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ABSTRACT 

In this paper, by means of a specific coordinate transformation, the singularity of the weight function 

is overcome. A strong advantage is obtained for a penny-shaped crack. In this case, a new exact 

formulation is given and a new alternative non-singular integral is proposed in terms of trigonometric 

functions. The new approach gives a remarkable streamlining of the Galin’s function with the 

advantage of reducing the complexity of the double integral. Furthermore, we give a second order 

analytical approximation of Oore-Burns integral for elliptical cracks with respect to deviation from 

the disk. This approach drastically simplify the computational procedure without loss of accuracy. 
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NOMENCLATURE 

δ          size of mesh over crack 

Ω         crack shape 

Ω∂      crack border 

Q         point of Ω 

'Q        point of crack border 

∆        distance between Q and ∂Ω 

KI       mode I stress intensity factor 

KI0      mode I stress intensity factor in a circle 

KIrw    mode I stress intensity factor from Irwin’s equation  

KI1      Taylor expansion up to first order of KI for an ellipse 

KI2      Taylor expansion up to second order of KI for an ellipse 

∆KI     first order term of mode I stress intensity factor for an ellipse 

∆KII    second order term of mode I stress intensity factor for an ellipse 

Km n    dimensionless stress intensity factor 

y,x     actual Cartesian coordinate system 

y,x     dimensionless Cartesian coordinate system 

v,u     auxiliary dimensionless coordinate system 

p, pmn   reference constants (pressure) 

b,a      actual semi-axis of an elliptical crack 

a,b       dimensionless semi-axis of an elliptical crack 

e          eccentricity of ellipse 

K(e)     elliptical integral of first kind 

E(e)     elliptical integral of second kind 

nσ       nominal tensile stress in y,x  actual Cartesian coordinate system 

σ       nominal tensile stress in y,x  dimensionless Cartesian coordinate system 
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1. INTRODUCTION 

 

The weight functions technique introduced by Bueckner (1970) and Rice (1972) has been a crucial 

development, especially for cracks in a two dimensional body. The Stress Intensity Factors (SIFs) of 

planar cracks by means of weighted integrals can be calculated by means of exact or approximated 

equations proposed for many different geometries (see Fett and Munz (1997), Tada et al. (2000)). If 

the weight function is unknown, accurate results can be obtained by generalising the weight function 

derived from the displacement function of Petroski and Achenbach, as suggested by Glinka and Shen 

(1991). They consider the first three terms of the Taylor expansion of the weight function proposed 

by Sha and Yang (1986). 

However, in many cases, for a more realistic simulation, cracks should be considered as planar two-

dimensional defects in a three-dimensional body [Wen et al. (1998), J.L. Desjardins et al. (1991), Al-

Falou and Ball (2000), Murakami and Endo (1983), Rice (1989), Livieri and Segala (2010) and 

(2012), Salvadori and Fantoni (2014)]. Usually the analytic expressions are involute and a numerical 

approach is hampered by the singular behaviour of the weight function. In many cases the weight 

function proposed in literature, is obtained from FE results of elliptic or semi-elliptic defects 

[Carpinteri at al. (2000), Zheng at al. (1995), Beghini et al. (1997)]. 

For a disk, the exact mode I weight function is known and was proposed by Galin (see Tada et al. 

(2000)). This equation is formulated in polar coordinates with the origin in the centre of the disk. 

Although this equation has an explicit analytic form, the integral of the weight function is not easy 

because of the singular nature of the weight function. Alternative ways were considered in literature 
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in order to obtain the mode I stress intensity factor. In fact, Smith et al. (1967), by means of the stress 

function, gave the mode I stress intensity factor for a penny shape crack under quadratic or cubic 

expression of the nominal load [see Shah and Kobayashy (1971)]. 

A general weight function for three-dimensional cracks is known in the literature as the O-integral, 

given by Oore and Burns (1980). In the ASM Handbook (1996), the O-integral was recognised to be 

a general formally simple expression for SIF, which is suitable for any shape of the embedded crack. 

In the case of circular or tunnel cracks, the O-integral perfectly agrees with the well known results of 

the literature. In order to strongly simplify the assessment of stress intensity factors, the designer 

often approximates defects with elliptical cracks in complex structures (see for example Hobbacher 

(1995) or BS 1991 in the case of welded joints).  

For elliptical cracks, the agreement between O-integrl and known results is acceptably good (in the 

sense of a maximum errors of a few percent) in the range major axis/minor axis ≤ 2.5 (see Livieri and 

Segala (2012)). 

The complexity of the evaluation of the O-integral suggested us to simplify the equation in order to 

obtain some powerful alternative formulation in closed analytical form. 

