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Abstract: Parallel manipulators (PMs) with decoupled kinematics can be obtained by combining a translational 

PM (TPM) with a spherical PM (SPM) either in multiplatform architectures or in integrated more-complex 

architectures. Some of the latter type are inspired by the 6-4 fully parallel manipulator (6-4 FPM), whereas 

others of the same type are deduced by suitably combining TPMs’ limbs and SPMs’ limbs into more 

cumbersome limbs which contain more than one actuated joint. The decoupled PMs (DPMs) presented here 

pursue an intermediate concept between the last two which keeps all the actuators on or near to the base in a 

simplified architecture with only three limbs. These features preserve the lightness of the mobile masses, 

together with the associated good dynamic performances, and reduce the limitations on the workspace due to the 

eliminated limbs and to possible limb interferences. The finite and instantaneous kinematics of the proposed 

DPMs is studied, thus proving the practical implementation of the proposal.  
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1. Introduction 

The possibility of decoupling position and orientation in end effector’s pose control is an appealing feature. It 

allows the use of simplified path-planning algorithms which sequentially involve a limited number of actuators 

and make the machine behave in an easy-to-visualize manner that facilitates the operator. This decoupling is 

easy to implement in serial manipulators [1], whereas it requires a specific design in parallel manipulators (PMs) 

[2 – 23] due to their intrinsically coupled kinematics. 

Four-degrees-of-freedom(4-dof) PMs with decoupled input-output relationships have been proposed [12 – 14] 

which feature position/orientation decoupling, too. Also, the 4-dof (quadrupteron [15, 16]) and 5-dof 

(pentapteron [17, 18]) PMs of the multipteron family [18] deserve to be mentioned among the lower-mobility 

PMs with decoupled position and orientation. These multipteron PMs have a number of limbs equal to their dof 

number and only one actuated pair per limb which is a prismatic pair adjacent to the base. They are a clear proof 
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that putting the actuators on (or near) the base is a key requirement to get PMs with high dynamic performances 

[18]. 

Six-dof PMs with decoupled kinematics can be obtained by combining in series a translational PM (TPM) and a 

spherical PM (SPM) into a multiplatform architecture [5]. Such simple solutions, in general, lose many of the 

advantages of parallel architectures. Combining a TPM and an SPM so that the TPM controls the position of the 

spherical motion center of the SPM [6, 20] is a better idea whose most known implementation is the 6-4 fully 

parallel manipulator (6-4 FPM) [2]. This concept generates many decoupled PM (DPM) architectures since 

many are the TPM and SPM architectures proposed in the literature [24]. The so-deduced DPM architectures 

feature six limbs with one actuator per limb (three of the TPM and three of the SPM) which still is somehow 

cumbersome.  

An alternative concept relies on the identification of suitable limb types which give the sought-after decoupling 

when put together [3, 10, 11, 20, 22, 23]. This technique has the advantage of identifying architectures with a 

reduced number of limbs (usually three [11, 20, 23]), but requires more than one actuator per limb. 

Here, a family of 63 DPM architectures with three limbs is identified and, then, studied through a unified 

approach. Such architectures feature all the actuators on or near to the base. This property makes them save 

about all the advantages of 6-dof PMs with six limbs and one actuator per limb. Also, their three-limbed 

architecture makes their workspace wider since the occurrence of limb interferences and the constraints on the 

workspace [25] due to the limbs are reduced; whereas, their decoupled position analysis makes their control 

easier.  

This paper is organized as follows. Section 2 presents the novel DPM architectures. Sections 3 and 4 address 

their position analysis and their instantaneous kinematics, respectively. Section 5 applies the deduced formulas 

to give some hints on how could be workspace, statics behavior, positioning precision and isotropy/stiffness of 

the identified architectures. Eventually, section 6 draws the conclusions. 

 

2. Type Synthesis 

Parallel manipulators (PMs) feature two rigid bodies, one fixed (base) and the other mobile (platform) connected 

to one another through a number of kinematic chains (limbs). Hereafter, the notation g1string1-g2string2-…-

gnstringn, where gi for i=1,…,n are integers, denotes a structure or a manipulator constituted by two rigid bodies, 

named base and platform, joined through (g1+ g2+ … + gn) kinematic chains (limbs) whose topologies are given 

by the strings separated with hyphens. The i-th string, stringi, lists the sequence of kinematic pairs encountered 

when moving from the base to the platform and the number gi indicates how many limbs with that topology are 
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present; gi is omitted if it is equal to one. Capital letters indicate the type of kinematic pair in these strings: S, P, 

R and U stand for spherical, prismatic, revolute pairs and universal joint, respectively, and an underlined capital 

letter indicates an actuated pair when the notation refers to manipulators’ architectures; also, the symbols || or  

between two R indicate that the axes of the two adjacent R pairs are parallel or perpendicular to one another, 

respectively. Eventually, the phrase “limb connectivity” indicates the degrees of freedom of the relative motion 

between platform and base in the kinematic chain constituted by platform and base uniquely connected through 

the limb whose connectivity [26 – 28] is considered.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: A structure of S-RS-US type 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a) (b) (c) 

 
Figure 2: Three limbs of (3W)S type: (a) the RRPS limb, (b) the single-loop R(2R||R)S limb, and (c) single-

loop R(2RP)S limb. 
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Figure 1 shows an S-RS-US structure. With reference to Fig. 1, O is the center of the S pair that directly joins 

platform and base. B1 and A1 are the S-pair center and the foot of the perpendicular passing through B1 on the 

revolute-pair axis, respectively, in the RS limb; whereas, A2 and B2 are the centers of the U joint and of the S 

pair, respectively, in the US limb. 

