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Abstract: The dimensional synthesis of translational parallel manipulators (TPMs) of type PRRR-PRPU is 

addressed by using an overall novel method. Addressing this design step on such TPMs is interesting for the 

scientific community since, in a previous paper, one of the authors showed that it has the following promising 

features: a single-loop not-overconstrained architecture with all the actuators on or near to the base, a simple 

position analysis, easy-to-find workspace boundaries, no constraint singularity, a type-II singularity locus that is 

a plane easy to keep far from the useful workspace, and a double infinity of isotropic configurations. The 

presented synthesis includes the analysis of isotropy and dexterity by local and global conditioning indexes, the 

useful workspace optimization, and the accuracy and stiffness analyses. The result is the identification of a 

normalized TPM of type PRRR-PRPU with performances that are comparable with those of commercial TPMs. 

The identified normalized TPM yields a set of actual TPMs with the same performances by changing the value of a 

reference geometric length. Also, the chosen shape of the useful workspace (i.e., a cuboid) matches the needs of 

many industrial applications. 

Keywords: translational parallel manipulators, dimensional synthesis, kinetostatic performances, stiffness, 

positioning precision 

 

1. Introduction 

A great number of TPMs have been proposed in the literature (see, for instance, [1-6]). Most of them feature three 

kinematic chains (limbs) with equal topology, which join the end effector (platform) to the frame (base), and one 

actuated joint per limb. Their type synthesis mainly relies either on the screw theory (e.g., [1]) or on the intersection 

of displacement sub-groups [2]. The first approach looks for limbs whose passive structures (i.e., without actuators) 
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apply to the platform only one torque, and use three of such limbs in an arrangement that makes them apply three 

non-coplanar torques to the platform. This approach identifies limbs with connectivity1 5. The second approach 

looks for limbs (mechanical generators) that generate Shoenflies motions2 [8] and combines three of them [2, 9] so 

that the rotation axes of the Shoenflies motion generated by at least two limbs are not parallel. This approach 

identifies limbs with connectivity 4 and overconstrained architectures that can become not-overconstrained by 

adding idle passive pairs; also, it highlights that two limbs, that is, a single-loop architecture, are sufficient to obtain 

a TPM. 

In this context, one of the authors [11] has recently highlighted that, according to Chebychev-Grübler-Kutzbach 

formula and Euler’s formula [10], the combination of one limb with connectivity 4, which constrains the platform to 

a Shoenflies motion, and another limb with connectivity 5, whose passive structure applies to the platform only one 

torque with a component parallel to the rotation axis of that Shoenflies motion, yields a single-loop not-

overconstrained architecture where the platform can only perform spatial translations (i.e., a TPM architecture). In 

short, any limb identified through the second approach when suitably combined with any limb identified through 

the first approach yields a single-loop not-overconstrained TPM architecture. 

This “novel” type synthesis technique generates a family of TPMs that, in general, have simplified architectures, 

and whose manufacturing does not need small dimensional tolerances since they are not-overconstrained. Also, 

such architectures allow the introduction of two actuators on the base and of the remaining one near to the base, 

which should not drastically reduce the dynamic performances with respect to three-limbed architectures with all 

the actuators on the base. 

The TPM architecture of type PRRR-PRPU3 shown in Fig. 1 belongs to this family. In [11], such architecture 

was proved to have the following qualities, relevant from the design point of view: (i) two simple explicit formulas 

solve its position analysis problems, (ii) its workspace boundaries are easy to find, (iii) it has no constraint 

singularity [12], (iv) its type-II singularity locus [13-15] is a plane easy to keep far from the useful workspace, and 

(v) it has a double infinity of isotropic configurations [16, 17]. Nevertheless, only the dimensional synthesis of 

TPMs of type PRRR-PRPU can fully reveal their potentialities. Such design step has not been addressed, yet, in the 

literature. This paper fills this gap. 

                                                 
1 The term “connectivity” [7] referred to two links of a mechanism indicates the number of degrees-of-freedom (dof) of the 
relative motion between those two links. Here, the phrase “limb connectivity” stands for the connectivity between platform 
and base when connected only by that limb. 
2 The displacement sub-groups of Shoenflies, {X(u)}, are the unions of the spatial translation sub-group, {T}, with one 
rotation-around-an-axis sub-group, {R(C,u)}, where u and C are the unit vector and a point of the rotation axis. Since the 
unit vectors are 2, as many are the Shoenflies sub-groups. 
3 P, R and U stand for prismatic pair, revolute pair and universal joint, respectively. The underscores indicate the actuated 
pairs; whereas, the hyphen separates the strings which give the limb topologies by moving from the base to platform. 
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Here, a detailed dimensional synthesis of TPMs of type PRRR-PRPU is presented and discussed. The adopted 

synthesis method is overall novel and can be used for the dimensional synthesis of any TPM. It includes the 

isotropy and dexterity analyses by local and global conditioning indexes, the useful workspace optimization, and the 

accuracy and stiffness analyses. The result of the presented dimensional synthesis is the identification of a 

normalized TPM of type PRRR-PRPU with performances that are comparable with those of commercial TPMs. 

The identified normalized TPM yields a set of actual TPMs with the same performances by changing the value of a 

reference geometric length. 