In the case of general crack shape, the derivation of the first order approximation of the Oore-Burns 

integral is not immediate and it is heavily based on complex analysis, in particular on the residue 

theorem (see Livieri and Segala (2010)). Expression of the Oore-Burns integral accurate to the first 

order in the deviation from a circle, in terms of Fourier series could be useful for a quickly evaluation 

when the shape of crack moves away from the circular shape. From a mathematical point of view, the 

key to derive the Taylor expansion of the OB is complex analysis and especially the residue theorem. 
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In some recent works [see Livieri and Segala (2005, 2010)], for the O-integral, the authors gave the 

expression of the first order deviation from the circle for uniform pressures. In this paper we derive a 

careful closed-form representation of the Oore-Burns integral (hereinafter, OB integral) along elliptic 

cracks under general pressure. More precisely, we obtain the closed expression of the second order 

Taylor expansion of the stress intensity factors proposed by Oore-Burns (1980) with respect to 

deviation of the ellipse from the disk. The deviation of an ellipse from the disk is quantitatively 

described by the parameter ε=1-b/a, where a and b are the major and minor semi-axis, respectively. 

Furthermore, the paper presents a new approach for streamlining of the Galin’s function with the 

advantage of reducing the complexity of the double integral giving a new way for the assessments of 

many analytical formulae. 
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2. Basic definitions 

 

Let Ω be an open bounded simply connected subset of the plane as in Figure 1. We define: 

 

 
Ω∂ −

=
2

)s(PQ

ds
)Q(f  (1) 

 

where Ω∈= )y,x(QQ ,  s is the arch-length parameter and the point P(s) runs over the boundary 

Ω∂ . In their famous work in 1980, Oore-Burns proposed the following expression for the mode I 

stress intensity factor for a crack subjected to a nominal tensile loading sn(Q) evaluated without the 

presence of the crack:  

 

 Ω∂∈Ω
−

σ
π

= 
Ω

'Q,d
'QQ)Q(f

)Q(2
)'Q(K

2

n
I  (2) 

 

Under reasonable hypothesis on the function σn(Q), the integral (2) is convergent and the proof is 

based on the asymptotic behaviour of f(Q). We recall that near ∂Ω (see Ascenzi et al. (2002) for 

details) 

 
∆

≈ π
)(Qf  (3) 
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where ∆ is the distance between Q and ∂Ω. By operating a rigid motion, we may assume Q’=0 and 

∂Ω approximated by the parabola 2xky =  in a small neighbourhood of Q. Then by applying the 

Lagrange multiplier method, for a fixed (x,y) with y≥ k∙x2 we get 

 222 )yv()xu( −+−=∆  (4) 

where u solves the implicit equation 

 0xu)ky21(uk2 32 =−−+   (5) 

and v=k u2.  

 

By searching u in the form  kj

jk yxa , we obtain the expansion  

 

)]r(Oyk4xk6yk21[)xky(xk2x

...xyk16yxk56xk12yxk8yxk16yxk4xk2yxk2x)y,x(u

322222

442345433332232

++−+−+=
=++−++−+−+=

  (6) 

where 22
yxr +=  

From (4), (5) and (6), it follows by means of some Taylor expansions 

 

 )]r(Oyxk4xk21[)xky()y,x( 423222 ++−−=∆   (7) 

 

The generalisation of (7) is obvious. Let ∂Ω be locally a graph of a C2 function v=v(u). Again, by 

applying multiplier theorem, equation (5) becomes u-x + (v-y) v’=0 with v(u)=(v’’(0)/2)u2 (1+o(1)). 

Then  
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 )]r(Ox
2

)0(''v
1[))x(vy()y,x( 32

2

+−−=∆  (8) 

Equation (8) can be easily tested on the circle. 

In terms of polar coordinates, (r, ϑ), (8) can be rewritten in the form 

 

 )r(Ocos
2

rc
sinr 32

2

+ϑ−ϑ=∆  (9) 

 

where 'QQr −= , c is the curvature of Ω∂  at Q’ and ϑ is the angle between Q-Q’ and Ω∂ . From 

(9) it follows 1L)r/1(Or/ ∈=∆  and the convergence of the OB integral is proved. The integral 

KI(Q’) can be expressed in closed form only when Ω is a disk (see sections 4, 5). 

Therefore, when Ω is an ellipse of semiaxis ( )b,a   1
b

y

a

x
2

2

2

2

≤+  ( ab ≤ ), a comparison between OB 

and the Irwin’s solution KIrw, given for uniform nominal stress σn, by 

 

 

 

4/1

2

2

2
2n

Irw cos
a

b
sin

)e(E

b
)(K 








α+α

πσ
=α  (10) 

 

is not immediate.  