The proposed family of DPMs is constituted by all the three-limbed architectures with actuators on or near to the 

base that generate an S-RS-US structure (Fig. 1) when the actuators are locked. The deduction of these 

architectures moves from the fact that “each limb of a six-dof PM has to guarantee six degrees of freedom to the 

relative motion between platform and base (i.e., the limb connectivity must be six)”. Henceforth, only six-dof 

limbs (i.e., non-redundant limbs) will be considered. This assumption and the previous consideration bring to 

state that, in the sought-after architectures, 

(i) the S limb of the S-RS-US structure must be generated by a limb of (3W)S type where the platform is joined 

through an S pair to one link of a spatial three-dof mechanism, generically denoted (3W), with three actuated 

pairs, 

(ii) the RS limb of the S-RS-US structure must be generated by a limb either of XRYS type or of XYRS type or 

of RXYS type where X and Y are any two single-dof pairs/mechanisms, and 

(iii) the US limb of the S-RS-US structure must be generated by a limb either of ZUS type or of UZS type where 

Z is a single-dof pair/mechanism.  

Therefore, the architectures of this family must belong to one out of the six “generic” types: (3W)S-XRYS-ZUS, 

(3W)S-XYRS-ZUS, (3W)S-RXYS-ZUS, (3W)S-XRYS-UZS, (3W)S-XYRS-UZS and (3W)S-RXYS-UZS. 

Each particular architecture is fully defined when the topologies of the (3W), X, Y and Z pairs/mechanisms are 

defined. These topologies are particularized by taking into account the other two structural conditions that 

identify the family, that is, (a) the manipulator must be a DPM and (b) the actuated pairs must be on or near to 

the base. An actuated P pair can be considered “near to the base” even though it is adjacent to the S pair that 

joins the limb to the platform since UPS or SPS limbs are commonly adopted in fully-parallel manipulators [29]; 

whereas, an actuated R pair can be considered “near to the base” if it is adjacent to another R pair that joins the 

limb to the base since, in this case, it can be easily actuated by keeping the actuator on the base. 

The generic (3W)S limb is sufficient to satisfy condition (a) since the spatial 3-dof mechanism, (3W), is able to 

fully control the position of one platform point (point O of Fig. 1) with its three actuated pairs no matter how the 

other two limbs are devised. The topology of the (3W) mechanism is limited by condition (b) and the fact that it 

has to constitute a unique limb when combined with the S pair. (3W)S limbs that satisfy these constraints are the 

RRPS limb (Fig. 2(a)) and either of the two single-loop R(2R||R)S and R(2RP)S limbs shown in Figs. 2(b) 
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and 2(c), respectively. The (3W) mechanisms of the R(2R||R)S and R(2RP)S limbs are both five-bar planar 

linkages whose motion plane is hinged to the base through an actuated R pair. Even though other solutions (e.g., 

the PPPS or RPPS limbs) are possible, only these three (3W)S limbs will be considered here. 

Regarding the remaining two limbs, if X, Y and Z are either R or P pairs and the limbs that do not satisfy 

condition (b) are excluded, the following limb types are identified: 

- Limbs of XRYS type: RRPS, PRPS; 

- Limbs of XYRS type: RRRS, RPRS, PPRS; 

- Limbs of RXYS type: RRPS, RPPS; 

- Limbs of ZUS type: RUS, PUS; 

- Limbs of UZS type: UPS. 

The combination of the above-identified limb types yields 63 (=373) DPM architectures. One out of these 

DPM architectures is the RRPS-RRPS-UPS (Fig. 3) which deserves to be highlighted for its symmetry since it 

features three limbs with the same RRPS topology that are actuated in different ways.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: The RRPS-RRPS-UPS architecture. 
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3. Position Analysis 

PMs’ position analysis refers to the solution of two finite-kinematics problems: the direct position analysis 

(DPA) and the inverse position analysis (IPA). The DPA is the determination of the platform poses that are 

compatible with assigned values of the actuated-joint variables; vice versa, the IPA is the determination of the 

values of the actuated-joint variables that are compatible with an assigned platform pose.  

The DPA of all the above-identified DPM architectures can be solved with the same algorithm since their DPA 

solutions one-to-one correspond to the assembly modes of the S-RS-US structure generated when the actuators 

are locked. Instead, their IPA depends on the adopted limb types. Actually, the assigned platform pose gives the 

positions of the three S-pair centers (i.e., points O, B1 and B2 in Fig. 1) and the IPA of each limb yields the limb 

configurations compatible with that pose. Thus, DPM’s IPA solutions correspond to the combinations of all the 

configurations the three limbs can assume for one assigned position of their ending S-pair center. 

