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ABSTRACT 

Many even complex machines employ single-dof planar mechanisms. The instantaneous kinematics of 

planar mechanisms can be fully understood by analyzing where the instant centers (ICs) of the relative 

motions among mechanism’s links are located. ICs’ positions depend only on the mechanism configuration in 

single-dof planar mechanisms and a number of algorithms that compute their location have been proposed in 

the literature. Once ICs positions are known, they can be exploited, for instance, to determine the velocity 

coefficients of the mechanism and the virtual work of the external forces applied to mechanism’s links. Here, 

these and other ICs’ properties are used to build a novel dynamic model and an algorithm that solves the 

dynamic problems of single-dof planar mechanisms. Then, the proposed model and algorithm are applied to a 

case study. 

Keywords: planar mechanisms, instant centers, dynamics analysis, velocity coefficients. 

1 INTRODUCTION 

The vast literature (e.g., [1–6]) on single-degree-of-freedom (single-dof) planar mechanisms is motivated by 

the important role they play in many machines. The instantaneous (elementary) kinematics of planar 

mechanisms can be fully explained by analyzing the positions of the instant centers (ICs) of the relative 

motions among the mechanism links. In single-dof planar mechanisms, such positions depend only on the 
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mechanism configuration and a number of graphical and/or analytical techniques that determine them have 

been proposed [7–13] in the literature.  

In short, a number of ICs (primary ICs) can be immediately found by inspection of the mechanism since 

they are ICs of relative motions between couples of links joined through a single-dof kinematic pair1 [7]. 

Also, in general, the remaining ICs (secondary ICs) can be found by using the already located ICs and the 

Aronhold-Kennedy (A-K) theorem2 with the aid of circle diagrams [7] or suitable tables [8]. Eventually, some 

mechanisms, named “indeterminate”, exist where the A-K theorem is not sufficient to locate all the secondary 

ICs, and more cumbersome techniques have been proposed in the literature [8–11, 13] for locating all the ICs 

of these mechanisms. 

The majority of the proposed techniques are graphical [7–11] for historical reasons and their automatic 

usage can be implemented through graphical software. Nevertheless, analytical techniques [12, 13] have been 

also proposed. 

The availability of analytical techniques that compute ICs’ coordinates in a reference fixed to the 

mechanism frame makes it possible to develop novel algorithms that analyze other aspects of mechanisms’ 

behavior over their elementary kinematics. Actually, ICs allow computing the velocity coefficients (VCs) [1] 

of the mechanism and VCs enter both in statics and dynamics. 

In particular, the dynamic model of a single-dof mechanism can be built with Eksergian’s equation of 

motion [14, 15]. Such model directly relates the input generalized torque, applied by the actuator, to 

mechanism’s generalized coordinate and its time derivatives (i.e., to the resulting motion of the mechanism) 

thus keeping only the pieces of information necessary to control the mechanism. This equation involves the 

VCs over the mass distribution data of the links and the active forces applied to them. 

In this paper, a novel dynamic model for single-dof planar mechanisms is deduced, from Eksergian’ s 

equation, by systematically using the ICs positions to compute all the terms appearing in that equation. Then, 

an algorithm to solve the dynamic problems of single-dof planar mechanisms is presented which combines the 

novel dynamic model and the analytical technique this author previously proposed [13] for determining ICs’ 

positions. Eventually, the algorithm is illustrated through a case study. 

                                                      
1 Prismatic (P) or revolute (R) pairs and rolling (Cr) or slipping (Cs) contacts are the only kinematic pairs of planar mechanisms. P, 

R and Cr are single-dof pairs and uniquely determine the IC position of the relative motion between the joined links; whereas, the same 
IC is not uniquely located, but it must lie on the common normal at the contact point, for Cs, which is a two-dof pair [7]. 

2 Let Irs be the IC of the relative motion between any two links r and s, the A-K theorem states that “the instant center Iij lies on the 
straight line through the instant centers Iki and Ikj where link k may be any link different from links i and j” [7] (see Fig. 1a).  
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The paper is organized as follows. Section 2 briefly recalls some background concepts and the analytical 

technique proposed in [13]. Section 3 presents the dynamic model and the algorithms that solve the inverse 

and the direct dynamics problems. Then, Sec. 4 exemplifies the proposed algorithms through a case study, 

and Sec. 5 draws the conclusions. 

2 BACKGROUND 

The topology of any single-dof planar mechanism with m links, c1 single-dof kinematic pairs, c2 slipping 

contacts and n loops must adhere to the following formulas: 

 

3m = 4 + 2 c1 + c2 (1a) 

n = c1 + c2 – m + 1 (1b) 

 

which have been deduced from Chebychev-Grübler-Kutzbach formula and Euler’s formula [1, 16], 

respectively. The linear elimination of m from Eqs. (1) yields 

 

3n = c1 + 2 c2 – 1 (2) 

 

The number, c1, of single-dof kinematic pairs is equal to the number of primary ICs (i.e., the ICs whose 

positions are known by mechanism inspection); whereas, the number, c2, of slipping contacts is equal to the 

number of ICs that lie on known straight lines. (c1 + 2 c2) is equal to the number of joint variables3. Moreover, 

let f be the number of scalar equations that can be written for each mechanism loop: f is equal to 3 if all the 

joint variables are introduced; whereas, it is equal to 2 if links’ poses are assigned through oriented segments 

