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ABSTRACT 

In this paper, we give a very accurate approximation of the stress intensity factors of embedded 

elliptical cracks in cylindrical and spherical vessels. We evaluate the stress intensity factor along the 

whole crack border; we do so using a polynomial weight function based on a second order 

approximation of the Oore-Burns integral in terms of the deviation of the contour from a disk. The 

stress intensity factor is given for uniform internal pressure and is related to the hoop stress. Finally, a 

comparison with FE stress intensity factor is given. 
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NOMENCLATURE 

δ         size of mesh over crack 

Ω        crack shape 

Ω∂      crack border 

Q        point of Ω 

'Q       point of crack border where evaluate the stress intensity factor 

P        point of crack border 

∆        distance between Q and ∂Ω 

KI       mode I stress intensity factor 

Km n    dimensionless stress intensity factor 

y,x     actual Cartesian coordinate system 

y,x     dimensionless Cartesian coordinate system 

v,u     auxiliary dimensionless coordinate system 

p, pmn   reference constants (pressure) 

b,a      actual semi-axis of an elliptical crack 

a,b       dimensionless semi-axis of an elliptical crack 

e          eccentricity of ellipse 

2

2a

b
1e −=  

K(e)     elliptical integral of first kind 

E(e)     elliptical integral of second kind 

nσ      nominal tensile stress in y,x  actual Cartesian coordinate system 

σ       nominal tensile stress in y,x  dimensionless Cartesian coordinate system 
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1. INTRODUCTION 

The assessment of stress intensity factors (SIFs) is a crucial step to calculate the safety of mechanical 

components. This is one of the three fundamental points of the “fracture mechanics triangle” that 

considers also loadings and fracture toughness of the material [1].  

In mechanical components, many planar flaws are treated, for example lack of fusion in welds, 

undercuts, sharp groove-like localised corrosion etc. Furthermore, volumetric flaws such as porosity, 

cavities, solids inclusions should be taken into account as two-dimensional planar flaws so that the 

fracture mechanics concept can be used to evaluate the safety of components. However, the designer 

as suggested, for example, by SINTAP/FITNET [1], BS7910 [2] and API 579 [3] can consider a crack 

shape idealisation and take into account an equivalent crack among a limited number of planar flaws. 

Usually, the reference cracks have an elliptical shape or are considered as cracks with straight flanks. 

In the presence of multiple cracks in the same plane close to one another, the iteration effects gives a 

stress intensity factor larger than the sum of individual cracks; a fictitious re-size of the flow is then 

necessary. In general, elliptical cracks (embedded cracks or surface cracks) are considered as re-

characterisation of actual cracks and increase their theoretical interest in the SIF assessments. This 

problem is considered by Noguchi et al. [4] in a solid under tension by means of modified force method 

and by Chai and Zhang [5], who analysed the interactions between surface crack and an embedded 

elliptical crack in a pressurized cylinder. The analysis was carried out numerically and the results were 

presented in tabular form to estimate the stress intensity factor. Usually, numerically analysis is taken 

into account for the assessments of SIF in elliptical cracks in pressure vessels and results are presented 

in tabular form or by means of new interpolation functions [6-9].  
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A general weight function for planar flaw in a three-dimensional body is known in the literature as the 

O-integral, given by Oore and Burns [10]. However, the complexity of the evaluation of the O-integral 

suggested us to find an approximation in closed analytical form in order to obtain some powerful 

alternative formulations [11]. Otherwise, a specific numerical procedure it is necessary to obtain 

accurate results from the O-integral as recently indicate in reference [12]. Anyway, the agreement by 

numerical procedures and closed expressions, developed by the authors, was always excellent. 

In general, the weight function proposed in literature, is obtained from FE results of elliptic or semi-

elliptic defects [13-15].  

As underlined by Yagawa et al. [8] it is well known that embedded cracks seem more practical and 

also more probable than initial cracks. For this reason, a closed form solution for embedded elliptical 

cracks could be useful for estimate the SIF along the whole crack border.  