3.1 Direct Position Analysis: 

An algorithm that determines the assembly modes of a general S-RS-US structure (Fig. 1) is presented in this 

subsection. The sketch of Fig 4 extracts all the geometric constants of the S-RS-US structure shown in Fig. 1 

and defines the notations that will be adopted. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: S-RS-US structure: notations. 
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With reference to Figs. 1 and 4, the triangle B1OB2 defines the platform geometry, that is, the angle  and the 

lengths b1 and b2 of the segments OB1 and OB2, respectively, are geometric constants of the platform. The 

triangle A1OA2 has an assigned geometry and is fixed to the base once the actuated-joint variables of the DPM 

that generated this S-RS-US structure are assigned, that is, the angle  and the lengths a1 and a2 of the segments 

OA1 and OA2, respectively, depend on the actuated-joint variables. ui for i=0,1,…,4 are unit vectors: u2 is 

parallel to the direction of the R-pair axis of the RS limb, u0 and u1 are parallel to two mutually orthogonal 

directions fixed to the base with u1 perpendicular to u2 too; also, u3 is parallel to the segment OB1, which is 

fixed to the platform, and u4 is perpendicular to the segment OB1 and lies on the triangle B1OA1. d1 and d2 are 

the lengths of the segments A1B1 and A2B2, respectively. The angle 1 is a geometric constant of the RS limb 

that depends on the actuated-joint variables of the kinematic chain that generated it; whereas, the angle 2 is the 

joint variable of the R pair of the RS limb; eventually, 3 is an angle whose value, together with the above-

defined geometric parameters, uniquely identifies the assembly mode of the S-RS-US structure. In the RRPS-

RRPS-UPS architecture (Fig. 3), d1 and d2 are actuated-joint variables and, if u1 is chosen parallel the axis of the 

actuated R pair of the RRPS limb, 1 is an actuated-joint variable, too.  

The following analytic relationships hold among the above-defined geometric parameters (all the vectors are 

measured in a reference system embedded in the base): 

 

u2 = u0 cos1 + (u1u0) sin1,      u2u1 = (u0u1) cos1 + u0 sin1 (1a) 

(B1 – A1) = d1 [u1 cos2 + (u2u1) sin2],       (B1 – O) = (B1 – A1) + (A1 – O) (1b) 

u3 = 1

1

( )

b

B O
  1 1 2 2 1 2 1

1

d [ cosθ ( )sinθ ] ( )

b

   u u u A O
 (1c) 

sinj = 

22 2 2
j j j

j j

b a d
1

2a b

  
   
 

,        j=1,2 (1d) 

u4 = 1 3 1 3

1 1

( ) [( ) ]

a sin δ

   A O u A O u
 (1e) 

u3u4 = 3 1

1 1

( )

a sin δ

 u A O
  1 1 2 2 1 2 1

1 1 1

d [ cosθ ( )sinθ ] ( )

a b sin δ

   u u u A O
 (1f) 

(B2 – O) = (B2 – A2) + (A2 – O)  b2{u3 cos+ sin[u4 cos3 + (u3u4) sin3]} (1g) 

 

where u0, u1, (A1 – O) and (A2 – O) are known constant vectors and 1 is a known constant angle. 

Relationships (1) when introduced into the closure equations (see Fig. 4) 



 8

 

b1
2 = (B1 – O)  (B1 – O)  [(B1 – A1) + (A1 – O)]  [(B1 – A1) + (A1 – O)] (2a) 

d2
2 = (B2 – A2)  (B2 – A2)  [(B2 – O) – (A2 – O)]  [(B2 – O) – (A2 – O)] (2b) 

 

yield the following two equations in explicit form 

 

a1
2 – b1

2 + d1
2 + 2 d1 (A1 – O)  [u1 cos2 + (u2u1) sin2] = 0 (3a) 

a2
2 + b2

2 – d2
2 – 2 b2 (A2 – O)  {u3 cos + sin [u4 cos3 + (u3u4) sin3]} = 0 (3b) 

 

Equations (3) constitute a system of two trigonometric equations in the two unknowns 2 and 3. Actually, Eq. 

(3a) contains only 2; thus, it can be immediately solved by transforming it into a quadratic equation in tan(2/2) 

through the two trigonometric identities cos2=[1–tan2(2/2)]/[1+tan2(2/2)] and sin2=2tan(2/2)]/[1+tan2(2/2)] 

(see Appendix A). Such equation gives at most two values for 2 that geometrically correspond to the two 

possible intersections (see Fig. 4) between the sphere with center O and radius b1 and the circumference with 

center A1 and radius d1 that lies on a plane perpendicular to u2. 

If the value of 2 is known, Eq. (3b) becomes a trigonometric equation in 3 which can be immediately solved 

by transforming it into a quadratic equation in tan(3/2) through the two trigonometric identities cos3=[1–

tan2(3/2)]/[1+tan2(3/2)] and sin3=2tan(3/2)]/[1+tan2(3/2)] (see Appendix A). Therefore, at most two values 

of 3 can be computed through Eq. (3b) for each value of 2 computed through Eq. (3a). These two values of 3 

geometrically correspond to the two possible intersections between the sphere with center A2 and radius d2 and 

the circumference with center on OB1 and radius b2sin that lies on a plane perpendicular to u3. 

The conclusion is that there are at most four assembly modes of a general S-RS-US structure and as many are 

the DPA solutions of all the studied DPMs. 

3.2 Inverse Position Analysis: 

Here, the positions of the three spherical-pair centers (i.e., points O, B1 and B2 in Fig. 3) are known since the 

platform pose is assigned and the values of the actuated-joint variables must be computed. Each of these centers 

is the ending point of a limb and its position is the input datum of this limb’s IPA. Thus, each limb’s IPA can be 

solved independently from the others and, then, the IPA solutions of the analyzed DPM are obtained by 

combining the IPA solutions of each limb.  