In (10), )sinb,cosa()y,x( α⋅α⋅= , 

2

2a

b
1e −=   is the eccentricity of the ellipse and E(e) is the 

elliptic integral of the second kind, i.e. 
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 dttsine1)e(E

2/

0

22


π

−=  (11) 

 

By following standard notation, we reserve symbol k to denote the elliptic integral of the first kind 

 

 dt
tsine1

1
)e(K

2/

0
22

π

−
=  (12) 

 

 

3. A preliminary lemma 

 

Lemma 3.1 

 

Let (x,y) be a point of the plane with  1yx 22 <+=ρ . Then for natural numbers n and p: 

 

 ( ) ( )[ ]
n

1p22

2

p22

in

w
)1(

),n,p(q
d

sinycosx

e
−

π

π−

ϑ

ρ−
ρπ=ϑ

ϑ−+ϑ−  (13) 

 

where yixw +=  and 

 

 2)t,n,1(q =  (14) 
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 ( ) ( )[ ]t1n1n2)t,n,2(q −−+=  (15) 

 ( ) 2223 t2n3nt)n28(2n3n)t,n,3(q +−+−+++=  (16) 

 

Proof. We sketch the proof only for p=1. By calling Jn(x,y) the integral on the l.h.s. when p=1, by the 

change of coordinates ψρ=ψρ= siny,cosx , we obtain 

 

 ϑ
+ϑρ−ρ

= 
π

π−

ϑ
ψ d

1cos2

e
e)y,x(J

2

in
in

n  (17) 

 

By setting z=eiθ, we can factor 

 

 ( )ρ−








ρ
−ρ−=+ϑρ−ρ z

1
z

z
1cos22  (18) 

 

Therefore, lemma follows from residue theorem, since by (17) and (18)  

 

 n

2

n
in

n w
1

2
dz

z

1

1
z

z
e

i
)y,x(J

ρ−
π=

ρ−
ρ

−ρ
= 

ψ  (19) 

 

 

 

 



 11

 

4. Oore-Burns on a disk 

 

Let Ω be a fixed set. We may reconstruct OB integral along the front crack )( Ωλ∂  by its values 

along Ω∂  by the equation 

 

 ),/'Q,1(K),'Q,(K InI σλλ=σλ  (20) 

 

where )Q(n λσ=σ  with 0>λ  

If we “read” the boundary point Q’ in terms of an angle α that is, for example Ω is star shaped with 

respect to the origin, (20) takes the simplest form 

 

 ),,1(K),,(K InI σαλ=σαλ  (21) 

 

In the particular case when Ω is a disk of radius a  centred at the origin of the plane )y,x( , we 

denote by (x,y) the system in dimensionless coordinates x= ax  and  y= ay   (see Figure 2). 

By definition, for the unit disk, by (1) and (2) it follows: 

 

 
( ) ( )

≤+ α−+α−
σ

π
=α

1yx

220,I
22

dydx
sinycosx

)y,x(h)y,x(a2
)(K  (22) 
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with 

 

 )y,x(f/1)y,x(h =  (23) 

 ( ) ( )
π

π− ϑ−+ϑ−
ϑ=

22
sinycosx

d
)y,x(f  (24) 

 

The function f(x,y) can be easily computed by using (13) and (14). Then, it follows 

 

 
21

2
)y,x(f

ρ−
π=  (25) 

 
π
ρ−

=
2

1
)y,x(h

2

 (26) 

 

From now on, we will use the symbol Ξ  

 

 ( ) ( )22
sinycosx α−+α−=Ξ  (27) 

Therefore 

 

 
≤+ Ξ

ρ−σ
ππ

=α
1yx

2

0,I
22

dydx
1)y,x(a

)(K  (28) 

 

By introducing the change of variables [ ] [ ]( )2/,0,,0 π∈ϕπ∈ϑ   
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



αϑ−+αϑ=
αϑ−αϑ−=

sin)sinr1(coscosry

sincosrcos)sinr1(x
 (29) 

where 

 

 ϕϑ= 2sinsin2r  (30) 

by some simple calculations 

 2r=Ξ  (31) 

 ϕϑϕϕϑ= ddcossinsinr4dydx  (32) 

 rsin2r1 2 −ϑ=ρ−  (33) 

 

Figure 3 shows the geometric meaning of the change of variables expressed in Eqs (29−30). For a 

given point P of coordinates (x,y), r is the distance PQ , ϑ  is the angle between PQ and the 

tangent to the circle in Q. Figure 4 reports the geometrical meaning of angle ϕ  introduced in (30). 