The paper is organized as follows. Section 2 presents the PRRR-PRPU architecture and the used notations; then, 

briefly summarizes the results obtained in [11]. Section 3 addresses the dimensional synthesis of the PRRR-PRPU 

architecture by taking into account its kinetostatic performances, its overall size and its stiffness. Section 4 presents 

the accuracy analysis of the architecture with the size ratios determined in section 3. Eventually, section 5 discusses 

the results and draws the conclusions. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: The TPM architecture of type PRRR-PRPU: (a) ybzb-plane view, (b) xbyb-plane view, (c) 3D view (b) 
xbzb-plane view 

 
 

 

2. The TPM of Type PRRR-PRPU: Notations and Background 

Figure 1 shows the PRRR-PRPU architecture presented in [11]. The PRRR limb is the mechanical generator of 

Shoenflies displacements. In this limb, the P-pair sliding direction and the three R-pair axes are all parallel to the 
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yb axis of the Cartesian reference Ob–xbybzb, fixed to the base; consequently, this coordinate axis has the 

direction of the rotation axis of the generated Shoenflies motion. The passive structure of the PRPU limb applies 

to the platform only one torque perpendicular to the cross link of the U-joint. This torque has a direction that 

does not change during motion and is parallel to the yb axis. Indeed, the PRPU limb is so sized that the axes of 

the two intermediate R pairs are parallel to each other and are constrained to translate with respect to the base by 

keeping the direction of the xb axis; whereas, the axis of the third R pair is perpendicular to those of the two 

intermediate and is fixed to the platform that keeps it perpendicular to the yb axis, too. 

With reference to Fig. 1, A1 is the center of the U joint. Op is the platform reference point whose coordinates, (x, 

y, z)T, measured in Ob–xbybzb will be used to identify the platform pose (the platform can only translate with respect 

to the base). A2 is the foot of the perpendicular from Op to the axis of the R pair that joins the platform to the PRRR 

limb. Op, A1, and A2 are the vertices of a right triangle, fixed to the platform, which lies on a plane parallel to the 

xbyb coordinate plane. ap and dp are the lengths of the segments OpA2 and OpA1, respectively. B1 is the foot of the 

perpendicular from A1 to the axis of the R pair between the two actuated P pairs of the PRPU limb, and d1 is the 

length of the segment A1B1. B2 and C are the feet of the perpendiculars from A2 to the axes of the two intermediate 

R pairs of the PRRR limb; whereas, a1 and a2 are the lengths of the segments B2C and CA2, respectively. Hereafter, 

ib, jb, and kb will denote the unit vectors of the coordinate axes xb, yb, and zb, respectively.  

The x and y coordinates of Op coincides with the actuated joint variables of the two P pairs adjacent to the base 

[see Fig. 1(b)]; whereas, the third actuated joint variable, d1, can be explicitly expressed as a function of the Op 

coordinates as follows [see Fig. 1(c)] 

 2 2
1 pd (y d ) z    (1) 

which also yields 

 2 2
1 pz d (y d )     (2) 

If the Op coordinates, x, y, and z, are assigned (Inverse Position Analysis (IPA)), the actuated-joint variables, x, 

y, and d1, are determined uniquely and straightforwardly with Eq. (1). Conversely, if the actuated-joint variables are 

assigned (Direct Position Analysis (DPA)), the Op coordinates can assume two set of values which share the same x 

and y values, but have the opposite z values given by Eq. (2). These two solutions of the DPA yield a workspace 

symmetric with respect to the xbyb coordinate plane. 

The workspace, represented by using the Op coordinates as coordinates of the operational space, is the 

intersection volume of two right circular cylindrical shells. One is due to the PRPU limb and has the axis parallel to 

the xb axis and passing through the point (0, dp, 0)T, and the inner and outer radii equal to the minimum and 
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maximum values of d1. The other is due to the PRRR limb and has the axis parallel to the yb axis and passing 

through the point (ap, 0, 0)T, and the inner and outer radii equal to  a1 – a2 and (a1 + a2), respectively. 

One of these authors [11] demonstrated that this TPM has no constraint singularity4 and deduced its input-output 

instantaneous relationship as follows:  

 1
p b b b 1 b

1 1

cosθ 1
x y d

sinθ sinθ

   
      

   
O i j k k    (3) 

Since the x and y coordinates of Op are also actuated-joint variables, singularities5 may occur only in the 

relationship between z  and the actuated joints’ rates, 1x, y, and d  . Actually, after a simple expansion, Eq. (3) 

reduces itself to two identities plus the following scalar equation 

 1 1 1z sinθ d y cosθ    (4) 

Thus, type-II singularities occur when 1 is equal to zero, that is, when Op lies on the plane z=0 [see Fig. 1(a)]; 

whereas, no type-I singularities are present. Also, Eq. (4) and Fig.1(a) highlight that, when Op lies on the plane 

y=dp, 1 is equal to 90° and the Jacobian matrix that relates the platform translation velocity, pO , to the actuated 

joints’ rates, 1x, y, and d   is equal to diag(1,1,1); hence, at these configurations, it has all its singular values equal 

to one. The configurations where the singular values of this Jacobian are all equal and non-null are named isotropic 

[16, 17] and provide the best kinetostatics performances. Therefore, this TPM is an isotropic manipulator6 that can 

reach 2 isotropic configurations corresponding to the points of the plane y=dp. Locating its useful workspace 

around the plane y=dp yields the best kinetostatics design. 

 

3. Dimensional Synthesis 

The determination of the actual sizes (dimensional synthesis) of a manipulator is mainly related [16, 18-20] to 

the design requirements on the kinetostatics performances and the ratio (volumetric ratio) between its useful 

workspace and its overall size. Once the manipulator geometry has been defined, stiffness and accuracy analyses 

are always necessary to evaluate the quality of the designed machine [21-23]. 