(i.e., complex numbers), embedded in the links, that are referred to a fixed frame4 [1]. The latter approach, 

implemented through complex numbers, brings to write a closure equation system constituted of n complex 

equations which contain the generalized coordinate (input variable) q and 2n dependent (secondary) variables 

sufficient to directly determine the poses of all the links. Such system can be put into the following vector 

form: 

 

                                                      
3 It is worth noting that, in single-dof planar mechanisms, the passive-joint variables are (c1+2c2–1) and the actuated-joint variable is 

one. 
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F(q, p) = 0 (3) 

 

where p=(p1, …, p2n)
T is a 2n-tuple collecting all the secondary variables and F = (F1, …, F2n)

T is a 2n-tuple 

collecting all the scalar functions at the left-hand side of the 2n scalar closure equations.  

 

 
 
 
 
 
 
 
 
 
 
 
 (a) (b) 
 
Figure 1: Intersection of two lines the instant center Iij lies on: (a) the two lines are identified through the A-K 
theorem, (b) the two lines refer to either a slipping contact or a prismatic pair [13].  

 
 
For an assigned value of q, the numerical or analytical solution of system (3) brings to determine the 

poses of all the mobile links through the computed values of the secondary variables. The knowledge of links’ 

poses also provides the coordinates of all the primary ICs and the parametric equations of all the straight lines 

the secondary ICs lie on. These data are the input data of any graphical or analytical technique that determines 

the positions of all the secondary ICs [7–13]. 

The positions of the secondary ICs are sequentially computed one by one as common intersection of two 

lines, the sought-after IC lies on, in the mechanisms that are not “indeterminate” (i.e., in the majority of the 

possible cases) [13]. Since, according to the A-K theorem, the identification of the lines, the instant center Iij 

lies on, relies on the already determined ICs, the first step of these techniques consists in the determination of 

the sequence, hereafter named S, to be used in this computation. This procedure is slightly modified in the 

indeterminate mechanisms [13], since a subset of ICs must be simultaneously (i.e., not sequentially) 

determined, but the determination of the sequence S still is the first step. 

The sequence S depends only on the mechanism topology and must be computed only once. Therefore, 

the determination of the IC positions as a function of q (i.e., of the mechanism configuration) implements the 

following steps (see [13] for details): (i) the sequence S is determined from the mechanism topology; then, for 

                                                                                                                                                                                 
4 In this case, differently from the use of joint variables, links’ orientations are given through absolute angles that are independent 

Iij
Ikj

Iki
Irj

Iri

Iij

P

u

Q

v



Corresponding Author: Raffaele Di Gregorio Paper #: JMR-15-1006 5 
 

each value of q, (ii) system (3) is solved, and (iii) the positions of all the secondary ICs are sequentially 

computed by sequentially solving a number of linear systems of two equations in two unknowns. 

Regarding step (iii), the two lines whose common intersection is the sought-after instant center, Iij in Fig. 

1, can be (a) lines passing through two known points (the instant centers Ikj, Iki, Irj and Iri of Fig. 1a) or (b) 

lines passing through a known point (points P and Q of Fig.1b) with a given direction (the ones of the unit 

vectors u and v of Fig. 1b). In both cases, the following complex equation [13] can be written 

 

w1 a + w2 b = c (4) 

 

where a, b and c are known complex numbers representing known planar vectors; whereas, w1 and w2 are two 

scalar unknowns whose values locate Iij on the two lines. For instance5, a=(Ikj–Iki), b=(Irj–Iri), c=(Iri–Iki), (Iij–

Iki)=w1(Ikj–Iki) and (Iij–Iri)=–w2(Irj–Iri) in the case of Fig. 1a; also, a=u, b=v, c=(P–Q), (Iij–Q)=w1u and (Iij–

P)=–w2v in the case of Fig. 1b. The analytical solution of Eq. (4) can be straightforwardly written as follows6 

 

1

Im( )
w

Im( )


cb

ab
,         2

Im( )
w

Im( )


c a

ba
 (5) 

 

The coordinates of the ICs can be used to compute the values of all the velocity ratios (velocity 

coefficients (VCs)) [1]. In particular, with the notation of Fig. 2, let jiθ  and jis  be the signed magnitudes of 

the relative angular velocity (in the case of instantaneous rotation) and of the relative translation velocity (in 

the case of instantaneous translation), respectively, between links j and i (Fig. 2), the following formulas hold 

 

ji kj ki kj ji

2
ki kj ji

θ ( ) ( )

θ

  




I I I I

I I


  (6a) 

ji
kj ki ji

ki

s
( )

θ
   I I u


  (6b) 

                                                                                                                                                                                 
and the total number of introduced variables reduces itself to (c1+2c2–n).  