By inserting (31), (32) and (33) in the integral (28), we have the following expression for the stress 

intensity factors on the unitary disk 

 

  ϕϑϕϑσ
ππ

=α ddcossin)y,x(
4

)(K 2

0,I  (34) 

where the integral is computed on the “longitude” [ ]π∈ϑ ,0  and the “latitude” [ ]2/,0 π∈ϕ .  
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Moreover, the pressure σ(x,y) is “read” in the new coordinates (ϑ, φ) for any fixed α, in the sense 

that x and y are given by (29), with r defined by (30). If the crack has a radius equal to a  the stress 

intensity factor becomes 

 

  ϕϑϕϑσ
ππ

=α ddcossin)y,x(
a4

)(K 2

0,I  (35) 

 

When ( )1≡σ , from (35) we obtain the well-known result: 

 

 a12837.1
a2

)(K 0,I ≈
π

=α  (36) 

 

In order to show the efficiency of Eq. (35), now we look at some special cases of nominal stress 

distribution considered in the literature. Many others new examples can be obtained by changing the 

shape of the nominal stress σ. 

Note that, the nominal stress σ, proposed in all the examples, is expressed in the x,y dimensionless 

coordinates system given by (29). If we know the stress in the actual y,x , by means of a simple 

transformation, the function )y,x(σ  can be calculated. Furthermore, in this paper only the 

mathematical aspects of Oore-Burns integral are taken into account if the two crack surfaces interfere 

with each other upon loading. 

 

Example 4.1.  Linear stress of coordinates x xp)y,x( ≡σ . 



 15

In this case, the evaluation of the integral (35) is immediate: 

 

 α
π

=α cos
3

ap4
)(K 0,I  (37) 

Equation (37) perfectly agrees with that presented in Tata et al. (2000) 

 

Example 4.2.  Linear stress of coordinates y: yp)y,x( ≡σ   

 

Obviously, from (35)  

 α
π

=α sin
3

ap4
)(K 0,I  (38) 

 

Equation (38) perfectly agrees with that present in Tata et al. (2000) 

 

 

Example 4.3.  Hyperbolic stress: yxp)y,x( ≡σ  

 

Again, the evaluation of the integral (35) is very simple. 

 

 α
π

=α 2sin
15

ap8
)(K 0,I  (39) 

Equation (39) perfectly agrees with that present in R.C. Shah, A.S. Kobayashi (1971) 
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Example 4.4.  Quadratic stress: )yx(p)y,x( 22 −≡σ   

From Eq. (35): 

 α
π

=α 2cos
15

ap16
)(K 0,I  (40) 

 

Equation (40) perfectly agrees with that present in R.C. Shah, A.S. Kobayashi (1971) 

 

 

 

Example 4.5. Exponential stress: ( ) γ
γ

ρ=+≡σ pyxp)y,x( 222  

 

By taking into account the identity ( ) 222 2sinsin1

γ
γ ϕϑ−=ρ  the equality between OB and the 

known result reported in Tada et al. (2000): 

 








 +γΓ








 +γΓ
σ=α

2

3

2

1
2

a)(K 0,I  (41) 

follows from the binomial series ( ) ( ) ...t1
2

1
t1t1 2 +−γγ+γ+=+ γ

 

 

 

Example 4.6. Biquadratic stress 4xp)y,x( ≡σ . 
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Again, the evaluation of the integral (35) gives the result: 

 

 






 απ+απ+π
π

=α 4cos
315

8
2cos

35

4

10

ap4
)(K

2/30,I  (42) 

 

Example 4.7. Biquadratic stress: 4yp)y,x( ≡σ  

 

Again the evaluation of the integral (35) gives: 

 

 






 απ+απ−π
π

=α 4cos
315

8
2cos

35

4

10

ap4
)(K

2/30,I  (43) 

 

 

5. Elliptical crack: first order deviation from the disk 

 

For a given elliptical crack with half-axis )b,a(  and ab ≤ , in the system )y,x( , we call axx = , 

ayy =  dimensionless coordinates. In the system (x,y), the half-axes becomes ( 1, b) with a/bb =  

(see Figure 5). Then we consider the ellipse in non-dimensional form 1b0,1
b

y
x

2

2
2 ≤<≤+ .  

 

The value of the OB integral can be obtained from the integral over the normalised ellipse, by taking 

into account the change of scale in virtue of (21). 
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From the definition of OB, we emphasise the dependence of the integral from the half-axis b, by 

writing: 

 

 
( ) ( )

≤+
α−+α−

σ
π

=α
1

b

y
x

22I

2

2
2

dydx
sinbycosx

)y,x,b(h)y,x(2
),b(K  (44) 

where 

 )y,x,b(f/1)y,x,b(h =  (45) 

 
( ) ( )

ϑ
α−+α−

ϑ+ϑ
= 

π

π−

d
sinbycosx

cosbsin
)y,x,b(f

22

222

 (46) 

By the change of variables xu = , b/yv = , we may rewrite the stress intensity factor as: 

    

 
( ) ( )

≤+ α−+α−
σ

π
=α

1vu

222I
22

dvdu
sinvbcosu

)bv,u,b(h)bv,u(b2
),b(K  (47) 

 

Only for reasons of pure simplicity, we prefer to recall by (x,y) the mute variables (u,v) in the 

integral (47), that is: 

 
( ) ( )

≤+ α−+α−
σ

π
=α

1yx

222I
22

dydx
sinybcosx

)by,x,b(h)by,x(b2
),b(K  (48) 

 

 

In order to compute ),1(
b

),b(K I α
∂

α∂
,we begin, by assuming σ≡1. 
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From now on, we will denote by ’ the derivation with respect to variable b. 