                                                 
4 In TPMs, constraint singularities are configurations where the angular velocity of the platform can be different from zero 
[12]. 
5 Singularities [13-15] are manipulator’s configurations where the instantaneous input-output relationship fails to state a one-
to-one correspondence between instantaneous inputs (i.e., the actuated joints’ rates) and outputs (i.e., the platform twist). 
Type-I (serial) singularities occurs when the actuated joints’ rates are not determined even though the platform twist is 
assigned; vice versa, type-II (parallel) singularities occurs when the platform twist is not determined even though the 
actuated joints’ rates are assigned; eventually, type-III singularities are configurations where both the two previous 
conditions are satisfied. 
6 The manipulators that can reach one or more isotropic configurations are named isotropic [16, 17]. 
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In this section, first of all the useful workspace will be identified by fixing the minimum local kinetostatics 

performances; then, the actual sizes will be determined by maximizing the volumetric ratio and, eventually, the 

stiffness analysis of the defined geometry will be presented. Since the design requirements on kinetostatics 

performances are not sufficient to fully define the links’ geometry, this design procedure will be implemented by 

assuming that the ratios between the sizes of some geometric parameters (see Fig. 1) have the following values (l.u. 

stands for length unit):  

- the stroke, d1=d1max – d1min , of the actuated-joint variable d1 is equal to 1 (l.u.); 

- the minimum value, d1min, of the actuated-joint variable d1 is equal to 0.3 (l.u.); 

- the sum (a1+a2) is equal to 1.31 (l.u.); 

- the platform parameters ap and dp are both equal to 0.12 (l.u.). 

Such normalized values have been determined to have a well-proportioned manipulator and by checking similar 

dimensions of some commercial TPMs. 

3.1 Local and Global Kinetostatics Performances: 

Kinetostatics performances increase with the “distance” from singular configurations5. In the literature [16, 20, 

24-28], such “distance” is evaluated with the “Conditioning Index” (CI). In parallel manipulators, the CI is 

defined as the inverse of the condition number of the Jacobian matrix, hereafter named H, whose product by the 

platform twist (i.e., pO  for the studied TPM) yields the vector of the actuated-joint rates [i.e., T
f 1=(x, y, d )q     in 

the case under study]. It ranges from 0, at singular configurations, to 1, at isotropic configurations, which are the 

best configurations. If the spectral norm [29] is adopted to compute the condition number, the so-defined CI is 

equal to the ratio between the smallest and the largest singular values of H. Equations (3) and (4) with simple 

algebraic manipulations give the following analytic expression of H for the studied TPM: 

 

1 1

1 0 0

= 0 1 0

0 cosθ sinθ

 
 
 
  

H  (5) 

Equation (5) yields  

 CI = 1

1

1 cosθ

1+ cosθ


 (6) 

where () denotes the absolute value of (). 

Locating the useful workspace in the region of the operational workspace where the CI is greater than or equal 

to a given value, CImin, is the usual way to guarantee that the kinetostatics performances are good enough. In the 

studied case, the inequality CI  CImin, together with Eq. (6) yields 
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2
min

1 2
min

1 CI
cosθ

1+ CI


  (7) 

which gives the geometric condition 1φ θ π φ    where 1]–, +] and  

 
2

1 min
2
min

1 CI
φ cos

1+ CI
  

  
 

 (8) 

The region of the operational workspace that satisfies inequality (7) and is located in the half-space z0 is 

shown in Fig. 2; since the operational workspace (see section 2) of the studied TPM is symmetric with respect to the 

plane z=0, which is also the geometric locus of all the type-II singularities, the workspace region, located in the 

half-space z0 and symmetric with respect to the plane z=0, also satisfies the same inequality. Since these two 

regions are not connected and are separated by the singularity plane z=0, the useful workspace must be located in 

only one of them. Hereafter, the half-space z0 is chosen to locate the useful workspace; also, CImin is chosen equal 

to 0.63 when its value is necessary to define the geometry of the TPM. Equation (8) gives  = 1.12 rad for 

CImin=0.63. Figure 3 shows the diagram of CI (Eq.(6)) as a function of 1 for 1[, –] rad with  = 1.12 rad. 

 

 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 2: Region of the operational workspace that satisfies inequality (7) and is located in the half-space z0 
(= 1.12 rad, if CImin=0.63). The values reported on the coordinate axes refer to the following assigned data: 
a1+a2=1.31(l.u.), ap=0.12(l.u.), dp=0.12(l.u.), d1min=0.3(l.u.), and d1max=1.3(l.u.). 
 

The useful workspace is a regular geometric object (e.g., a cube or a ball in a 3-dof case) [30, 31] located in the 

region of the operational workspace that satisfies all the kinetostatics requirements. In the studied case, its shape is 

chosen equal to a rectangular parallelepiped, whose edges have more or less the same length, that is located in the 

workspace region shown in Fig. 2, with  = 1.12 rad, and touches the boundaries of this region. Figure 4 shows the 

definition of the parameter ya and the projections into the ybzb-coordinate plane of the useful workspace, Ayz, and of 
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the operational workspace region, Wyz. With reference to Fig. 4, the volume, Vu, of such parallelepiped has been 

expressed as a function of the parameter ya, and the value of ya that maximizes Ayz has been determined in order to 

find the best solution. The Ayz area as a function of ya is 

 

 

 

 

 

 

 

 

Figure 3: Diagram of CI (Eq.(6)) as a function of 1 for 1[, –] rad with  = 1.12 rad. 
 