The aim of our paper is to present a closed-form expression of the SIF for embedded elliptical cracks 

in cylindrical and spherical pressure vessels with inner pressure. The deviation of an ellipse from the 

disk is quantitatively described by the parameter ε=1- b / a   where a  and b  are the major and minor 

semi-axis, respectively (and therefore in terms of the eccentricity 2

2

1
a

be −= , since 

422

24

1

2
eB

A
e

A
BA 







 ++≈+ εε     with A and B real numbers). The major axis can be inclined with 

respect to the radial direction. Furthermore, in order to verified the accuracy of new formulations a 

comparison with FE results is presented. 
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2. Theoretical background 

 

The stress intensity factor (SIF) of a two dimensional flaw in a three-dimensional body can be evaluated 

in many different ways (see for example [16-23]). The weight functions technique, introduced by 

Bueckner [24] and Rice [25], is a method for evaluate the SIF without taking  into account the cracks 

in the numerical simulations. In particular, for an elliptical cracks of equation 

)sin,cos(),( αα ⋅⋅= bayx ,  the SIF can be evaluated with good accuracy by means of the Oore-Burns 

integral [10]. In previous papers [21-22], the authors discovered the expression of the first and second 

order expansion with respect to the deviation from the disk of the O-integral for elliptical cracks. Under 

uniform tensile stress σ the difference ∆KI , between the classic Irwin solution and Oore-Burns integral, 

for an ellipse of semi-axis ( a ,b ) is given by: 

 

 














 ++−+=∆ ααεα
π

ε
σ

4cos
3

1
2cos

4

1

48

1
2cos

10a

K I  (1) 

 

 

where,  ε=(1-
a

b
). In the case of ab =0.7 the gap is less then 2 %. 

Let Ω be an open bounded simply connected subset of the plane as in Figure 1 that represents a plane 

embedded defect. If  Ω∂∈= ),('' yxQQ , the SIF at the point Q’ is given by [10, 26, 27]: 

 

 Ω∂∈Ω
−

σ
π

= 
Ω

'Q,d
'QQ)Q(f

)Q(2
)'Q(K

2

n
I  (2) 
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where  

 
Ω∂ −

=
2

)s(PQ

ds
)Q(f  (3) 

 

In Eq. (2) Ω∈= )y,x(QQ ,  s is the arch-length parameter, the point P(s) runs over the boundary Ω∂  

and sn(Q) is the nominal tensile loading evaluated without the presence of the crack. A standard 

calculation shows that 
∆

≈ π
)(Qf  where ∆ is the distance between Q and ∂Ω [27]. 

In a recent paper, the authors proposed a second order approximation of integral (2) in order to avoid 

the numerical integration without loss of accuracy.. We recall that near ∂Ω (see [11] for details) by 

operating a rigid motion, we may assume Q’=0 and ∂Ω approximated by the parabola 2xky =  in a 

small neighbourhood of Q. Now, if we consider an ellipse of semi axis ( )ba ,  by means of the linear 

transformation: 

 








=

=

a

y
y

a

x
x

 (4) 

We may work on dimensionless coordinates (see Fig. 2). 

Then, a change of variables of the dimensionless coordinates (x, y) was performed: 

 




αϑ−+αϑ=
αϑ−αϑ−=

sin)sinr1(coscosry

sincosrcos)sinr1(x
 (5) 

where 
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 ϕϑ= 2sinsin2r  (6) 

and α is the coordinate of Q’ on Ω∂ . In the dimensionless (x,y) coordinate system the nominal stress 

becomes: ),(),( ayaxyx nσσ = . 