 9

The IPAs of all the serial 6-dof kinematic chains (limbs) with an ending S pair and containing only R and/or P 

pairs have been solved in closed form in [1] where the demonstration that at most four limb configurations are 

compatible with an assigned position of the S-pair center is provided. Moreover, in [30] (as reported in [31], pp. 

160-161), Takano showed that, with a general layout, (i) at most four solutions are found for limbs containing 

either three R pairs, or two R pairs and one P pair, whereas (ii) at most two solutions are found for limbs 

containing one R pair and two P pairs. Condition (i) occurs for four (i.e., RRPS, RRRS, RPRS, RRPS) out of the 

above-listed seven kinematic-chain types that generate an RS limb, when the actuators are locked, and condition 

(ii) occurs for the remaining three (i.e., PRPS, PPRS, RPPS). 

The number of IPA solutions can be further reduced if the limbs satisfy special geometric conditions. This is the 

case of the three types of kinematic chain which generate a US limb when the actuators are locked. In particular, 

the UPS limb yields only one solution for the distance d2 (i.e., the only actuated-joint variable of this limb) 

between A2 and B2 (see Fig. 4) since A2 is a fixed point of the base. Instead, the RUS and PUS limbs yield two 

solutions for the actuated-joint variable. In fact, in these two cases, d2 is a fixed distance, and A2 must 

simultaneously lie on the sphere with center B2 and radius d2 and on either a circumference, in the case of the 

RUS limb, or a line, in the case of the PUS limb, both fixed to the base; thus, A2 may be located at either of the 

at-most-two intersections between a sphere and a circumference or a line. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a) (b) (c) 
 
Figure 5: Kinematic schemes of the three limbs of (3W)S type shown in Fig. 2 : (a) scheme of the RRPS limb, 

(b) scheme of the single-loop R(2R||R)S limb, and (c) scheme of the single-loop R(2RP)S limb. 
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perpendicular to v1. With reference to Fig. 5a, the actuated-joint variables are 1, 2 and d0; d0 is uniquely 

determined since it is the length of the segment A0O and A0 is a fixed point of the base; moreover, the 

relationship (see Fig. 5a) 

 

v2 = v0 cos1 + (v1v0) sin1  1 0

1 0

( )

( )

 
 

v O A

v O A
 (4) 

 

makes it possible to uniquely determine 1 and 2 as follows: 

 

1=atan2 1 0 1 0
1 0 0

1 0 1 0

( ) ( )
( ),

( ) ( )

    
        

v O A v O A
v v v

v O A v O A
 (5a) 

2=arcsin 1 0

0

( )

d

   
 
 

v O A
 (5b) 

 

where 2 [0, ] rad. 

Regarding the two single-loop limbs that have been proposed above to control the platform position [i.e., the 

R(2R||R)S limb (Figs. 2b and 5b) and the R(2RP)S limb (Figs. 2c and 5c)], the actuated-joint variable, 1 in 

Figs. 5b and 5c, of the actuated R pair that joins the two limb types to the base and identifies the plane of the 

triangle A0OA3 is uniquely determined when the position of point O is assigned, since points A0 and A3 are fixed 

point of the base and the relationship (see Figs. 5b and 5c) 

 

v2 = v0 cos1 + (v1v0) sin1  3 0

3 0

( ) ( )

( ) ( )

  
  

A O A O

A O A O
 (6) 

 

makes it possible to uniquely determine 1 as follows 

 

1=atan2 3 0 3 0
1 0 0

3 0 3 0

( ) ( ) ( ) ( )
( ),

( ) ( ) ( ) ( )

      
          

A O A O A O A O
v v v

A O A O A O A O
 (7) 
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Moreover, the lengths, d0 and d3, of the segments A0O and A3O (see Fig. 5c), which are the remaining two 

actuated-joint variables of the R(2RP)S limb (Fig. 2c), are uniquely determined, too, since points A0 and A3 

are fixed point of the base. Thus, the IPA of the R(2RP)S limb has only one solution. 

Eventually, both the angles, 2 and 3 of Fig. 5b, that are the remaining two actuated-joint variables of the 

R(2R||R)S limb (Fig. 2b) have a double determination for an assigned position of point O, since each point Ci 

for i=0,3 (see Fig. 5b) may be located at either of the two intersections of the two circumferences, one with 

center O and radius di and the other with center Ai and radius gi, that lie on the plane of the triangle A0OA3. 

Thus, the IPA of the R(2R||R)S limb has at most four solutions. 

In short, the number of IPA solutions of the above-identified 63 DPM architectures varies from one to thirty-two 

(=424) according to the chosen limb types. It is worth stressing that the RRPS-RRPS-UPS architecture shown 

in Fig. 3 has only one IPA solution. 

 

4. Instantaneous Kinematics 

The instantaneous kinematics of all the proposed DPMs relates the velocity of point O, O , and the angular 

velocity of the platform, , to the joint rates of the six actuated-joint variables. The six actuated-joint rates of the 

studied DPMs can be separated into three sub-set: the three, T
1 2 3(q ,q ,q )q    , of the (3W)S limb, which control 

O , the two, T(x, y)ξ   , of the above-introduced X and Y actuated pairs, which control the geometry of the RS 

limb, and the remaining one, z , of the above-introduced Z actuated pair, which controls the geometry of the US 

limb. 