 

  2 2
yz a a p 1max a p a pA (y )=2(y d ) d (y d ) (y d )tanφ      (9) 

whose derivative with respect to ya, when equated to zero, yields the following value, ya,lim, for ya 

 
2

a,lim p 1max p p2

(1+tan φ) tanφ
y =d d d y

2 (1+tan φ)


    (10) 

 
 
 
 

  
 
 
 

 
 
 

 
 

Figure 4: The projections into the ybzb-coordinate plane of the useful workspace, Ayz, and of the operational 
workspace region, Wyz, and the definition of ya. 
 

The introduction of expression (10) into the other relationships that define Vu yields the values reported in 

Tables 1 and 2, and the Vu shown in Fig. 5.  

The CI evaluates the local kinetostatics performance of a manipulator at a given configuration. Based on the CI, 

the global conditioning index (GCI), defined as the average CI value on Vu, has been proposed [16] to score the 

complete kinetostatics performances of a manipulator. In the studied TPM, the relationship (see Fig. 1) 
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p

1 2 2
p

y d
cosθ =

z (y d )



 
, (11) 

 
Table 1: Coordinates of Vu parallelepiped’s vertices (=1.12rad) 

xmin –0.21243 (l.u.) 2 2
min p 1 2 maxx =a (a +a ) z   

xmax 0.45243 (l.u.) 2 2
max p 1 2 maxx =a (a +a ) z   

ymin –0.17054 (l.u.) min p py =d y  

ymax 0.41054 (l.u.) max p py =d +y  

zmin 0.60025 (l.u.) min max pz =(y d )tanφ  

zmax 1.26712 (l.u.) 2 2
max 1max max pz d (y d )    

 
 

Table 2: Sections’ areas and volume of Vu for =1.12rad 
Axy 0.38634 (l.u.)2 
Axz 0.44338 (l.u.)2 
Ayz 0.38751 (l.u.)2 

 Vu volume 0.25764 (l.u.)3 

 
 

 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Useful workspace Vu: a1+a2=1.31(l.u.), ap=0.12(l.u.), dp=0.12(l.u.), d1min=0.3(l.u.), d1max=1.3(l.u.), and 
CI>0.63  
 

 
when introduced into Eq. (6), yields the following GCI expression 

 
u yz

u

2 2 2 2
p p p p

2 2 2 2
V Ap p p p

max min max min

V

z (y d ) y d z (y d ) y d
dxdydz dydz

z (y d ) y d z (y d ) y d
GCI=

(y y )(z z )dxdydz

       

       


 

 


 (12) 

The introduction of the values of Table 1 into Eq. (12) yields GCI=0.855. This GCI value has been computed 

with an iterative numerical algorithm that, at the k-th iteration, uses the formula 
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k

k

2 2
j i p i p

k 2 2
i 1,nk k j i p i pj 1,m

z (y d ) y d1
GCI =

n m z (y d ) y d


   

   
 , (13) 

where  zj=zmin+(j–1)k,  yj=ymin+(i–1)k,  nk=INT[(ymax–ymin)/k],7  and  mk=INT[(zmax–zmin)/k]  with  1=(ymax–

ymin)/2000 and k=k-1/2. The algorithm stops the iteration if |GCIk – GCIk-1|10-4. 

3.2 Volumetric Ratio: 

The ratio (volumetric ratio), rV, between the volume of the useful workspace (hereafter, referred to as Vu for the 

sake of simplicity) and the volume (overall size), Vo, that encloses all the TPM’s links during its motion is an 

important installation parameter that is always provided by the manipulators’ data sheets. At parity of Vu, the 

higher rV is, the better the geometric dimensioning of the machine is. Thus, maximizing rV is a task to undertake 

during the design of the machine.  

For the studied TPM, Vo has been identified through a mobility analysis implemented in GeoGebra8 by using its 

3D graphic tools. Figure 6 shows the projections onto the coordinate planes of one determination of Vo together 

with one TPM configuration corresponding to a set of assigned values of the actuated-joint variables. Vo varies as a 

function of the actual sizes of the links. According to the previously assigned geometric data only the lengths a1 and 

a2 (see Fig. 1) can be changed provided that the constraint a1+a2 = 1.31(l.u.) is satisfied. In order to find the 

maximum value of rV, the positions a1=1.31(1–ka) and a2=1.31ka, where ka is a parameter varying from 0 to 1, have 

been introduced; then, for each value of ka, Vo has been determined as above explained and rV (=Vu/Vo) has been 

computed. The diagram shown in Fig. 7 is the result of this computation. 

 

 

 

 

 

 

 

 

 

Figure 6: One determination of Vo: the gray rectangles are the projections of Vo onto (a) the ybzb-plane, (b) the 
xbzb-plane, and (c) the xbyb-plane 

 

                                                 
7 INT[()] stands for integer part of (). 
8 GeoGebra is a freely dowloadable (https://www.geogebra.org/) software mainly conceived to teach mathematics. 
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Figure 7: Diagram of rV as a function of the parameter ka. 
 