For simplicity, we use the notation 

 

 2)siny( α−=Λ  (49) 

Then 

 

 














Ξ
Λ−

Ξ
+

Ξπ
=α 

≤+≤+≤+ 1yx

2

1yx1yx

I
222222

dydx
h

2dydx
'h

dydx
h2

),1('K  (50) 

 

where h and h’ are computed on b=1. We need the expression of   )by,x,b(f
b

'f
∂
∂= on b=1. We have 

 

  
π

π−

π

π−

ϑ
Ξ
Λ−ϑ

Ξ
ϑ= d2d

cos
'f

2

2

 (51) 

and by taking into account that 
2

e
Re

2

1
cos

i2
2

ϑ

+=ϑ , by lemma 3.1. It follows 

 
π

π−

−+
ρ−

π=ϑ
Ξ

ϑ
)yx1(

1
d

cos 22

2

2

 (52) 

 

 
π

π− ρ−
π=ϑ

Ξ
Λ

22 1
d  (53) 

and hence 
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 )yx1(
1

'f 22

2
+−

ρ−
π−=  (54) 

By the definition (46) of h: 

 )yx1(
2

1

4

1
'h 22

2

+−
π
ρ−

=  (55) 

By recalling the change of variables (29), (30) we have the following expressions:  

 

 ( )α−α+ρ= 2sinB2cosA
2

1
x 22  (56) 

 ( )α+α−ρ= 2sinB2cosA
2

1
y 22  (57) 

 α−α=− 2sinB2cosAyx 22  (58) 

 ( )αϑ−αϑ+=Λ 2sin2sin2cos2cos1
2

r2

 (59) 

where from now on 

 

 ϑ−ϑ−= 2cosrsinr21A 2  (60) 

 ϑ−ϑ= 2sinrcosr2B 2  (61) 

 

By taking into account (26), (33), (55)-(61), we deduce the equation  
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






 α






 ϑ++α






 ϑ+−
−ϑ

π
=









Ξ
Λ−

Ξ
+

Ξ
2sin2sin

4

B
2cos2cos

4

A

4

1

r

rsin2

2

1
r

h2'hh
2

 (62) 

 

Finally, by recalling the expression (30) of r:  

 













ϕϑ







 α






 ϑ++α






 ϑ+−ϕϑ
ππ

=α  dd2sin2sin
4

B
2cos2cos

4

A

4

1
cossin

4
),1('K 2

I

  (63) 

where the integral is computed on [ ]π∈ϑ ,0  and [ ]2/,0 π∈ϕ . 

The integral (63) can be easily computed by inserting A and B: 

 

 






 α+
π

=α 2cos
5

2

2

11
),1('K I  (64) 

By putting ε=1-b and by calling  )(K 1,I α  the first order Taylor expansion of ),b(K I α , from (64) 

and (36), we get 

 

 














 α+ε−
π

=α 2cos
5

2

2

1
2

1
)(K 1,I  (65) 

In order to remove the assumption 1≡σ , we write 

 

( ) α







ϑ−ϑ+ϑ+α








ϑ−ϑ−ϑ+−=ϕϑα 2sin2sin

4

r
cos

2

r
2sin2cos2cos

4

r
sin

2

r
2cos

4

1

4

1
,,Q

22

 (66) 
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with r given by (30). 

Then, for a general pressure σ(x,y), of class C1, we are able to express by a closed form, the first 

order deviation from the disk: 

 

 













ϕϑ








σ+

∂
σ∂ϕϑ

ππ
ε−=α∆  ddQ

y
ycossin

4
)(K 2

1,I  (67) 

 

where the integral is computed on [ ]π∈ϑ ,0  and [ ]2/,0 π∈ϕ  and 
y

,
∂
σ∂σ  are both evaluated on  x,y 

dimensionless coordinate system are given by (29).  

If the elliptical crack has a maximum axis equal to a  the first order deviation becomes in virtue of 

(67) 
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Example 5.1.  Power stress: nm yxp)y,x( ≡σ  

 

If the nominal stress σ over the crack is a polynomial in (x,y), that is a finite sum of terms of the type 

xm yn, since OB is a linear function of the pressure, it is useful to write (68) in the special case 

nm yxp)y,x( =σ , where p is a pressure that takes into account the physical dimension of σ. 