5 In this definitions, all the vectors are represented through complex numbers. 
6 Hereafter, the underline denotes the complex conjugate; whereas, Re() and Im() denote the real and imaginary parts of (), 

respectively. 
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ji kj ki ji

ri kr ki ri

s ( )

s ( )

 


 

I I u

I I u




 (6c) 

 

where the rotation angle ji and ki are positive if counterclockwise (Fig. 2a); whereas, the unit vector uji and 

uri are obtained from the unit vectors tji and tri (Fig. 2b), respectively, which give the positive directions of 

translation, through a counterclockwise rotation of 90°. Equation (6c) is simply obtained as the ratio of two 

different forms of Eq. (6b), one with jis  and the other with ris . 

The dot products appearing in Eqs. (6) are all between collinear planar vectors (see the A-K theorem). 

Differently from VCs’ usual expressions (i.e., ratios of two segments’ lengths or one segment’s length), those 

provided by Eqs. (6) give also the signs of the VCs.  

 

 
 

 

 

 

 

 

 

 (a) 

 

 

 

 

 

 

 (b) 
 
Figure 2: Instantaneous relative motion between links j and i: (a) instantaneous rotation (Iji is a finite point of 

the motion plane; the motion is uniquely defined by Iji and jiθ ), (b) instantaneous translation (Iji is the point at 

infinity of the lines perpendicular to the translation direction; the motion is uniquely defined by the translation 
velocity jis tji).  
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3 DYNAMIC MODEL 

If only single-dof mechanisms with holonomic constraints not explicitly dependent on time are considered, 

their dynamic model can be deduced from Eksergian’s equation [1, 15]: 

 

21 d J
Q = J q + q

2 d q
   (7) 

 

where q is the generalized coordinate, Q is the generalized force collecting the contribution of all the active 

forces applied to mechanism’s links, and J is the generalized inertia coefficient. J depends only on q and is 

related to the total kinetic energy, E, of the mechanism by the relationship 

 

2

2 E
J

q



 (8) 

 

In a single-dof planar mechanism with m links where link 1 is the frame (Fig. 3), let Gj, j and j be the 

center of mass, the mass and the inertia moment about its center of mass, respectively, of the j-th link, the 

explicit expressions of J and of its derivative with respect to q can be put in the form 

 

2
j j

j = 2, m

J J ν   (9a) 

j j
j j j

j=2,m

dJ dνdJ
ν 2J ν

dq dq dq

 
  

 
  (9b) 

 

where the j-th term of the summations is related to the instantaneous motion of link j. In particular, if the 

instant center Ij1 is a finite point of the motion plane7, 

 

Jj = j + j (Gj – Ij1)(Gj – Ij1) (10a) 

j j1
j j j1

dJ d
2μ ( )

dq dq
   

I
G I  (10b) 

                                                      
7 It is worth reminding that, in this case, Jj is the inertia moment of link j about the instant center Ij1 [1], which is related to j by the 

Huygens-Steiner theorem, and that (Gj – Ij1)  dGj = 0. 
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j1
j

θ
ν

q




; (10c) 

 

otherwise, that is, if the instant center Ij1 is an ideal point located at infinity along the lines parallel to a unit 

vector uj1 (e.g., Fig. 2b with i=1), 

 

Jj = j  (11a) 

jdJ
0

dq
  (11b) 

j1
j

s
ν

q




 (11b) 

 

The explicit expressions of the velocity coefficients, j, for j=2,…,m, must be chosen among Eqs. (6) by 

taking into account whether q  is the signed magnitude of an angular velocity (e.g., k1θ ) or of a translation 

velocity (e.g., r1s ). Relationships (6), (9) – (11) make it possible to compute J by using only the coordinates 

of a number of ICs and the mass distribution data of each link, since the coordinates of all the Gj, for j=2, …, 

m, can be easily computed as a function of q, together with the positions of the primary ICs, after the closure 

equation system (i.e., Eq. (3)) is solved. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Generic scheme of a single-dof planar mechanism with m links (Gj, j and j, for j=2,…,m, are the 
center of mass, the mass and the inertia moment about its center of mass, respectively, of the j-th link). 
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 (a) (b) 
 

Figure 4: Link j loaded by the resultant torque, Mjk, about Gj and the resultant force, Rjfj, of all the active 
forces applied to it: (a) the link performs an instantaneous rotation about Ij1, (b) the link performs an 
instantaneous translation parallel to tj1. 

 
 
 
 

Regarding the generalized force Q, the following relationship holds 

 

j j
j = 2, m

Q τ α ν    (12) 

 

where  is the generalized torque (usually applied by the actuator) that directly controls the generalized 

coordinate q; whereas, jj is the contribution to Q due to all the active forces applied to link j. Figure 4 

shows link j loaded by the resultant torque, Mjk, about Gj and the resultant force, Rjfj, of all the active forces 

applied to it8. With reference to Fig. 4, if the instant center Ij1 is a finite point of the motion plane (Fig. 4a), 

then 

 

j = Mj + Rj [(Gj – Ij1)fj]k (13a) 

j1
j

θ
ν

q




; (13b) 

 

                                                      
8 Here, Mj and Rj are the signed magnitudes of the two resultant, k is the unit vector normal to the motion plane that points toward 

the reader, and fj is the unit vector that gives the positive direction for the resultant force. 

j Gj
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otherwise, that is, if the instant center Ij1 is an ideal point located at infinity along the lines parallel to a unit 

vector uj1 (Fig. 4b), 

 

j = Rj (fj  tj1) (14a) 

j1
j

s
ν

q




 (14b) 

 

Since active forces’ data (i.e., Mj, Rj and fj for j=2,…,m) are known, the explicit expression of Q is known 

after the VCs have been computed by using the ICs’ positions and Eqs. (6). 