In the diagram of Fig. 7, the values of rV for ka<0.4 (area A) correspond to PRPU-PRRR architectures whose 

links invaded the useful workspace during the mobility analysis; whereas, the values of rV for ka>0.65 (area C) 

correspond to PRPU-PRRR architectures whose links, during the mobility analysis, invaded the half-space z<0 and 

reached configurations where the transmission angle [= – 5 (see Fig. 1(d))] between the two links of the RRR 

dyad of the PRRR limb is too small9. Thus, only the values of rV for 0.4<ka<0.65 (area B) are acceptable and, in this 

range, the maximum value of rV corresponds to point P0 of Fig. 7 where rV=0.26610 and ka=0.514. These values 

yield a1=0.637 (l.u.), a2=0.673 (l.u.), Vo=0.9678 (l.u.)3, the values of Table 3 and the Vo shown in Fig. 8. 

 

Table 3: Coordinates of Vo parallelepiped’s vertices (xmax, ymin, ymax, and zmax are reported in Table 1) 

Xmin –0.637 (l.u.) min 1X = a  

Xmax 0.45243 (l.u.) max maxX =x  

Ymin –0.29054 (l.u.) min min pY = y d  

Ymax 0.41054 (l.u.) max maxY =y  

Zmin 0 (l.u.)  

Zmax 1.267083 l.u max maxZ z  

 

 

 

 

 

 

                                                 
9 In the literature (see [32], for instance) a transmission angle lower than 45° is considered too near to the fully folded 
(singular) configuration of the RRR dyad. 
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Figure 8: Vu and Vo corresponding to rV=0.266. 
 

 

3.3 Stiffness Analysis: 

The stiffness analysis [21, 33-35] of not-overconstrained manipulators usually assumes that only the actuated 

joints are flexible in the structure generated by locking the actuators. Here, this hypothesis yields the following 

relationship: 

 

   diag(k)qf (14) 

 

where qf = (x, y, d1)T collects the variations of the actuated-joint variables; whereas,   (x, y, d)T and k 

= (kx, ky, kd)T collect the generalized forces applied by the actuators and the stiffness of the actuated joints, 

respectively, of the three actuated P pairs (the right subscripts, x, y and d, identify the P pairs with their joint 

variables, that is, x, y, and d1). 

Also, the application of the virtual work principle to the studied TPM, by taking into account the relationship 

f pq H O , yields the following static relationships 

 f = HT (15) 

where f=(fx,fy,fz)T is the resultant force, measured in Ob–xbybzb, of the force system the platform applies when 

interacting and Eq. (5) gives the explicit expression the Jacobian matrix H; whereas, if the small finite variations 

                                                                                                                                                         
10 The published data (http://new.abb.com/products/robotics/industrial-robots/irb-360) of the commercial delta robot ABB 
IRB-360 bring to compute rV=0.253 for the ABB IRB-360. 
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qf  and Op [=(x, y, z)T] replace (1st order approximation) f pand q O , respectively, into f pq H O  the 

following relationship will result 

 qf = H Op (16) 

The introduction of expression (16) into Eq. (14) and of the resulting expression into Eq. (15) yields 

 f = HT diag(k) H Op = Ks Op (17) 

where the stiffness matrix Ks [=HT diag(k) H] has the following explicit expression 

 
x

2
s y d 1 d 1 1

2
d 1 1 d 1

k 0 0

= 0 k +k (cosθ ) k cosθ sinθ

0 k cosθ sinθ k (sinθ )

 
 
 
  

K  (18) 

The square root of the ratio between the smallest and the largest eigenvalues of the stiffness matrix [21] is an 

index, (1/ks), ranging from 0 to 1, that measures the stiffness isotropy and coincides with the CI of the Jacobian 

matrix H [i.e., Eq. (6)] when kx=ky=kd . The eigenvalues of Ks have the following explicit expressions: 

 1=kx,     2,3=  2 2
y d y d d 1

1
k +k k +k +2 k k cos(2θ )

2 y  (19) 

According to Eq. (19), the values of the ratios between kx, ky, and kd determine which i, for i=1,2,3, is the 

smallest or the largest. In general, the linear actuators of the two P pairs on the base can be of the same type, which 

implies kx=ky; whereas, the linear actuator of the remaining P pair, which controls the joint variable d1, must match 

different technical requirements and could be different from the other two with kd=ck kx where ck is a constant 

parameter greater than 0. In this case, Eq. (19) allows the identification of the smallest and the largest i, i=1,2,3, 

and gives the following explicit expression of 1/ks  

 
2

k k k 1

2
k k k 1

1+c 1+c +2c cos(2θ )1
=

1+c + 1+c +2c cos(2θ )sk


 (20) 

Figure 9 shows the 3D diagram of expression (20) as a function of ck, for ck]0, 3], and θ1, for θ1], -] rad with 

=1.12 rad. The intersection of this diagram with the plane ck=1, which corresponds to kx=ky=kd, coincides with the 

diagram of the CI (i.e., Eq. (6) and Fig. 3) as a function of θ1. Also, since the derivative with respect to ck of 

expression (20) is always equal to zero when ck=1, this intersection (i.e., the CI as a function of θ1 given by Eq.(6) 

and Fig. 3) gives the maximum value of 1/ks as a function of θ1. The conclusion is that, from the point of view of the 

stiffness isotropy, the best design is obtained by choosing all the actuators of the same type (i.e., kx=ky=kd). This 

goal could be obtained by using rollerball linear actuators, which join high stiffness to the possibility of being 

mounted on P pairs both adjacent and not-adjacent to the base. 
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Figure 9: 3D diagram of expression (20) as a function of ck, for ck]0, 3], and θ1, for θ1], -] rad with 
=1.12 rad. 
 