Then, by taking into account (35), the first order deviation 1,IK∆ , is given by 
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where 0,IK  is the value of OB on the unitary disk. In conclusion, the first order expansion 1,IK  of 

the OB integral is the following 

 

  ϕϑσϕϑ
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 (70) 

 

 

 

 

 

 

Example 5.2. Linear stress of coordinates x: xp)y,x( =σ  

 

We apply (69) by taking into account xp)y,x( =σ . Then, by putting 
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with r given by (30), it follows 
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By (37), (70), (72) we obtain 
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 (73) 

 

 

Example 5.3 Linear stress of coordinates y: yp)y,x( =σ  

 

By using the notation of the previous example, we get 
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By recalling (38) and by applying (70), by (74) we conclude  
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 (75) 

 

In the case σ linearly varying, the exact expression for stress intensity factors, was discussed by Shah 

and Kobayashi in (1971). It is interesting to look at a comparison between the Shah-Kobayashi 

formula in the special case yp)y,x( =σ   (p is given in the dimensionless coordinates x,y) 
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and our approximation formula (75). The agreement is excellent (see section 7 for tables and details). 

For completeness, we report that in (76), K(e) and E(e) are the elliptic integral of the first and second 

kind computed for the eccentricity 
2

2

a

b
1e −= . 

 

 

Example 5.4 Hyperbolic stress: yxp)y,x( ≡σ  

 

From (70) by setting n=m=1 it is possible to give the analytic evaluation of the integral relating to the 

first order approximation of KI. KI,0 is given by (40), so that 
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6. Elliptical crack: second order deviation from the disk 

From now on, we will denote by ’’ the second derivative with respect to the variable b. Therefore, 

from the definition (45) of the OB integral on the ellipse 1
b

y
x

2

2
2 <+ , it follows by using the notation 

of section 5 and by assuming a unitary stress  σ  ( in the following this assumption will be removed)  
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Therefore, in order to compute the integral in the r.h.s. of (78), we need the expression of h’’. 

 

By (47) it follows that 
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All integrals on the r.h.s. in (79) will be evaluated by means of lemma 3.1. Precisely  
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Summing up, by means of easy arithmetic operations, we obtain 
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 )yx6yxy4x1231(
)1(4

''f 224422

2
+−−+−

ρ−
π=  (84) 

 

By recalling that 2/1fh −= , it follows that  'ff
2

1
'h 2/3−−=  and consequently 
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By inserting (54) and (84) in (85), by taking into account that 222 yx +=ρ , we deduce the 

expression of h’’ 

 

 )x10x10x225(
2

1

8

1
''h 422242

2

+ρ−+ρ+ρ+−
π
ρ−

=  (86) 

 

The next step is expressing h’’ in terms of the coordinates (r,θ) given by (29). A simple calculation 

shows that 
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By inserting (87) in (86), h’’ takes the form 
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The expression of Λ2 in terms of the coordinates (r,θ) is given by 
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By recalling the expressions of Λ, h, h’ obtained in the section 5, by putting for the sake of simplicity 

 

 ϑ= 2cosM  (90) 

 ϑ= 2sinN  (91) 

 

finally, we obtain 
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 (92) 

The expressions of r2 and r4 in terms of (r, ϑ) easily follow the definition of  222 yx +=ρ . Then  

 

 22 rsinr21 +ϑ−=ρ  (93) 

 43224 rsinr4)sin21(r2sinr41 +ϑ−ϑ++ϑ−=ρ  (94) 

 

By the definitions of A,B,M,N (see (60), (61), (90) and (91)) we are able to express all the 

coefficients in (88) in terms of (r,θ).  
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 ϑ−ϑ+ϑ=+ 4sinr3cosr22sinBNAM 2  (100) 

 

By inserting (93–100) in (92), the integral ),1(''K I α  becomes  
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 (101) 

 

The integrals ϑ
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in the closed form 
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By inserting (102) in (101) the integrals ),1(''K I α  is reduced to a sum of integrals of the type 
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1
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In others words the second order deviation from the unit disk is given by 
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Now we are able to remove the assumption 1≡σ  by taking σ of class C2. By following previous 

computations, we infer that the second order expansion from the unit disk, for a general nominal 

stress σ, is given by   
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where Q is defined in (66) and 
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Moreover 
2

2

y
,

y
,

∂
σ∂

∂
σ∂σ  are evaluated on dimensionless coordinates x,y  given by (29). 
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If the elliptical crack has a maximum axis equal to a  the second order deviation becomes 
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Finally, by (35), (68) and (107) we obtain  
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6.1 Linear stress of coordinate  y: yp)y,x( =σ  

 

By results of section 5, we only need a suitable expression of yR. By writing (106) in the form 

 

 α−α+α−α+= 4sinD4cosD2sinD2cosDDR 43210
 (109) 

 

it follows 
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Where C1 and C2 are defined in (71). By inserting (110) in (108) and by taking into account (75), we 

get the second order Taylor expansion 
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The performance of (111) will be tested in the tables of section 7. 