The introduction of the above-deduced formulas into Eq. (7) yields  

 

 

 
r t r t

t r

2 2 2
j j j j1 j j i i i1 i j j j j1 j i i

j  S i  S j  S i  S

2 j j12 i
i i j j j j1 j j j j1 j

i  S j  S

τ {M +R [( ) ] }ν R ( ) ν q λ +μ ν + μ ν +

d ν dd ν
q μ ν λ +μ μ ν ( ) ν

d q d q d q

   

 

 
        

 
         

   

   

 

G I f k f t G I

I
G I G I




 (15) 

 

where Sr (St) is the subset of {2, …, m} that collects all the indices of the links that rotate (translate), with 

respect to the frame, and all the VCs are computed through Eqs. (6). Equation (15) is the sought-after 

dynamic model that contains, as input data, only the coordinates of the ICs, the mass distribution data and the 

data of the active forces. 

The solution of the dynamics problems with the above-deduced formulas can be implemented by using 

the following two-stepped algorithm: 

 

Step I (kinematics analysis) 

- input data: 

mechanism’s topology and geometry, choice of the generalized coordinate q; 

- procedure: 

(I.a) the sequence S to follow for determining the ICs is computed by using mechanism’s topology (see [13] 

for details); 

(I.b) the continuous interval, q ranges in, is discretized to get a suitable set {q1, …, qr} of q values; 
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(I.c) for k=1,…,r, 

(I.c.1) Eq. (3) is solved with q=qk and the corresponding values of the secondary variables, pk, is 

determined, 

(I.c.2) by using S, qk and pk, the coordinates of all the necessary ICs are computed (see [13] for details), 

(I.c.3) by using the computed IC coordinates and Eqs. (6), the corresponding values of all the necessary 

VCs are computed; 

(I.d) by using the computed discretized values of ICs’ coordinates, the corresponding discretized values of 

their derivatives with respect to q are computed; 

(I.e) by using the computed discretized values of the VCs, the corresponding discretized values of their 

derivatives with respect to q are computed; 

 

Step II (dynamics analysis) 

- input data: 

mass distribution data of the links (i.e., Gj, j and j for j=2,…,m), active forces’ data, computed values of (qk, 

pk) and of the corresponding ICs and VCs together with their derivatives with respect to q; 

- procedure to solve the “Inverse Problem” (IP)9: 

(IP.a) the given q(t) is discretized to obtain a set of value (ti, qi), 

(IP.b) the computed discretized values, (ti, qi), are used to numerically compute the discretized values, 

i i i(t ,q ,q )  , of q(t)  and of q(t) , 

(IP.c) for each (ti, qi), the input data and the computed values i i i(t ,q ,q )   are introduced into Eq. (15) to 

straightforwardly compute the corresponding (ti, i); 

 

- procedure to solve the “Direct Problem” (DP)10: 

(DP.a) the given (t) is discretized to obtain a set of values (ti, i), 

(DP.b) the initial motion data, q(0) and q(0) , the discretized values, (ti, i), of (t) and the input data are used 

to start an iterative numerical algorithm that integrates Eq. (15) [1], which is a non-linear differential 

equation in q(t), to compute the discretized values (ti, qi) of q(t). 

                                                      
9 The IP is the determination of the generalized torque, (t), as a function of time, t, once the generalized coordinate, q(t), as a 

function of time is given.  
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3.1 Remarks 

Step I involves only the topology and the geometry of the mechanism. Thus, if the mechanism geometry does 

not change (e.g., in mechanism analysis and/or control), it can be implemented only once and offline; then, 

the results can be used to solve many dynamics problems. For instance, the implementation of the above IP 

procedure can be repeatedly done online to plan and control the mechanism motion once Step-I results have 

been computed and stored. 

Also, the number of ICs positions to compute (point (I.c.2) of Step I) depends on the necessary VCs. 

Since the VCs can be iteratively computed as follows 

 

j1 j1 (j-1)1 j1
j j-1

(j-1)1 (j-1)1

x x x x
ν ν

q x q x
  
   
  

, (16) 

 

where j1x  is equal to j1θ , if link j rotates, or to j1s , if link j translates, the ICs necessary to compute all the 

VCs are the instant centers Ij(j-1), for j=3,…,m, and Ij1, for j=2,…,m, (see Eqs. (6)), that is, only (2m–3) ICs11. 