 

4. Accuracy Analysis 

Accuracy analysis determines the positioning precision of a manipulator when manufacturing and/or assembly 

errors (geometric errors) are present and relates geometric tolerances to the positioning precision requirements. 

This analysis is necessary for lower-mobility manipulators (e.g., TPMs) [22, 23, 36] since their calibration 

procedures cannot compensate the effects of the geometric errors that make the platform perform motions which 

do not belong to the displacement sub-group (e.g., the spatial translation sub-group {T} for TPMs) the platform 

is designed to move in. 

These authors presented a general technique to perform the accuracy analysis in a previous paper [23]. Such 

technique will be used in this section. It consists in 

(a) the identification of the “independent geometric constants (IGCs)” that define the geometry of the links, 

(b) the generation of an “Extended Spatial Mechanism (ESM)” which contains only P and/or R pairs and is 

obtained from the actual manipulator by considering as additional passive-joint variables the IGCs whose changes 

make the platform move out of its nominal displacement sub-group, 

(c) the determination of the following form of the instantaneous input-output relationship of the ESM ( is the 

angular velocity of the platform) 

  = Df,P f,Pq  + Df,R f,Rq +Dg,P g,Pq  + Dg,R g,Rq  (21a) 

 pO = Ef,P f,Pq  + Ef,R f,Rq +Eg,P g,Pq  + Eg,R g,Rq  (21b) 
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where qf,P and qf,R (qg,P and qg,R) collect all the joint variables of P and R pairs, respectively, that appear among 

the actuated-joint variables (among the additional passive-joint variables obtained from the IGCs), 

(d) the computation of the coefficients that appear in the following relationship [see [23] for the deduction from 

Eq. (21)] between the errors on the platform pose and the geometric errors11 

   f,P qf,P + f,R qf,R + g,P qg,P + g,R qg,R (22a) 

 Op  f,P qf,P + f,R qf,R + g,P qg,P + g,R qg,R (22b) 

where f,P , f,R , g,P , g,R , f,P , f,R , g,P , and g,R, named “accuracy coefficients”, are the largest singular values 

of the Jacobian matrices Df,P , Df,R , Dg,P , Dg,R , Ef,P , Ef,R , Eg,P , and Eg,R, respectively, and  is the rotation 

angle of the rotation matrix that represents the rotation which makes the nominal platform orientation coincide 

with the actual one (i.e., the one that takes into account the orientation error). 

4.1 Determination of the IGCs: 

In the studied TPM of type PRRR-PRPU, the effects of all the geometric errors that do not violate its 

translational nature can be eliminated through calibration procedures. Therefore, the geometric constants whose 

errors do not affect the translational constraint between platform and base are assumed without relevant 

geometric errors. The analysis that identifies the IGCs in the base, the platform, and the two limbs is reported 

below. 

The base geometry just fixes the angles among the two P-pair sliding directions. Since it is quite clear that 

the translational constraint between the platform and the base remains valid, even though these two directions 

are not orthogonal, the base geometry is assumed without geometric errors. 

The platform geometry fixes only the minimum distance, ap [Fig. 1(c)], between two R-pair axes (one of the 

PRRR limb and the other of the PRPU limb). Any variation in this geometric datum just yields a constant 

change in the location of the Op−xpypzp reference frame, fixed to the platform; such constant change does not 

affect the translational constraint between the platform and the base. Thus, the platform geometry is assumed 

without geometric errors. 

Regarding the PRPU limb (see Fig.1), its static analysis reveals that the force system, it applies to the platform, 

is constituted by one torque perpendicular to the two R-pair axes of the U-joint and two forces, which are parallel to 

the sliding directions of the two actuated P pairs [i.e., one to the coordinate axis xb and the other to the line passing 

through the points A1 and B1 (Fig. 1(c))] and have both the lines of actions passing through point A1. The 

translational constraint between platform and base only needs that the torque has a component along the coordinate 

                                                 
11 |s| and v denote the absolute value of the scalar s and the Euclidean norm of the vector v, respectively; whereas, () 
denotes a small finite variation of (). 
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axis yb. Even though this condition is not altered by the links’ geometric errors, a mobility analysis reveals that the 

parallelism of the axes of the two intermediate R-pairs, and the perpendicularity of the axes of the two R-pairs that 

form the U-joint are necessary to keep the translational constraint between platform and base. Therefore, it will be 

assumed that geometric errors are present only in the parallelism of the axes of the two intermediate R-pairs, and in 

the perpendicularity of the axes of the two R-pairs that form the U-joint. In so doing, the geometry of this limb is 

modified as shown in Fig. 10 where d2, d3, h, α1 and α2 are the geometric errors that become additional passive-joint 

variables of the ESM thus transforming the PRPU limb into a PRPRPRPRRP limb. 

 

 

 

 

 

 

 

 

Figure 10: PRPU limb with geometric errors. 