The second order approximation KI,2 of integral (2) is given by: 

 

 ϕϑ



















σ+

∂
σ∂

+
∂

σ∂ε+







σ+

∂
σ∂

ε−σϕϑ
ππ

=  ddRQ
y

y2
y

y
2

Q
y

cossin
a4

K
2

2
2

2
2

2,I
 (7) 

 

where the integral is computed on the “longitude” [ ]π∈ϑ ,0  and the “latitude” [ ]2/,0 π∈ϕ . Q and R 

are functions of ( )ϕϑα ,,  whose the analytical expression is shown in the appendix. Eqs. (7) can 

analytically solved or numerically evaluated without particular problems (see ref. [11]) 

In the case of a circle  (ε=0), therefore Eq. (7) reduces to: 

 

 ϕϑσϕϑ
ππ

dd
a

K I = 2cossin
4

 (8) 

Eq. (8) is the exact weight function of a disk but the singularity disappears tanks to the change of 

variable (5). This is a strong advantage because in order to overcome the problem of the ingularity we 

do not need any specific procedure for weight function integration. Note that for a disk, the exact mode 

I weight function is known and exactly agrees with that proposed by Galin (see Tada et al. [13] and 

Livieri and Segala [11]). Furthermore, Eq. (8) can be very useful to obtain closed form solutions for 

the disk [11]. 
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If the nominal stress σ over the crack is a polynomial in (x,y), that is a finite sum of terms of the type 

xm yn, it is very opportune to explicit Eq. (7). In the special case when = nm

nm yxpyx ),(σ , pmn 

being a pressure that takes into account the physical dimension of σ and the integral in the r.h.s. of (7) 

can be easily expressed. We obtain:  

 

 nm

2nm

nm2,I Kp
a

K 
≤+π

=   (9) 

where 








 ++−






 +−= ααεαεα 4cos
63

38
2cos

12

49

10
2cos

5

2

2

1
2)(

2

00K   (10 a) 








 α+α+αε−






 α+αε−α=α 5cos
33

1
3cos

9

1
cos

4

1

35

29
3cos

21

16
cos

5
cos

3

4
)(K 2

01
 (10 b) 








 −++






 +−= αααεααεαα 5sin
33

29
3sin

9

53
sin

4
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35
3sin

21

16
sin9

5
sin

3

4
)(

2

01K  (10 c) 








 +++−

+






 ++−+=

αααε

ααεαα

6cos
3003

164
4cos
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2cos

9

4
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5
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20K
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Therefore, in the Eq. (9) the SIF is analytically computed in terms of the knowledge of coefficients 

pmn. These parameters should be calculated from FE analysis or from analytical expansion of the 

stresses such as the case of pressure vessels. 

 

 

 

3. Stress intensity for elliptical crack in cylindrical and spherical vessels 

 

The linear elastic solution for stresses in cylindrical or spherical vessels under inner pressure is well 

known and reported in many textbook (see for example ref. [28]). In this paper formulae for pressure 

vessels made of linear elastic material will be reported. However, the method can be used also in 

presence of residual stresses provided that the faces of the crack are opened. For non-linear behaviour 

of materials, the stress distribution is more complex and requires to take into account the dimension of 

the plastic zone. For example, after an autofrettage procedure, both loading and unloading phases have 

been analysed as well as the influence of Bauschinger effect on residual stresses [29-33]. 

For linear elastic material, the hoop stress σθ related to an uniform inner pressure, at distance r, is given 

by: 

 









+

−
=

2

2

22

2

1
r

r

rr

rp e

ie

i

ϑσ   (11) 

 

for cylindrical vessels, and  
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 ( ) 







+

−
=

3

3

33

3

2
2 r

r

rr

rp e

ie

i

ϑσ    (12) 

 

for spherical vessels.  

The reference geometries considered in this paper are shown in Figs. 3 and 4. For a nominal hoop stress 

σθ acting over an elliptical crack of semi-axis ( )ba , , by taking into account the opening mode due to 

σθ stress, we can evaluate the SIF by expanding Eq. (9) up to the second order. The crack considered 

in the analysis acts in a longitudinal plane l-r and with its major-axes rotated of an angle ψ respect to 

the radial direction r (l is the longitudinal direction). From Eq. (11), after some calculations, the 

pressure pmn for cylindrical vessels take the form 

 









+

−
=

2

2

22

2

00 1
r

r

rr

rp
p e

ie

i

  (13a) 

( ) 322

22

10

cos2

rrr

arrp
p

ei

ei

−
= ψ

   (13b) 