Regarding the velocity of point O, it can be always written as follows 

 

O H q   (8) 

 

where H is a 33 matrix whose explicit expression depends on the actual architecture of the (3W)S limb. 

With reference to Figs. 2 and 5, if the (3W)S limb is the RRPS limb of Figs. 2a and 5a the following relationship 

holds 

 

0
0 1 2 0

0

( )
d ( ) ( )

d  


       

O A
O v v O A     (9) 
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which yields T
0(d , , )   q     and 

 

0
1 0 2 0

0

( )
, ( ), ( )

d

 
     
 

O A
H v O A v O A  (10) 

 

If the (3W)S limb is the R(2R||R)S limb of Figs. 2b and 5b, the following system of three scalar equations 

holds1 

 

0 3 0
2 0 2 0 3 3 3

( ) ( )
, k , k

e

  
        

O A A A
O v O r O r     , (11) 

 

where i
i

i

( )

d




O C
r , i 2 i i ik [ ( )]   v C A r  for i=0,3 and 3 0

2
3 0





r r

v
r r

, whose explicit-form solution is 

 

0 3 0
3 0 0 3 2 3 0 2

2 3 0

( ) ( )1
( ) k ( ) k ( )

( ) e  

    
           

O A A A
O r r r v r v

v r r
     (12) 

 

Equation (12) yields, for the R(2R||R)S limb, T( , , )     q     and  

 

0 3 0
3 0 0 3 2 3 0 2

2 3 0

( ) ( )1
( ), k ( ), k ( )

( ) e

    
        

O A A A
H r r r v r v

v r r
 (13) 

 

If the (3W)S limb is the R(2RP)S limb of Figs. 2c and 5c, the following system of three scalar equations holds 

 

0 3 00 3
0 3 2

0 3

( ) ( )( ) ( )
d , d ,

d d e

   
      

O A A AO A O A
O O O v      (14) 

 

whose explicit-form solution is 

 

                                                 
1 It is worth noting (see Fig. 5b) that (O – Ci) = (O – Ai) – (Ci – Ai), for i=0,3, where (O – Ai) is known as a 
function of the platform pose and (Ci – Ai) = gi[cosj v1 + sinj(v2v1)] with j=2 for i=0 and j=i for i=3. 
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0 3 0
0 3 2 3 0 2 3 0

2 3 0

( ) ( )1
d ( ) d ( ) ( )

( ) e

    
           

O A A A
O s v s v s s

v s s
    (15) 

 

where i
i

i

( )

d




O A
s  for i=0,3 and 3 0

2
3 0





s s

v
s s

. Equation (15) yields, for the R(2RP)S limb, T
0 3(d ,d , ) q     

and  

 

0 3 0
3 2 0 2 3 0

2 3 0

( ) ( )1
( ), ( ), ( )

( ) e

    
        

O A A A
H s v s v s s

v s s
 (16) 

 

Regarding the platform angular velocity, , the constraints it has to satisfy can be deduced as follows. When all 

the actuators are locked, the RS limb (see Figs. 1 and 4) yields the following constraints on the velocity of point 

B1, 1B  [ 1( )   O ω B O , when considered a platform point] 

 

 1 2 1 2 2 1 20 [ ( )] ( )            B u O ω B O u u O B O u ω   (17a) 

 1 1 1 1 1 1 1 1 1 1 10 ( ) ( ) ( ) ( ) ( ) ( )                  B B A O ω B O B A B A O B O B A ω  ; (17b) 

 

whereas the US limb (see Figs. 1 and 4) yields the following constraint on the velocity of point B2, 2B  

[ 2( )   O ω B O , when considered a platform point] 

 

 2 2 2 2 2 2 2 2 2 2 20 ( ) ( ) ( ) ( ) ( ) ( )                  B B A O ω B O B A B A O B O B A ω   (17c) 

 

As a consequence, when the actuators are not locked any longer, the zeros at the left-hand sides of Eqs. (17) can 

be replaced only by linear and homogeneous expressions in T(x, y)ξ    and z  whose coefficients depend on the 

type of kinematic chain which generates the RS or the US limbs; whereas, O  can be replaced only by 

expression (8). The result is that, in general, the following system of three scalar equations holds  

 

  T
1 2 11 12 2( ) m x m y     B O u ω u H q   (18a) 

  T
1 1 1 21 22 1 1( ) ( ) m x m y ( )       B O B A ω B A H q   (18b) 
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  T
2 2 2 2 2( ) ( ) n z ( )      B O B A ω B A H q  (18c) 

 

System (18) can be put in matrix form as follows: 

 

  Nω DH q M p   (19) 

 

where  T(x, y, z)p    ,  N = [(B1–O)u2, (B1–O)(B1–A1), (B2–O)(B2–A2)]T, D = [u2, (B1–A1), (B2–A2)]T and 

M = [m1, m2, m3] with m1 = (m11, m21, 0)T, m2 = (m12, m22, 0)T and m3 = (0, 0, n)T. 