Moreover, the unknowns w1 and w2 (see Eq. (4)) that must be computed to locate the ICs are always 

particular VCs [13]. For instance, the above-given definitions referred to the case of Fig. 1a, that is, (Iij–

Iki)=w1(Ikj–Iki) and (Iij–Iri)=–w2(Irj–Iri), bring to conclude (see also Eq. (6a)) that 

 

ij ki kj ki kj
1 2

ijkj ki

( ) ( ) θ
w

θ

  
 



I I I I

I I


  (17a) 

ij ri rj ri rj
2 2

ijrj ri

( ) ( ) θ
w

θ

  
   



I I I I

I I


  (17b) 

 

Regarding points (I.d) and (I.e) of Step I, even though the existence of explicit expressions as a function 

of the generalized coordinate q cannot be guaranteed for IC coordinates, VCs and their derivatives in the 

general case, their numerical evaluation is often unnecessary. In general, the sequential use of explicit 

formulas should be always possible since IC coordinates and VCs can be computed by sequentially solving 

                                                                                                                                                                                 
10 The DP is the determination of the generalized coordinate, q(t), as a function of time once the generalized torque, (t), as a 

function of time and the initial values, q(0) and q(0) , are given. 
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linear systems of two equations in two unknowns whose solutions (see Eqs. (4) and (5)) are explicit 

expressions that can be analytically differentiated to give the explicit expressions of their derivatives. For 

instance, in the below-reported case study, all the IC coordinates, VCs and derivatives are computed by 

sequentially using explicit formulas. Also, these formulas have been simply introduced into a short 

MATHEMATICA [17] program to obtain the diagrams reported in Figs. 7 – 9 (i.e., no actual deduction of 

complete explicit formulas was necessary) without requiring special attention to numerical issues. 

Step II requires the determination of the positions of the mass centers, Gj for j= 2,…,m, as a function of q. 

Such determination can be easily implemented. In fact, with reference to Fig. 5, let zj and gj be the complex 

numbers representing the planar vectors (Bj–Aj) and (Gj–Aj), both embedded in link j, they are related by the 

simple relationship 

 

jj j γ

j j

j j

e





iG A
g z

B A
 (18) 

 

where the angle j is constant (see Fig. 5) and i= 1 . Likewise, the positions of other points fixed to link j 

can be determined as a function of q. 

 

 
 
 
 
 
 
 
 
 
 
Figure 5: Link j: determination of Gj’s position after the link pose, with respect to the frame, has been 
computed. 
 
 
 
 

It is worth stressing that the choice of reducing link j’s system of active forces to its center of mass, Gj 

(see Fig. 4 and Eqs. (13) – (15)), makes the computation burden lower, since the Gj positions are also 

necessary to compute the mass moment of inertia, Jj, about Ij1 of the links that rotate (Eq. (10a)). Also, all the 

                                                                                                                                                                                 
11 The total number of ICs is equal to the number of relative motions among the m links, that is, m(m–1)/2. 

j

k

Gj

Aj

Bj
gj

z j

j
j1

1
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active forces whose lines of action are fixed with respect to link j can be reduced to Gj only once at the 

beginning of Step II.  

The presented dynamic model is based on Eksergian’s equation [15], which comes out of the 2nd-type 

Lagrangian formulation applied to single-dof mechanisms. As a consequence, it has the same advantages and 

drawbacks as this Lagrangian formulation when compared with the Newton-Euler formulation. Inside the 

same type of formulation, the computational efficiency of models and algorithms depends on the coordinates 

adopted to implement it [18]. The three most common types [18] of adopted coordinates are point 

coordinates, body coordinates, and joint coordinates (i.e., joint variables). According to [18], the most 

efficient ones are the body coordinates when cumbersome planar mechanisms that contain closed loops are 

considered. Whatever type of coordinates are adopted to build a dynamic model based on Eksergian’s 

equation, they must be used to compute a number of VCs together with their derivatives. Three VCs for each 

mobile link (one related to link’s angular velocity and the remaining two related to the two components of 

link’s mass-center velocity (see chapter 12 of [1])), together with their derivatives, must be computed when 

body coordinates are used. On the contrary, only one VC for each mobile link, together with its derivative, is 

necessary when the proposed novel approach is used. Also, the proposed model uses parameters which are 

directly computed as functions of the generalized coordinate q; whereas, in the alternatives available in the 

literature [18], the determination of the VCs need the computation of point and angular velocities through 

suitable Jacobian matrices. The computation burden related to the determination of these Jacobians is in 

general heavier than the one involved in the computation of a few IC position vectors [1, 18].  
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4 CASE STUDY 

This section illustrates how the above-presented model can be used to analyze the shaper mechanism12 of Fig. 

6 and to solve its inverse dynamics problem for a particular set of geometric and load data. Figure 6 shows the 

kinematic scheme of the shaper mechanism together with the adopted notations. With reference to Fig. 6, an 

Argand diagram, (I21)xy, fixed to link 1, the frame, with the instant center I21 as origin, has been introduced to 

represent planar vectors through complex numbers. The angle 21 is the generalized coordinate, q; whereas, 

s34, 41, 51 and s61 are the secondary variables. The instant centers I21, I32, I34, I41, I54, I65 and I61 are the 

primary ICs; whereas, I31 and I51 are the only secondary ICs necessary to build the model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Shaper mechanism: kinematic scheme and notations. 
 