 

With reference to the Fig. 10, i2 and i3 are the axis unit vectors of the two R-pair that constitute U-joint, and 

the following relationships hold 

 i2 = ib cos2 + (u1ib) sin2 (23a) 

 i3 = – i2 sin3 + (u2i2) cos3 (23b) 

 d2 = (O2– O2’)  i2 (23c) 

 d3 = (A1– O3)  i3 (23d) 

where u1= (O2’ – B1)/d1 and u2= u1 cosθ2 – (u1i2) sinθ2. The PRPU limb with geometric errors (i.e., the above-

mentioned PRPRPRPRRP limb of the ESM) makes it possible to write the platform twist $ [(T, T
pO )T]  as 

follows 

 x d 1 j j h P,k k R,k k
j=1,3 k=2,3

ˆ ˆ ˆ ˆ ˆ ˆx d θ h ( d α )      $ $ $ $ $ $ $     (24) 

where 

x
b

ˆ =
 
 
 

0
$

i
; d

1

ˆ =
 
 
 

0
$

u
; b

1
1 p b

ˆ =
( )

 
  

i
$

B - O i
; 2

2
2 p 2

ˆ =
( )

 
  

i
$

O - O i
; 3

3
1 p 3

ˆ =
( )

 
  

i
$

A - O i
; 
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h
2

ˆ =
 
 
 

0
$

u
; P,2

2

ˆ =
 
 
 

0
$

i
 ; P,3

3

ˆ =
 
 
 

0
$

i
; 1

R,2
1 p 1

ˆ =
( )

 
   

u
$

B O u
; 2

R,3
2 p 2

ˆ =
( )

 
   

u
$

O O u
. 

Regarding the PRRR limb, a possible error in the parallelism between P-pair’s sliding direction and the axis 

of the first R-pair or in the values of the lengths a1 and a2 does not change the type of motion it imposes to the 

platform (i.e., it still is a Shoenflies motion). On the contrary, a possible error in the parallelism among the three 

R-pair axes does change that motion and violates the translational constraint between the platform and the base. 

Therefore, it will be assumed that geometric errors are present only in the parallelism among the three R-pair 

axes. In so doing, the geometry of this limb is modified as shown in Fig. 11 where d4, d5, α4 and α5 are the 

geometric errors that become additional passive-joint variables of the ESM thus transforming the PRRR limb 

into a PRRPRRPR limb. 

 

 

 

 

 

 

 

Figure 11: PRRR limb with geometric errors. 

 

With reference to the Fig. 11, j4 and j5 are the unit vectors of the second and the third R-pair axes, 

respectively, and the following relationships hold 

 j4 = jb cos4 + (u4jb) sin4 

 j5 = j4 cos5 + (u5j4) sin5 (30) 

 d4 = (O4– O4’)  j4 

 d5 = (A2– O5)  j5 

where u4= (O4’ – B2)/a1 and u5= (O5 – O4)/a2. Also, the PRRR limb with geometric errors (i.e., the above-

mentioned PRRPRRPR limb of the ESM) makes it possible to write the platform twist $ [(T, T
pO )T]  as 

follows 

 y j j P,k k R,k k
j=4,6 k=4,5

ˆ ˆ ˆ ˆy θ ( d α )    $ $ $ $ $   (31) 

where  
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y
b

ˆ =
 
 
 

0
$

j
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 
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( )
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B O u
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R,5
4 p 5
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( )

 
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u
$

O O u
. 

4.2 ESM and Jacobian Matrices: 

Subsection 4.1 brings to conclude that the ESM is a PRRPRRPR-PRPRPRPRRP mechanism with qf,P=(x,y,d1)T, 

qf,R=(0,0,0)T, qg,P=(d2, d3, d4, d5, h)T, and qg,R=(2, 3, 4, 5)T. Also, the equation system constituted by Eqs. 

(24) and (31) can be transformed as follows after Eq. (24) is replaced by the subtraction of Eq. (31) from Eq. 

(24): 

 f f,P (r-f) (r-f) g,P g,P g,R g,R= + + $ A q A q A q A q     (32a) 

 (r-f) (r-f) f f,P g,P g,P g,R g,R= + B q B q B q B q     (32b) 

where q(r-f) = (1, 2, 3, 4, 5, 6)T, and  

Af = y
ˆ, , 

 0 $ 0 ; Ar-f = 4 5 6
ˆ ˆ ˆ, , , , , 

 0 0 0 $ $ $ ; Ag,P = P,4 P,5
ˆ ˆ, , , , 

 0 0 $ $ 0 ; Ag,R = R,4 R,5
ˆ ˆ, , , 

 0 0 $ $ ; 

Bf = y d
ˆ ˆ ˆ, ,x
  $ $ $ ; Br-f = 1 2 3 4 5 6

ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,    $ $ $ $ $ $ ; Bg,P = P,2 P,3 P,4 P,5 h
ˆ ˆ ˆ ˆ ˆ, , , ,   $ $ $ $ $ ; 

Bg,R = R,2 R,3 R,4 R,5
ˆ ˆ ˆ ˆ, , ,   $ $ $ $ . 

If Eq. (32b) is exploited to linearly eliminate (r-f)q from Eq. (32a), Eq. (32a) will become the sought-after 

instantaneous input-output relationship of the ESM, that is, 

  = Df,P f,Pq  + Dg,P g,Pq  + Dg,R g,Rq  (33a) 

 pO = Ef,P f,Pq  + Eg,P g,Pq  + Eg,R g,Rq  (33b) 

where  

f,P 1
f (r-f) (r-f ) f

f,P

 
  

 

D
A A B B

E
;   g,P 1

g,P (r-f) (r-f ) g,P
g,P

 
  

 

D
A A B B

E
 ;   g,R 1

g,R (r-f) (r-f ) g,R
g,R

 
  

 

D
A A B B

E
 

4.3 Determination of the Accuracy Coefficients: 

In the nominal geometry (i.e., with reference to Figs. 1, 10 and 11, when i2=ib, i3=kb, u2=jb, O2’O2O3A1, 

j4=j5=jb, O4’O4C and O5A2), Df,P and Dg,P are null matrices; whereas, Ef,P is equal to H–1, Dg,R is equal to [v1, 

jb, u4, u5] with v1= jb cosθ1, and 

Eg,P =

1 1 1

1 0 0 0 0

0 0 1 1 0

0 1 cot θ cotθ cotθ

 
 
 
   

; 
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Eg,R =
p 4 p 4 5

1 1 4 4 1 1 4 5 4 5 1 5

1 1 1
4 4 4 5 4 5 1 5

1 1 1

0 0 d sinθ d sin(θ θ )

0 0 d sinθ cosθ xsinθ d sinθ cos(θ θ ) x sin(θ θ ) a sinθ

cosθ cosθ cosθ
0 0 y cosθ x sinθ y cos(θ θ ) x sin(θ θ ) a sinθ

sinθ sin θ sin θ

 
  
       
 
     
  

. 