 

 

6.2 Linear stress of coordinate  x: xp)y,x( =σ  

 

As in the previous case, by using (108), we get the second order Taylor expansion as: 
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Finally, by recalling (73), the Taylor expansion up to the second order becomes: 
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6.3 Power stress: nm yxp)y,x( =σ   

 

When nm yxp)y,x( =σ , equation (108) gives 

 

 ϕϑσ






 ε
−ε−ϕϑ

ππ
ε

−α




 ε−+ε−=α ddR
2

Q)n1(cossin
a4

)(K)1n(n
2

1
n1)(K 2

0,I

2

2,I
 (114) 

 

The r.h.s. in (114) is a very good candidate to represent the stress intensity factor for elliptical cracks 

when the ratio major axis/minor axis is less than two. 
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6 4 Polynomial stress of degrees 2: 
≤+

=σ
2nm
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nm yxp)y,x(   

We conclude this section by putting the explicit equation of  )(K 2,I α  when σ is a polynomial of 

degrees 2 and where pm n  is a pressure that takes into account the physical dimension of σ. By 

applying (114) one has 
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7. Application of second order approximation to some remarkable 

cases 

 

7.1 Comparison between Eq. (108) and the Irwin equation for constant stress 

 

 

By assuming σ(x,y)=constant, we denote by )(K 2,I α  the second order Taylor expansion of 

),abb(K I α=  at the initial value b=1. The nth order Taylor expansion KIrw,n(α) of Irwin (1962) 
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The expression of 2,IK  was defined in the previous section (see (65) and (103)): 
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Then, the difference between the Irwin and OB integral up to the second order approximation is 

expressed by: 
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By observing that 
5040

1

15

1

5040

337 += , we may delete the insignificant contribution 
π

ε
10080

2

 whose 

value for ε=0.4 is 0.0000089. Therefore 
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and finally, from (118) 
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Note that for α=0 the ratio in Eq. (119) is equal to 






 ε+ε+
16

17
1

20
1 , whereas for α=π/2, its value is 








 ε+−ε+
16

1
1

20
1 . For example, when ε=0.5, the above values are respectively 1.038 and 0.975. The 

analytical evaluation of the second order approximation of the OB integral underlines the accuracy of 

the OB in the stress intensity factor predictions also for elliptical cracks. Due to the singularity nature 

of the weight function, from a numerical point of view, we need a greatly accurate mesh for 
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estimating this very slight difference between Irwin and Oore-Burns when ε is relatively small (see 

Livieri and Segala 2014), so that the numerical errors can be greater than the theoretical accuracy of 

OB integral. Figure 6 shows the trend of 
)(K

)(K

Irw

2,I

α
α

 given by (120). The maximum error is less than 

4% up to ε=0.5. 

 

7.2 Numerical verifications of the first and second order approximation 

 

First of all, we take into account the error between the Oore-Burns KI given by (2) and its 

approximations of first and second order. The OB integral (2) can be evaluated by a numerical 

procedure described in a previous paper (see Livieri and Segala 2014). Tables 1–3 show the 

comparison in the cases of nominal stress proportional to dimensionless coordinates:  x, y and x∙y. 

The analytical results are taken from Shah and Kobayashi (1967). Figure 7 reports a typical mesh 

used in numerical analysis for the evaluation of integral (2) when Ω is an ellipse. The mesh in 

dimensionless coordinates is of a type (M, N, 2M) with M and N integer numbers. The polar plane is 

divided into M∙N subset of amplitude δ=π/M . The point Q’ is located at the origin of the mesh, and 

the contour of the ellipse is divided into 2∙M intervals. 

The Riemann sums and the analytical values are essentially equal when the deviation from the disk is 

small. 

However, when the b/a ratio reaches 0.5 the second order expansions of the OB integral, in the 

example proposed herein, gives maximum errors around 5% while the more significant parameter 

IKmax

error
 does not exceed 3%. 
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7.3 Comparison with an example by Atroshchenko et al. (2010) 

 

In order to shown the accuracy of the second order approximation of equation (108), we now 

consider the example proposed by Atroshchenko et al. (2010) for an ellipse with a=1, b=0.4 and a 

nominal stress given by  
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Now by using equation (108), we only need the expressions of 
y∂
σ∂

 and 
2

2

y∂
σ∂

 because the 

coefficients Q and R are explicated in equations (66) and (106), respectively. 