Appendix B reports the general expressions of the entries of matrix M for the ten above-identified types of 

kinematic chains that generate either an RS or a US limb when the actuators are locked. With reference to the 

formulas reported in Appendix B, the entries of this matrix for the RRPS-RRPS-UPS architecture of Fig. 3 (u1 is 

chosen parallel to the axis of the actuated R pair of the RRPS limb, x=1, y=d1 and z=d2) are   

 

11 1 2 12m d sinθ ; m 0   (20a) 

21 22 1m 0; m d  ;    n=d2  (20b) 

 

4.1. Singularity Analysis 

Equations (8) and (19) constitute the instantaneous input-output relationship that, out of singularities, states a 

one-to-one correspondence between the platform twist, T T T( , )O ω , and the six-tuple, T T T( , )q p  , of the actuated-

joint rates. This relationship can be used to identify DPM’s singularities, that is, the DPM configurations where 

the correspondence between T T T( , )O ω and T T T( , )q p   is not one-to-one any longer. 

Three types of PMs’ singularities can be identified relying on the instantaneous input-output relationship [32, 

33]: (I) PM configurations where the actuated-joint rates are indeterminate even though the platform twist is 

assigned, (II) PM configurations where the platform twist is indeterminate even though the actuated-joint rates 

are assigned, and (III) PM configurations where both the two previous singularity conditions are satisfied. This 

singularity classification can be further refined by taking into account the rates of the non-actuated joints [34]. 

Type-I singularities occur at the workspace boundaries; whereas, type-II singularities are mainly located inside 

the workspace and identify configurations where at least one link has to stand an infinite internal load to 

equilibrate any (even very small) external load applied to the platform. As a consequence, type-II singularities, 

must be always identified during design and carefully avoided during functioning. 
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PMs’ input-output relationships are always linear and homogeneous systems, in the platform twist and the 

actuated-joint rates, whose coefficient matrices depend only on the actuated-joint variables [32, 33]. Therefore, 

in six-dof PMs, type-I singularities occur when the determinant of the 66 coefficient matrix that multiplies the 

actuated-joint rates is equal to zero, type-II singularities occur when the determinant of the 66 coefficient 

matrix that multiplies the platform twist is equal to zero and type-III singularities occur when these two 

determinants are simultaneously equal to zero. 

With reference to the above-deduced input-output relationship, these results bring to conclude that, in the 

studied DPMs, a type-I singularity occurs when  

 

det(H) det(M) = 0; (21) 

 

whereas a type-II singularity occurs when 

 

det(G) det(N) = 0; (22) 

 

where the expression of G depends on the architecture of the (3W)S limb: it is equal to the 33 identity matrix 

for the RRPS limb of Fig. 2a, G = [v2, r3, r0] for the single-loop R(2R||R)S limb of Fig. 2b, and G = [v2, s3, s0] 

for the single-loop R(2RP)S limb of Fig. 2c. 

Equation (21) is satisfied if and only if either 

 

det(H) = 0; (23) 

 

or 

 

det(M)  n (m11m22 – m21m12) = 0; (24) 

 

Equation (23) identifies DPM configurations (shoulder singularities) where the velocity O cannot assume any 

value since the image of the linear mapping defined by Eq. (8) is not three-dimensional (i.e., the workspace 

boundary of the (3W)S limb has been reached). Equation (24) identifies DPM configurations (wrist 

singularities) where the platform angular velocity  cannot assume any value when O =0 since the image of the 
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linear mapping defined by Eq. (19) with q 0  is not three-dimensional (i.e., the workspace boundaries of the 

kinematic chains which generate either the RS or the US limbs have been reached).  

For the RRPS-RRPS-UPS architecture of Fig. 3, Eqs. (9) and (10) reveal that Eq. (23) is satisfied if d0 is equal 

to zero (i.e., if A0 coincides with O (see Fig. 5a)); whereas, Eqs. (20a) and (20b) yield  

 

det(M)  d2 d1
2 (25) 

 

and Eq. (24) is satisfied if either d1 or d2 are equal to zero. 

Regarding type-II singularities, Eq. (22) is satisfied if and only if either 

 

det(G) = 0; (26) 

 

or 

 

det(N) = 0; (27) 

 

Equation (26) identifies DPM configurations (translation singularities) where O  can be different from zero 

even though the actuated joints of the (3W)S limb are locked (i.e., even though q 0  (see Eq. (8))). Therefore, 

they are limb singularities of the (3W)S limb. In particular, the RRPS limb (Figs. 2a and 5a) yields no type-II 

singularity since its matrix G is the 33 identity matrix. Also, the single-loop R(2R||R)S limb (Figs. 2b and 

5b), whose matrix G is [v2, r3, r0] with det(G) = v2(r3r0), yields type-II singularities if and only if the two unit 

vectors r3 and r0 are parallel, that is, when the points C0, C3 and O of Fig. 5b are aligned (Fig. 6a); whereas, the 

single-loop R(2RP)S limb (Figs. 2c and 5c) whose matrix G is [v2, s3, s0] with det(G) = v2(s3s0), yields type-

II singularities if and only if the two unit vectors s3 and s0 are parallel, that is, when the points A0, A3 and O of 

Fig. 5c are aligned (Fig. 6b). 

Equation (27) identifies DPM configurations (rotation singularities) where the platform angular velocity  can 

be different from zero even though all the actuated joints are locked (i.e., even though q 0  and p 0  (see Eq. 

(19)). Therefore, they are configurations where the geometry of the generated S-RS-US structure is singular. 