 
 

With these notations, the following complex numbers zj (see Fig. 5), for j= 1,…,6, can be associated to 

the links 

 

                                                      
12 This linkage has been first proposed by James Nasmyth in 1836 [19]. Its topology is obtained from Watt-2 linkage’s one by 

replacing two RRR dyads with as many RRP dyads. 
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z1 = –a1,  z2 = a2 21θei ,  z3 = s34 41θei ,  (19a) 

z4 = a4 41θei , z5 = a5 51θei , z6 = a6 – i s61, (19b) 

 

which make it possible to write the two loop equations 

 

z1 + z3 = z2 (20a) 

z1 + z4 = z6 + z5 (20b) 

 

Equations (20) constitute the closure equation system (i.e., the system (3)) of the studied mechanism. 

This system yields the following formulas  

 

s34 = 2 2 2
2 21 1 2 21(a cosθ a ) a sin θ   (21a) 

41 = 1 2 21

34

a sinθ
sin

s
  
 
 

 (21b) 

51 = 1 4 41 1 6

5

a cosθ a a
cos

a
   
 
 

 (21c) 

s61 = a5 sin51 – a4 sin41 (21d) 

 

where the introduction of the bounds 41[–90°, 90°] and 51[0°, 180°] makes Eqs. (21b) and (21c) able to 

provide the unique correct value of 41 and 51.  

Equations (21a)–(21d) can be further rearranged to provide cumbersome explicit expressions of 41, 51 

and s61 as a function of 21. Nevertheless, from the numerical point of view, since each equation, over 21, 

contains only secondary variables that have been already computed through the previous equations, their 

direct sequential use is much more efficient. 

The positions of the primary ICs can be given, by using complex numbers, as follows (see Fig. 6) 

 

I21 = 0;   (I41–I21) = –a1;   t34 = 41θei ,   u34 = i 41θei ; (22a) 

(I32–I21) = a2 21θei ;    (I54–I41) = a4 41θei ; (22b) 
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(I65–I54) = –a5 51θei ;   t61 = – i,   u61 = 1; (22c) 

 

Moreover, the introduction of the relationships (see Fig. 6)  

 

(I32–I31) = w1(I32–I21),  (I41–I31) = w2 u34  (23a) 

(I54–I51) = w3(I54–I41),  (I65–I51) = w4 u61, (23b) 

 

where the scalar coefficients wk, for k=1,…,4, are unknowns, makes it possible to write the following two 

vector equations in complex form 

 

w1(I32–I21) – w2 u34 = (I32–I21) – (I41–I21)  a1 + a2 21θei  (24a) 

w3(I54–I41) – w4 u61 = (I54–I65)  a5 51θei  (24b) 

 

Equations (24a) and (24b) are particular cases of Eq. (4) and can be immediately solved through formulas 

(5). So doing, the following analytic expressions of the unknowns are obtained 

 

21 41

21 41

θ θ
1 2 1 41

1 θ θ
2 21 412

Im[ (a a e ) e ] a cosθ
w 1

a cos(θ θ )Im( a e e )





 
  



i i

i i

i

i
 (25a) 

21 21

21 41

θ θ
1 2 2 1 21

2 θ θ
21 412

Im[(a a e )a e ] a sinθ
w

cos(θ θ )Im( a e e )






  



i i

i ii
 (25b) 

51

41

θ
5 5 51

3 θ
4 414

Im(a e ) a sinθ
w

a sinθIm(a e )
 

i

i
 (25c) 

51 41

41

θ θ
5 4 5 51 41

4 θ
414

Im(a e a e ) a sin(θ θ )
w

sinθIm(a e )






  

i i

i
 (25d) 

 

Also, the coefficients wk, k=1,…,4, coincide with the following VCs (see Eqs. (6) and (23)):  

 

32 31 32 21 21 21
1 2

31 4132 21

( ) ( ) θ θ
w

θ θ

  
  



I I I I

I I

 
   (26a) 
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34
2 41 31 34

31

s
w ( )

θ
    I I u


  (26b) 

54 51 54 41 41
3 2

5154 41

( ) ( ) θ
w

θ

  
 



I I I I

I I


  (26c) 

61
4 65 51 61

51

s
w ( )

θ
    I I u


  (26d) 

 

Equations (16) and (26) allow the computation of the explicit expressions of the velocity coefficients j, 

j=2,…,6, by using expressions (25) as follows 

 

2 =1;   3  4 = 
1

1

w
;   5 = 

3 1

1

w w
;   6 = 4

3 1

w

w w
  (27). 

 

Since, now, all the explicit expressions of the necessary IC positions and VCs are available, their 

derivatives with respect to 21 (i.e., to q) that appear in Eq. (15) can be computed as follows13  

 

2

21

dν
0

dθ
  (28a) 

3 4 1 1 1
42 2

21 21 21 41 211 1

dν dν dw w w1 1
ν

dθ dθ dθ θ θw w

    
            

 (28b) 

5 3 3 34 4 4 4
4 52 2

21 3 21 21 3 21 41 513 3

dν dw w wdν ν dν ν1 1
ν ν

dθ w dθ dθ w dθ θ θw w

    
           

 (28c) 

6 5 54 4 4
4 5 4 5 4 5

21 21 21 21 41 51

dν dν dνdw w w
w ν w ν ν ν

dθ dθ dθ dθ θ θ

  
         

 (28d) 

 

and (see Eqs. (22) and (23)) 

 