( ) 322

22

01

sin2

rrr

arrp
p

ei

ei

−
= ψ

   (13c) 

( ) 422

222

11

sincos6

rrr

arrp
p

ei

ei

−
= ψψ

 (13d) 

( ) 422

2222

20

cos3

rrr

arrp
p

ei

ei

−
= ψ

  (13e) 
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( ) 422

2222

02

sin3

rrr

arrp
p

ei

ei

−
= ψ

  (13f) 

 

 

For spherical vessels, from Eqs. (12), by means of a similar procedure, the pressures pmn for spherical 

vessels subjected to inner pressure take the form  

 

( ) 







+

−
=

3

3

33

3

00 2
2 r
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=
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33
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2

sin3
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p
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=
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( ) 533
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sincos6
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=
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p
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−
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( ) 422

2222

02

sin3
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ei

ei

−
= ψ

  (14f) 

 

Figs 5a-c reports the trend of SIF in cylindrical and spherical pressure vessels along the whole crack 

front for different value of ψ angle. If the SIF is reported in dimensionless form by dividing the SIF by 

the reference value of KI at α=0, the SIF of cracks in cylindrical or spherical vessels are very similar 
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despite the different trend of inner pressure with the radius r and a great gap in terms of absolute values 

of SIF. 

 

4. Numerical verifications 

 

In order to carefully evaluate the SIF values predicted by means of Eqs. 9, 10, 13 and 14, an accurate 

FE analysis has been evaluated. Small size elements were located in the proximity of the crack border. 

Let us consider two reference cases: a cylinder and a sphere under inner pressure as reported in figures 

3 and 4 (the characteristic dimensions ri and re of the two vessels are the same). The considered cracks 

have circular and elliptical shape and are located exactly in the middle of the wall of thickeness t. For 

circular case ta  is equal to 0.05 while for elliptical crack 5.0=ab  and ta = 0.1. In both cases 

the crack can be considered with good accuracy as an embedded crack in a infinite body. The stress, 

near the crack border, tends toward infinit with a power low of the type: r0.5, where r is the distance 

from the notch tip [34]. Fortunately, these highly stresses zones are usually very small in comparison 

to the remaining part of the structure. Figure 6 shows a typical mesh used to evaluate the SIF. The 

three-dimensional analysis was carried out by using the smallest element about 10-6 -10-5 times the 

thickness of the vessel. The stress intensity factors was evaluated on the basis of asymptotic proprieties 

of the stress field near the notch raiser. This way forces the use of very fine mesh in the neighbourhood 

of the interest point but with the advantage to obtain very accurate results [35]. Figure 7 shows the 

trend of the hoop stress σθ along the radial directions. The slope is very close to the theoretical value 

of 0.5. On the basis of SIF definition we can obtain KI by the following simple equation: 
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 θσπ 5.0

0
lim2 dK
d

I +→
=  (15) 

 

where σθ is the hoop stress evaluated in direction d perpendicular to the elliptical border. 

Tables 1 and 2 repots a comparison among the proposed equations and FE analysis in three 

characteristic points. The agreement is satisfactory for the use in engineering field. The difference 

between FE results and analytical ones for circular cracks is around 2%, whereas for 5.0=ab  the 

gap increasing up to the 5 % with respect to the maximum value of KI.  
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5. CONCLUSIONS 

The main conclusions obtained in this paper for embedded elliptical cracks in cylindrical and spherical 

vessels are the following: 

- The proposed equations are very suitable for the assessments of stress intensity factors of 

embedded elliptical cracks in pressure vessels along the whole crack border. The crack lies in 

the longitudinal plane with its major axis inclined with respect to the radial direction. 

- For circular cracks the proposed solution is exact. Thanks to a change of variable coordinates 

the singularity of the weight functions was removed. So that, the integration requires only a 

standard software without the use of any particular algorithms. 