The above-deduced analytic expression of matrix N yields 
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det(N) = [(B1–O)u2]{[(B1–O)(B1–A1)][(B2–O)(B2–A2)]} (28) 

 

Expression (28) is equal to zero (i.e., Eq. (27) is satisfied), if either 

(a) the vector in curly brackets is a null vector, or 

(b) the R-pair axis (i.e., the line through A1 and parallel to u2 in Fig. 4) is parallel to the line passing through O 

and B1 (in this case (B1–O)u2 is a null vector), or 

(c) the direction of the vector in curly brackets (i.e., of the intersection line between the planes of the two 

triangles A1B1O and A2B2O (Fig. 4)), the R-pair axis (i.e., the line through A1 and parallel to u2 in Fig. 4) and 

the line passing through O and B1 are parallel to a unique plane. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  (b) 
 
Figure 6: Translation singularities: geometric conditions identifying a limb singularity (a) of the single-loop 

R(2R||R)S limb and (b) of the single-loop R(2RP)S limb. 
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With reference to Fig. 4, condition (a) occurs when either d1 or d2 are equal to zero or the two triangles A1B1O 

and A2B2O are coplanar; whereas, condition (c) occurs when either the R-pair axis lies on the plane of the 

triangle A1B1O or the triangle B1OB2, fixed to the platform, and the triangle A2B2O are flattened on a single 

plane (Fig. 7). The platform can perform an infinitesimal rotation around the intersection line between the planes 

of the two triangles A1B1O and A2B2O when conditions (b) or (c) occur. 

Eventually, it is worth noting that, since all the singularity conditions which require the zeroing of a limb length 

(i.e., of d0 or d1 or d2) cannot occur in practice, the type-II singularities of the RRPS-RRPS-UPS architecture of 

Fig. 3 are in practice only the configurations where either the two triangles A1B1O and A2B2O are coplanar or 

conditions (b) and (c) are satisfied. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Rotation singularities: a configuration that satisfies geometric condition (c). 
 

 

5. Discussion 

Even though the performance analysis of an actual model of one out of the 63 identified architectures is out of 

the scope of this paper, the above-deduced general relationships will be used here to give some hints on how 

could be workspace, statics behavior, positioning precision and isotropy/stiffness of these architectures. 

Regarding their dynamic performances, since an actual model is necessary to evaluate the maximum 

accelerations of the platform, they will not be considered here. Nevertheless, it is worth reminding that all the 63 

architectures allow the actuators to be put on (or near) the base and that, since this is the key requirement to 

A1

B1

B2

A2

O


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drastically reduce the mobile masses and to get high end-effector’s accelerations (see, for instance, [18]), they 

are all expected to be able to reach high platform’s accelerations. 

5.1 Workspace: 

In general, the simple reduction of the limb number is not sufficient to guarantee an increased workspace when 

different architectures/limbs are considered. Nevertheless, a reduced limb number always [25] yields a reduced 

number2 of analytic conditions (inequalities) that bound the volume where, at constant platform orientation, the 

platform reference point must be located. Also, such reduction of the inequality system that bound the constant-

orientation workspace is the premise to get an increased volume, if it is suitably exploited during design. 

 

 

 

 

 

 

 

 

 

Figure 8: Studied RRPS-RRPS-UPS architecture: top view of the home position. 
 

 

Just to give an idea of how wide could be the constant orientation workspace of the proposed architectures, the 

RRPS-RRPS-UPS of Fig. 3 with both the base and the platform triangles, A0A1A2 and OB1B2, equilateral and 

with the ratio between the sides of OB1B2 and A0A1A2 equal to 0.25 is analyzed. Hereafter, the length unit (l.u.) 

is assumed equal to the side length of the base triangle A0A1A2. Also, its home position is defined as the 

configuration where the three limb axes are the lateral edges of a trirectangular tetrahedron, with A0A1A2 as 

base, where the triangles A0A1A2 and OB1B2 are parallel to each other (see Fig. 8) and the limb lengths, d0, d1 

and d2 (see Figs. 4 and 5(a)), are all equal to 0.53 l.u. 

It is easy to check through either formula (28) or a simple geometric reasoning based on the vectors appearing in 

formula (28) that the home position is not a singular configuration. Also, the same geometric reasoning makes it 

 

                                                 
2 Gosselin [25] demonstrated that, if the constant orientation workspace of fully-parallel manipulators is 
considered, each UPS limb yields two concentric spheres, with radii equal to the minimum and the maximum 
limb length, which delimit the volume where the platform reference point must be located. 

A0

A1 A2

O

B1 B2u 2
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 (a) (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (c) (d) 
 
Figure 9: Singularity-free workspace of the studied RRPS-RRPS-UPS: top views of the constant-platform-

orientation configurations where (a) points A0 and O, (b) points A1 and B1, and (c) points A2 and B2 lie on 
the same vertical line; (d) front view of the configuration (b) with the minimum and maximum limb lengths 
necessary to make the platform translate of 0.5 l.u. along its normal. 

 

 

possible to demonstrate that the three constant-platform-orientation configurations shown in Figs. 9(a), 9(b) and 

9(c) are not singular provided that the platform height on the base is different from zero and that the same holds 

for all the constant-platform-orientation configurations where, in the top view, the platform triangle OB1B2 is 

inside the base triangle A0A1A2. Eventually, Fig. 9(d) shows that the platform height can range from 0.25 l.u. to 

0.75 l.u., if the limb lengths d0, d1 and d2 can vary from 0.25 l.u. to 1.06 l.u. The conclusion is that, by assuming 

reasonable variations of the limb lengths, a triangular prism with height equal to 0.5 l.u. and cross section equal 

to the base triangle A0A1A2 can be identified which is free from singularities. This wide constant-orientation 

workspace may be reduced when, during design, specific conditions on the platform orientation variation and/or 

on the distance from singularities are given. Such a detailed analysis is out of the scope of this paper. 