Figure 8 shows a comparison between Eq. (108) and Atroshchenko et al. (2010) solution. Despite of 

the example is on the border of the optimal range of application of Eq. (108), because the ratio major 

axis/minor axis =2.5, the agreement is very remarkable, with the advantage to evaluate the stress 

intensity factor directly with Eq (108) or alternatively (114), by taking into account the expansion:  
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The difference in the maximum stress intensity factor prediction is around 7%. 
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8. Discussion 

 

The first novelty of this paper is a significant improvement in the analytical approximation of the O-

integral due to the computation of the second order Taylor expansion. A higher order expansion is 

not useful, because it is known in literature that the OB integral is a good approximation for cracks 

not too far from the disk, which means for relatively small ε. This is exactly the range where the 

second order Taylor expansion is very close to the true value of the integral.  

The second novelty is the clearance of the uniformity by assuming a general pressure over the crack. 

The knowledge of an expression of the OB integral in closed form, avoids heavy numerical 

procedures. Indeed the computation of the integral by means of Riemann’s sums in terms of the size 

of the mesh is very slow and requires a very large number of terms in order to have acceptable 

precision.  

As a particular case, the third novelty of our paper is a new exact expression in closed form of the 

stress intensity factors on the disk, without singularity (see Eq. (34)). In the case of a crack in a two-

dimensional body, the elimination of the singularity by means of a variable transformation was 

proposed, for example, by Mawatari and Nelson (2011) and Daniewicz (1994). We recall that on the 

disk, the definition of the Oore-Burns is correct, and agrees with the Galin’s weight functions.  

The core of our paper is Eq. (108) which expresses OB integral in terms of a finite linear combination 

of sinus and cosinus, accessible even to a non-specialist. Whit respect to the interesting work of 

Atroshchenko at al. (2010), our second order “final formula” is much more simple and handy. In 

order to compare our equation (108) with the results of the above work, at the end of section 7, we 

apply our formula to the same concrete example of pressure considered by those authors. Although 
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the example is on the border of the optimal range of application of Eq. (108), because the ratio major 

axis/minor axis =2.5, the agreement is very remarkable. 

The results of this work, definitely confirm the accuracy of the OB integral as a tool for the 

investigation of the stress intensity factors for somewhat circular tensile cracks under remote mode I 

loadings. Despite of our approximations, the accuracy of Eqs. (108) is similar to those find by 

Krasowsky et al. 1999 developed specifically for elliptical defects. 
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6. CONCLUSIONS 

The main conclusions obtained in this paper are: 

- By means of some mathematical tricks, we are able to derive a handy second order expansion 

of the stress intensity factor of an elliptical crack based on the Oore-Burns integral.  

- For circular cracks, we obtain an analytic formulation of the Oore-Burns integral, which gives 

an alternative simplified full solution with the advantage to remove the singularity of the 

weight function. 

- For elliptical cracks, the removal of the singularity allows a numerical approach, which is 

faster than previously available procedures. The only requirement is standard software 

without the use of any particular algorithms. 
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Table 1 Comparison among Oore-Burns’ integral and Shah and Kobayashi (1971) (mesh for 

Riemann’ sum a/δ = 0.00503; s is the normal stress on the crack and p is a reference pressure) 
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Table 2 Comparison among Oore-Burns’ integral and Shah and Kobayashi (1971) (mesh for 

Riemann’ sum a/δ  = 0.00503; s is the normal stress on the crack and p is a reference pressure) 
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Table 3 Comparison among Oore-Burns’ integral and Shah and Kobayashi (1971) (mesh for 

Riemann’ sum a/δ   = 0.00503; s is the normal stress on the crack and p is a reference pressure) 
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Figure 1. Crack shape Ω 

 



 48

 

 

 

 

   

 

x

y

 
P

x

y

1

 
y

 
P

x

y

a

 









=

=

a

y
y

a

x
x

x

 
 

 

a)                                                                                             b) 

 

 

Figure 2. a) Actual circular crack; b) dimensionless circular crack integration domain 
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Figure 3. Co-ordinate system variable change 
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Figure 4: geometrical construction for the evaluation of latitude ϕ . 
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Figure 5. a) Actual elliptical crack; b) dimensionless elliptical crack  
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Figure 6. Difference between Irwin (1962) and Oore-Burns’ integral up to the second order 

approximation 
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Figure 7. Typical mesh used for stress intensity factor evaluation of an elliptical cracks ( a/δ =0.126, 

a/b = 0.8) 
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Figure 8. Comparison between Eq. (108) and Atroshchenko et al. (2010) solution. (elliptical crack 
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