be replaced with an outlier, is calculated according to the following 

expression: 

 

msxx += toutliert 
              (9) 

 

In order to establish a coherent comparison to the analysis on simulated data, field data sets are selected to reflect similar situations, 

i.e. set point change maneuver, relevant measurement noise and steady-state maneuver with clustered outliers. In order to avoid that 

injected outliers affect the quality of the analysis, the time series employed should be free from any previous anomaly. To this purpose, 

datasets were previously analyzed by means of visual inspection and application of engineering sense to verify that no evident outliers 

occurred. Moreover, it has to be pointed out that outliers are not injected during a transient, since, according to industry practice, the 

main goal is the evaluation of outlier identification capability at steady state conditions. 

The capabilities of the methodologies are investigated in terms of efficiency and resistance by using time series with morphologies 

aimed at being meaningful for each analysis, in order to highlight benefits and possible drawbacks deriving from their application. Note 

that dynamic time series are normalized by using the mean value of the first steady state segment, while mean of all observations is used 

for stationary data sets.  

The considered datasets and results are reported and discussed in details in the following. As can be seen, the performance of the 

methodologies is not strictly data dependent. In fact, even if values are different, the trends of both TPR and FNR indices are similar 

across the analyzed data sets, so that general considerations can be grasped from the analysis of results. The best performing methodology 

is the one that achieves the best balance between high TPR and low FNR. In fact, in the following, the results for FPR are not reported 

since FPR resulted lower than approximately 1% in all the analyzed cases.  

Datasets used for efficiency analysis. The analysis is performed on the basis of four different datasets with measurements acquired 

from Siemens units. In compliance with the cases analyzed by using simulated data, dynamic time series with different levels of data 
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dispersion are evaluated. Outliers are injected with different magnitudes (i.e. from 3% to 7%). Injected outliers represent the 5% of total 

observations.  

The first time series, here referred as temperature T1, contains temperature measurements collected with a sampling frequency equal 

to 1 second. The time series consists of two different stationary states separated by a step change of about 7%. The SD is rather low; in 

fact, it is 0.005 and 0.001 for the two segments, respectively. A sample of the data with injected outliers is reported in Figure 10.  

 

 

Figure 10 ï Nondimensional temperature T1 dataset with 7% magnitude injected outliers 

 

The second dataset, hereafter referred as temperature T2, contains temperature readings collected with 1 minute frequency. This 

dataset is considered particularly challenging for the methodologies. In fact, as it can be seen in Figure 11, four different segments can 

be identified, with SD 0.05, 0.02, 0.02 and 0.01 respectively. These are separated by two rapid transient maneuvers (at t=333 min and 

t=423 min) with a step change of -10% and +55%, respectively. Moreover, there is a ñspikeò at t=700 min with a 30% step.  

 

 

Figure 11 ï Nondimensional temperature T2 dataset with 7% magnitude injected outliers 

 

 



 15 GTP-17-1361 ; Venturini 

The third dataset consists of vibration measurements (i.e. displacement) collected with a 1 minute frequency. The nondimensional 

values of this time series, hereafter referred as vibration V1, together with injected outliers, are reported in Figure 12. Two subsequent 

steady states with SD 0.06 and 0.08 respectively can be identified. These are connected by a transient maneuver of +60% step change.  

 

 

Figure 12 ï Nondimensional vibration V1 dataset with 7% magnitude injected outliers 

 

The fourth dataset, labelled as pressure P1 and reported in Figure 13, contains pressure measurements collected with a frequency of 

1 minute. The time series consists of a steady state with significant noise. SD even reaches 0.6, which is one order of magnitude larger 

than in previous cases. For this reason, this dataset is considered particularly challenging.  

 

 

Figure 13 ï Nondimensional pressure P1 dataset with 7% magnitude injected outliers 

 

Datasets used for resistance analysis. Similarly to the approach adopted for simulated data, outliers with magnitude of 5% are 

injected by contaminating a portion (i.e. 25%) of the stationary time series with different rates (i.e. 5%, 10%, 25%, 35% and 50%) of 

outliers. Since the time series is almost stationary, particular attention is focused on data dispersion (expressed in terms of SD) to evaluate 
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its influence on detection capabilities with clustered outliers. Four different datasets with measurements acquired from Siemens units 

are considered for this analysis. 

The first dataset contains temperatures collected with a sampling frequency of 1 minute and is labelled as temperature T3. The SD 

value is 0.001. Outliers are injected in a time frame composed of 2500 time points, ranging from t = 42 min to t = 83 min. The normalized 

time series, together with injected outliers, is reported in Figure 14.  

The second time series is composed of measurements of rotational speed, collected at the frequency of 1 second. This dataset is 

hereafter referred as rotational speed S1. Data noise is rather low; in fact SD is just 0.002. Outliers are injected in a 1000 time points 

window, between t = 33 min and t = 50 min, as shown in Figure 15.  

 

 

Figure 14 ï Nondimensional temperature T3 dataset with 5% magnitude injected outliers 

 

 

Figure 15 ï Nondimensional rotational speed S1 dataset with 5% magnitude injected outliers 
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The third dataset, labelled as temperature T4, includes temperature measurements taken with a frequency of 1 s. Data dispersion is 

one order of magnitude larger than in the previous cases, as SD reaches 0.01. Outliers injection occurs in a window of 195 time points, 

starting at t = 8 min, as shown in Figure 16.  

Finally, the same dataset pressure P1, previously employed for efficiency evaluation (see Figure 13), is also used here to assess 

statistical resistance. For this purpose, outliers are inserted in a window of 2500 time point, ranging from t = 4000 min to t = 6500 min. 