The result is that f,P, f,R, g,P and f,R are all equal to zero, and, for the studied TPM, inequalities (22a) and 

(22b) become 

   g,R qg,R (34a) 

 Op  f,P qf,P  +g,P qg,P + g,R qg,R (34b) 

where g,R, f,P, g,P and g,R are the largest singular values of the Jacobian matrices Dg,R , Ef,P, Eg,P , and Eg,R, 

respectively, with f,P and g,P that depend only on 1 and have the following explicit expressions 

 f,P = 
1

1

1 cosθ
 (35a) 

 g,P = 
2 2 4

1 1 13 3cot θ 1 10cot θ 9cot θ

2

   
 (35b) 

The values of the accuracy coefficients g,R, f,P, g,P and g,R depend on the TPM configuration. Figures 12 – 15 

show their values on five planar sections of the useful workspace Vu. Also, their numerical evaluation inside Vu 

reveals that they are bounded as follows 

              1 < δg,R < 1.414075 

              1 < f,P < 1.331184 

          2  < g,P < 1.682512 

 0.169423 < g,R < 0.743451 (l.u./rad) 

The introduction of their maximum values into inequalities (34a) and (34b) brings to conclude that, in Vu, the 

positioning precision of the studied TPM has the following upper bounds 

 max = 1.414075 qg,R (36a) 

 Opmax = 1.331184 qf,P + 1.682512 qg,P + 0.743451 qg,R (36b)  

If max is chosen equal to 0.026180 rad (=1.5o)12, Eq. (36a) will give the following upper bound  

 qg,Rmax = 0.018514 rad (37) 

Since qg,R is equal to 2 2 2 2
2 3 4 5α α α α   , if the choice of assigning the same tolerance class, T, to all the 

angular errors 2, 3, 4, and 5 is adopted, Eq. (37) will give the following limitation on T 
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 T  
g,R max

Δ

2

q
 = 0.009257 rad = 0.53° (38) 

Also, if qg,P is assumed equal to 0.01(l.u.) and the joint-variable errors x, y, and d1 are all assumed 

equal to 0.0001(l.u.)13, qf,P (= 2 2 2
1( x) ( y) ( d )     ) will be equal to 0.0001732(l.u.) and inequality (36b) 

will give the following upper bound 

 Opmax = 0,031 (l.u.) (39) 

 

 

 

 

 

 

 

 

 

 
Figure 12: Values of g,R inside the useful workspace. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: Values of f,P inside the useful workspace. 

                                                                                                                                                         
12 This value of max has been taken from the data sheets of the commercial delta robot ABB IRB-360 
(http://new.abb.com/products/robotics/industrial-robots/irb-360). 
13 It is worth noting that the data sheets of commercial roller-screws (see, for instance, 
http://www.thomsonlinear.com/website/com/eng/index.php or http://www.skf.com/group/products/linear-motion/ball-and-
roller-screws/roller-screws/index.html ) give d=1m. 
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Figure 14: Values of g,P inside the useful workspace. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15: Values of g,R (l.u./rad) inside the useful workspace. 

 

5. Conclusions 

A method for the dimensional synthesis of any translational parallel manipulator (TPM) has been presented and 

adopted for the dimensional synthesis of the TPMs of type PRRR-PRPU that have been recently proposed by one of 

the authors. As far as these authors are aware the presented method is overall novel. It consists in a) the 

assignment of a small set of normalized dimensional data according to general criteria that produce a well-

proportioned manipulator, b) the determination of the workspace regions that satisfy given design requirements 

on kinetostatics performances, c) the computation of the remaining dimensional data by maximizing the ratio 

(volumetric ratio) between the volumes of the useful workspace and of the TPM overall size, d) the stiffness 

analysis and e) the accuracy analysis. 
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The dimensional synthesis of TPMs of type PRRR-PRPU has been addressed for the first time. Addressing this 

design step on such TPMs is important since they have a number of promising features: a single-loop not-

overconstrained architecture with all the actuators on or near to the base, a simple position analysis, easy-to-find 

workspace boundaries, no constraint singularity, a type-II singularity locus that is a plane easy to keep far from 

the useful workspace, and a double infinity of isotropic configurations.  

This dimensional synthesis has brought to find a normalized TPM of type PRRR-PRPU, which yields a set of 

actual TPMs with the same performances by changing the actual value of the reference geometric length, named 

length unit (l.u.). The performances of all these TPMs are comparable with those of commercial TPMs. In 

particular, they have comparable kinetostatics performances (CImin=0.63, GCI=0.855), volumetric ratio (rV=0.266), 

stiffness and accuracy. Eventually, the chosen shape of the useful workspace (i.e., a cuboid) matches the needs of 

many industrial applications. 
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