- The shape of the SIF along the crack border is virtually the same for embedded cracks in 

cylindrical or spherical vessels. 
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6. APPENDIX 

 

The explicit values of Q and R from reference [11] results: 

 

( ) α







ϑ−ϑ+ϑ+α








ϑ−ϑ−ϑ+−=ϕϑα 2sin2sin

4

r
cos

2

r
2sin2cos2cos

4

r
sin

2

r
2cos

4

1

4

1
,,Q

22

 (A1) 

 

 

























α




 +++−α




 −+−+−

+α






 +−α






 ++++++ρ−ρ+−
=

4sinNM2
4

BMAN
BA

16

5
4cosNM

4

BNAM
)BA(

32

5

2sin
2

N

8

B
2cos

2

M

8

A

4

BNAM
)BA(

32

5

1648

5

R
2222

22
42

 (A2) 

 

By the definitions of A, B, M and N we are able to express all the coefficients in (A1 and A2) in terms 

of (r,θ). 

 

 ϑ−ϑ−= 2cosrsinr21A 2
 (A3) 

 ϑ−ϑ= 2sinrcosr2B 2
 (A4) 

 ϑ= 2cosM  (A5) 

 ϑ= 2sinN  (A6) 

 rsin2r1 2 −ϑ=ρ−  (A7) 
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Table 1 Comparison between Oore-Burns’ integral and FE result (mesh for Riemann’ sum with 

incremental angle δ=π/1600; p is the reference pressure, cylinder: ri=80 mm, re=120 mm) 

 

A

r

a

b

 C

B

r

ri

e

p

 

 

 

point 

 

 

ap

K I  

Riemann’ sum of 

Eq. (2) with 

numerical 

procedure [12] 
 

 

FE 

analysis 

 

ap

K 2,I
 

Eqs. (9, 10 and 

13) 

 

Second order 

approximation 

 

ap

K 2,I
 

Eqs. (8 and 11) 

 

Exact solution 

(only for circle) 

a
b  

a  

[mm] 

     

0.5 4 C 1.50 1.40 1.55 - 

0.5 4 B 1.94 1.98 2.02 - 

0.5 4 A 2.00 2.03 2.07 - 

       

1 2 C 2.20 - 2.20 2.20 

1 2 B 2.17 - 2.17 2.17 

1 2 A 2.24 2.19 2.24 2.24 
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Table 2 Comparison between Oore-Burns’ integral and FE result (mesh for Riemann’ sum with 

incremental angle δ=π/1600; p is the reference pressure, sphere: ri=80 mm, re=120 mm) 

 

A

r

a

B

C

r

ri

e

b

p

 

 

 

point 

 

 

ap

K I  

Riemann’ sum 

of Eq. (2) with 

numerical 

procedure [12] 
 

 

FE 

analysis 

ap

K 2,I
 

Eqs. (9, 10 

and 14) 

 

Second order 

approximation 

ap

K 2,I
 

Eqs. (8 and 12) 

 

Exact solution 

(only for circle) 

a
b  

a  

[mm] 

     

0.5 4 C 0.604 0.561 0.628 - 

0.5 4 B 0.780 0.795 0.807 - 

0.5 4 A 0.806 0.813 0.832 - 

       

1 2 C 0.886 - 0.887 0.886 

1 2 B 0.870 - 0.869 0.870 

1 2 A 0.903 0.883 0.902 0.903 

 

  



 18

 

 

X

Y
 

Ω 

Ω ∂

Q

ds
P

s

crack border

Q'

y k x ∆
2

 
 

 

 

 

Figure 1. Crack shape Ω and local approximation 
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Figure 2. a) Actual elliptical crack; b) dimensionless elliptical crack  
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Figure 3. Reference cylindrical pressure vessel  
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Figure 4. Reference spherical pressure vessel 
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c 

 

Figure 5. Stress intensity factors for cylindrical and spherical vessels subjected to inner pressure for different 

angle ψ ( a = 4 mm, b = 2 mm; ri=80 mm , re=120 mm) 
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Figure 6. Typical mesh used in the FE analysis 
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Figure 7. Hoop stress along radial direction point A (ri=40 mm, re=120 mm, a = 4 mm, b = 2 mm) 
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