                                                      
13 It is worth reminding that 

dx x

dq q




 in single-dof mechanisms with holonomic constraints not explicitly dependent on time [1]. 
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21 41

21 21

d d
0

dθ dθ
 

I I
 (29a) 

41θ31 342 2 2
34 2 2 4 4

21 21 21 21 41

d ddw w w
w w ν ν e

dθ dθ dθ θ θ

   
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51 65 4 4 4
61 6 5 4

21 21 21 51 41

d d dw w w
ν ν ν

dθ dθ dθ θ θ

 
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I I
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where 

 

1 1 41 21 41
2

21 2 21 41

w a cosθ sin(θ θ )

θ a cos (θ θ )

 


 
;    1 1 21

2
41 2 21 41

w a sinθ

θ a cos (θ θ )


 

 
; (30a) 

2 1 41
2

21 21 41

w a cosθ

θ cos (θ θ )




 
;   2 1 21 21 41

2
41 21 41

w a sinθ sin(θ θ )

θ cos (θ θ )

 


 
; (30b) 

3 5 51 41
2

41 4 41

w a sinθ cosθ

θ a sin θ


 


;       3 5 51

51 4 41

w a cosθ

θ a sinθ





; (30c) 

5 514
2

41 41

a sinθw

θ sin θ


 


;       5 51 414

51 41

a cos(θ θ )w

θ sinθ





; (30d) 

 

Formulas (21), (22), (25), (27)–(29) are all the explicit expressions necessary to implement Step I for the 

shaper mechanism of Fig. 6. In this case, Step I can be simply implemented by sequentially using these 

formulas since each formula contains only terms that have been already computed through the previous 

formulas. Figures 7 shows the velocity coefficients 3, 5 and 6 as a function of 21 for the shaper mechanism 

with the following geometry: a1=0.2m, a2=0.1m, a4=0.4m, a5=0.2m, a6=0.2m. 

Eventually, the dynamic model of the shaper mechanism is (see Eq. (15)) 

 

     
 

22 2
6 6 6 61 j j j j1 j j 21 6 6 j j j j1 j

j 2,5 j 2,5

2 j2 2 26 31 51
21 6 6 3 3 3 31 5 5 5 51 j j j j1 j

j 2,521 21 21 21

τ R ν Re M R Im ( ) ν θ μ ν λ +μ ν +

d νdν d d
θ μ ν μ ν Re ( ) μ ν Re ( ) λ +μ ν

dθ dθ dθ dθ

 



            
    

         
     

 



f t G I f G I

I I
G I G I G I




 (31) 
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where all the explicit expressions of ICs’ position vectors, of the VCs and of their derivatives are given by 

formulas (21), (22), (25), (27)–(29); also, all the planar vectors are expressed through the associated complex 

numbers, and the following relationship between any two planar vectors, a and b, and the associated complex 

numbers, a and b, has been used 

 

ab = ab + i[(ab)k] (32) 

 

By using the mass distribution data of Table 1 and the same mechanism geometry as Fig. 7, Fig. 8 shows 

the generalized inertia coefficient, J, of the mechanism and its derivative with respect to 21 as a function of 

21. Also, Fig. 9 shows the generalized torque, , (applied by an actuator which directly controls the joint 

variable 21) as a function of 21, computed  through  Eq.  (31),  in  the  case  that  21θ 20 rpm, 21θ 0  and 

that the only active forces applied to mechanism are links’ weights and a cutting force of 500 N with direction 

t61, applied to link 6 during its active stroke. 

 
Table 1: Mass distribution data of shaper mechanism’ s links (Fig. 6): j 

is the link number, j is the mass of link j in [kg] and j is link-j’s mass 
moment of inertia, in [kg m2], about its mass center, Gj, that is assigned 
according to Fig. 5 and Eqs. (18) and (19). 

Link No. Gj j [kg] j [kg m2] 
2 G2I21 4.90088 0.0245044 
3 G3I32 0.196035 0.00196035
4 (G4I41) = 0.5 z4 7.488 0.09984 
5 (G5I65) = 0.5 z5 2.496 0.00832 
6 G6I65 9.75 – 

 

5 CONCLUSIONS 

A novel dynamic model for single-dof planar mechanisms has been presented. The proposed model 

systematically uses the coordinates of a number of instant centers, thus making visible the relationship 

between kinematics and dynamics of the mechanism. This feature is appealing during both the analysis and 

the synthesis of any mechanism. 

Based on the proposed model and on the analytical techniques that determine the coordinates of all the 

instant centers during the mechanism motion, a two-stepped algorithm has been proposed to sequentially 

solve first the kinematics analyses necessary to provide the input data of the model and, then, the dynamics 

problems with the novel model. 
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In order to better illustrate how the proposed notations and algorithms are applied to a real case, the 

dynamic model of a shaper  mechanism  has  been  built  and  its  inverse  dynamics problem has been solved 

for a given set of data. This case study has highlighted that the proposed model and algorithms are simple to 

use and numerically effective. 