Moreover, as for all the cases considered in this section (i.e. Figures 14, 15 and 16), outliers are injected with 5% magnitude. The 

nondimensional time series with injected outliers is presented in Figure 17.  

 

 

Figure 16 ï Nondimensional temperature T4 dataset with 5% magnitude injected outliers 

 

 

Figure 17 ï Nondimensional pressure P1 dataset with 5% magnitude injected outliers 

 

Efficiency analysis. In general, as shown in Figures 18 through 21, The k-ů methodology achieves the best TPR performance for 

each outlier magnitude scenario for all the considered datasets. Namely, the TPR values range from 84% to 99%, maintaining high 

performance levels even in the most challenging scenario, i.e. when the outlier magnitude reaches 3%. This is in fact the scenario in 

which the methodology most clearly overcomes the others, as in the cases of the temperature dataset T2 (Figure 19) and the pressure 
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dataset P1 (Figure 21). For these datasets, the k-ů methodology overcomes the hybrid k-MAD methodology by 30% and 15%, 

respectively. The values of the TPR index achieved by the k-̀ methodology prove its low sensitivity towards the decrease of the outlier 

magnitude, meaning a certain stability in detection performance over different operational scenarios. The hybrid k-MAD methodology 

follows the k-ů in terms of TPR, achieving values of this index in the range from 55% to 90%. The k-MAD and the bi-weight 

methodologies achieve similar performance in terms of TPR, but lower than that of the hybrid scheme and k-ů methodologies.  

The temperature dataset T2 proves to be the most challenging. Only the k-ů methodology is able to maintain its performance, 

experiencing a 10% decrease of the TPR values with respect to less challenging time series. The same decrease sets at 30% for the hybrid 

methodology and at 40% for the bi-weight and k-MAD methodologies. This gap in TPR performance between the k-ů and the other 

methodologies is caused by the capability of the k-ů methodology to identify few false positive calls, of which the increase makes the 

value of TPR decrease according to Eq. (6). The low sampling frequency (1 minute), combined with the rapidness and the considerable 

step change of the transient in the T2 dataset, creates a consistent gap in subsequent measurements during the transient, thus increasing 

the probability for observations to trespass the acceptability thresholds imposed by the parametric test. The k-ů methodology can contrast 

this phenomenon better than the other methodologies.  

The FNR values can be considered satisfactorily low in all datasets for all the methodologies. The highest FNR values are achieved 

by the k-ů methodology with the widest gap with respect to the other methodologies experienced in the case of the T1 and T2 datasets. 

In any case, the maximum value is 38% in the 3% outlier scenario, which is rather satisfactory. The other methodologies perform better 

than the k-ů methodology in terms of FNR, with values lower than 25%.  

The FNR results, combined with the considerations on false positives calls, highlight the key features of the k-ů methodology, i.e. 

capability to detect true positives and tendency to avoid false positive calls. Therefore, false negative rates become higher as the outlier 

magnitude decreases. Even if rather far from k-ů methodology performance, the hybrid scheme methodology also proves to be efficient. 

Finally, the k-MAD and the bi-weight methodologies prove to be the least efficient. 
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Figure 18 ï TPR and FNR values as a function of outlier magnitude for the temperature T1 dataset 

 

           

Figure 19 ï TPR and FNR values as a function of outlier magnitude for the temperature T2 dataset 

 

           

Figure 20 ï TPR and FNR values as a function of outlier magnitude for the vibration V1 dataset   
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Figure 21 ï TPR and FNR values as a function of outlier magnitude for the pressure P1 dataset 

 

Resistance analysis. Since all in all the performance of the methodologies as a function of the contamination rate follows a similar 

pattern for all the different time series, as shown in Figures 22 through 25, it is possible to evaluate the resistance of the methodologies 

on the whole.  

The k-ů methodology proves to be effective for outlier detection with low contaminated datasets. According to the results of the 

efficiency analysis, the k-ů methodology is the best methodology when the contamination rate sets at 5% for 3 out of 4 datasets, achieving 

the highest TPR (between 85% and 40%) with satisfactorily low FNR (between 20% and 1%). The exception is the temperature T3 

dataset, in which all the methodologies achieve 98% TPR, but the FNR allowed by the k-ů methodology sets at 25%, instead of the 

almost null FNR of all the other methodologies.  

However, the detection capabilities of the k-ů methodology progressively decrease as the contamination rate increases. This 

performance decrease can be noticed by a sensible increase of the FNR. In fact, the values of this index almost triplicate as the 

contamination rate passes from 5% to 10%, reaching very high values for the S1 and T3 datasets (60% and 70% respectively). For all 

the considered datasets, the detection capabilities of the k-ů methodology are almost null as the contamination rate reaches 25%, with 

the FNR at 95%. Therefore, the k-ů methodology proves to be the most affected by an increase of the contamination rate.  

On the contrary, the k-MAD methodology demonstrates high effectiveness towards severely contaminated datasets. The detection 

capabilities achieved by the k-MAD methodology are enhanced as the contamination rate increases, reaching its performance peak in 

the 35% contamination rate scenario. This turns into an extremely high number of outliers identified in the field time series. At low 

contamination rates, e.g. 5% for all datasets and 10% for the sole case of the T4 dataset, the performance of the k-MAD methodology 

is sensibly lower in terms of TPR with respect to the other methodologies. However, the k-MAD methodology is the most suitable to 

allow FNR lower than 4%. 