As far as this author is aware, even though some basic concepts the proposed model is based on are 

known in the literature, this is the first time that they are fully exploited to provide an analytic relationship 

between ICs’ positions and the dynamic behavior of the mechanism. 
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Figure 7: Velocity coefficients as a function of 21 (a1=0.2m, a2=0.1m, a4=0.4m, a5=0.2m, a6=0.2m): (a) 3 
and 5, (b) 6. 
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Figure 8: The generalized inertia coefficient, J, (a) and its derivative with respect to 21 (b) of the shaper 
mechanism with the geometry of Fig. 7 and the mass distribution data of Table 1 as a function of 21. 
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Figure 9: Generalized inertia torque, , as a function of 21 in the case 21θ 20 rpm, 21θ 0  and a cutting 
force of 500 N. 
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List of Table Captions 
 
Table 1: Mass distribution data of shaper mechanism’ s links (Fig. 6): j is the link number, j is the mass of link j in [kg] and 

j is link-j’s mass moment of inertia, in [kg m2], about its mass center, Gj, that is assigned according to Fig. 5 and Eqs. 
(18) and (19). 
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List of Figure Captions 
 
Figure 1: Intersection of two lines the instant center Iij lies on: (a) the two lines are identified through the A-K 

theorem, (b) the two lines refer to either a slipping contact or a prismatic pair [13].  
 
Figure 2: Instantaneous relative motion between links j and i: (a) instantaneous rotation (Iji is a finite point of 

the motion plane; the motion is uniquely defined by Iji and jiθ ), (b) instantaneous translation (Iji is the 

point at infinity of the lines perpendicular to the translation direction; the motion is uniquely defined by 
the translation velocity jis tji).  

 
Figure 3: Generic scheme of a single-dof planar mechanism with m links (Gj, j and j, for j=2,…,m, are the 

center of mass, the mass and the inertia moment about its center of mass, respectively, of the j-th link). 
 
Figure 4: Link j loaded by the resultant torque, Mjk, about Gj and the resultant force, Rjfj, of all the active 

forces applied to it: (a) the link performs an instantaneous rotation about Ij1, (b) the link performs an 
instantaneous translation parallel to tj1. 

 
Figure 5: Link j: determination of Gj’s position after the link pose, with respect to the frame, has been 

computed. 
 
Figure 6: Shaper mechanism: kinematic scheme and notations. 
 
Figure 7: Velocity coefficients as a function of 21 (a1=0.2m, a2=0.1m, a4=0.4m, a5=0.2m, a6=0.2m): (a) 3 

and 5, (b) 6. 
 
Figure 8: The generalized inertia coefficient, J, (a) and its derivative with respect to 21 (b) of the shaper 

mechanism with the geometry of Fig. 7 and the mass distribution data of Table 1 as a function of 21. 
 

Figure 9: Generalized inertia torque, , as a function of 21 in the case 21θ 20 rpm, 21θ 0  and a cutting 
force of 500 N. 
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Table 1: Mass distribution data of shaper mechanism’ s links (Fig. 6): j 

is the link number, j is the mass of link j in [kg] and j is link-j’s mass 
moment of inertia, in [kg m2], about its mass center, Gj, that is assigned 
according to Fig. 5 and Eqs. (18) and (19). 

Link No. Gj j [kg] j [kg m2] 
2 G2I21 4.90088 0.0245044 
3 G3I32 0.196035 0.00196035
4 (G4I41) = 0.5 z4 7.488 0.09984 
5 (G5I65) = 0.5 z5 2.496 0.00832 
6 G6I65 9.75 – 
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Figure 1: Intersection of two lines the instant center Iij lies on: (a) the two lines are identified through the A-K 
theorem, (b) the two lines refer to either a slipping contact or a prismatic pair [13].  
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Figure 2: Instantaneous relative motion between links j and i: (a) instantaneous rotation (Iji is a finite point of 

the motion plane; the motion is uniquely defined by Iji and jiθ ), (b) instantaneous translation (Iji is the point at 

infinity of the lines perpendicular to the translation direction; the motion is uniquely defined by the translation 
velocity jis tji).  
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Figure 3: Generic scheme of a single-dof planar mechanism with m links (Gj, j and j, for j=2,…,m, are the 
center of mass, the mass and the inertia moment about its center of mass, respectively, of the j-th link). 
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 (a) (b) 
 
 
 
 
 

Figure 4: Link j loaded by the resultant torque, Mjk, about Gj and the resultant force, Rjfj, of all the active 
forces applied to it: (a) the link performs an instantaneous rotation about Ij1, (b) the link performs an 
instantaneous translation parallel to tj1. 
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Figure 5: Link j: determination of Gj’s position after the link pose, with respect to the frame, has been 
computed. 
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Figure 6: Shaper mechanism: kinematic scheme and notations. 
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Figure 7: Velocity coefficients as a function of 21 (a1=0.2m, a2=0.1m, a4=0.4m, a5=0.2m, a6=0.2m): (a) 3 
and 5, (b) 6. 
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Figure 8: The generalized inertia coefficient, J, (a) and its derivative with respect to 21 (b) of the shaper 
mechanism with the geometry of Fig. 7 and the mass distribution data of Table 1 as a function of 21. 
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Figure 9: Generalized inertia torque, , as a function of 21 in the case 21θ 20 rpm, 21θ 0  and a cutting 
force of 500 N. 
 