5.2 Statics and Positioning Precision: 

Equations (8) and (19) can be put in the matrix form (03 is the 33 null matrix) 

A0

A1
A2

O

B1 B2

u2

A0

A1
A2

O

B1
B2

u 2

A0

A1 A2

O

B1

B2

u2

B1

B'1

B2

B'2

0.25

0.5
1.06

A2A1

dmin

dmax
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  
   

   

q O
J

p ω




,     where   J  
1

3
1 1



 

 
 
 

H 0

M D M N
    with   J –1   3

1 1 

 
  

H 0

N DH N M
, (29) 

 

Equation (29) and the virtual work principle [35, 36] yield the following input-output static relationship: 

 

$O  JT     (30) 

 

where $O [ (f T, n T)T] is the wrench collecting the resultant force, f, and the resultant moment, n, about O of the 

force system the platform applies when interacting; whereas,  [ (1, 2, 3, x, y, z)T] is the six-tuple collecting 

the generalized torques w [ (1, 2, 3)T ], x, y and z applied by the actuators of the 3W mechanism and of the 

X, Y and Z joints, respectively. 

Also, Eq. (8) can be exploited to relate the actuation errors, q [ (q1, q2, q3)T], in the (3W)S limb to the 

resulting position error, O, of the platform. Actually, if the errors q and O replace the differentials dq and 

dO, respectively, in Eq. (8) and hi, for i=1,2,3, denotes the i-th column vector of matrix H, the following 

inequality can be deduced from Eq. (8) 

 

1 1 2 2 3 32 2 2 2
q q q      O h h h  (31) 

 

where 
2

( )  denotes the Euclidean vector norm [37] of (). For the RRPS limb (Figs. 2(a) and 5(a)) of the 

RRPS-RRPS-UPS architecture (Fig. 3), Eqs. (9) and (10) yield the following explicit expression of inequality 

(31): 

 

0 0 1 2 0 22
d d sin d       O  (32) 

 

which highlights that platform’s position error increases with d0. 

Eventually, the following inequality can be deduced from Eq. (19) by replacing the differentials with the 

corresponding actuation errors: 

 

1 1 1 1
1 2 32 2 2 2

ψ x y z
F

           N D O N m N m N m  (33) 
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where M[m1, m2, m3], ( )
F

  denotes the Frobenius matrix norm [37] of () and  (platform’s orientation 

error) is the rotation angle associated to the rotation matrix3 that makes the actual platform orientation coincide 

with its desired orientation. For the RRPS-RRPS-UPS architecture (see Figs. 3 and 4), Eqs. (20a) and (20b) 

yield the following explicit expression of inequality (33): 

 

1
1 1 1 2 2 1 1 3 2 22 2 2 2

ψ d θ sinθ d d d d
F

        N D O ν ν ν  (34) 

 

where N–1[1, 2, 3] with [see Eq. (28) for the explicit expression of det(N)] 

 

1 1 1 2 2 2
1

[( ) ( )] [( ) ( )]

det( )

      


B O B A B O B A
ν

N
 (35a) 

2 2 2 1 2
2

[( ) ( )] [( ) ]

det( )

     


B O B A B O u
ν

N
 (35b) 

1 2 1 1 1
3

[( ) ] [( ) ( )]

det( )

     


B O u B O B A
ν

N
 (35c) 

 

Formulas (33), (34) and (35) highlight that platform’s orientation error is inversely proportional to det(N) 

(i.e., the nearer the type-II singularity, the bigger the orientation error). 

5.3 Stiffness and Isotropy: 

Manipulators’ stiffness is usually studied by assuming [23, 35, 36] that only the actuated joints are flexible in 

the structure generated by locking the actuators. Here, this hypothesis yields the following relationship: 

 

  diag(k)
 
  

q

p
 (36) 

 

where k [ (k1, k2, k3, kx, ky, kz)T] is the six-tuple collecting actuated joints’ stiffness kw [ (k1, k2, k3)T ], kx, ky 

and kz of the 3W mechanism and of the X, Y and Z joints, respectively. 

                                                 
3 A rotation matrix, Q, can be explicitly expressed [31, 35] as a function of the unit vector, , of the rotation axis 
and of the rotation angle  through the formula Q = cos I3 + sin Sk + (1 – cos)  T, where I3 is the 33 
identity matrix and Sk is the skew-symmetric matrix associated to the unit vector . As a consequence, the 
vector  =  , whose magnitude is , uniquely locates the actual platform orientation with respect to 
the desired platform orientation. 
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The introduction of Eq. (36) into Eq. (30) and, in the resulting expression, the replacement of q and p with 

their expressions given by Eq. (29), where the finite differences replace the differentials, yield 

 

$O  JT diag(k) J
 
  

O

ψ
 (37) 

 

Equation (37) provides the following expression of the stiffness matrix, K, of the presented DPMs 

 

K  JT diag(k) J (38) 

 

In these DPMs, the analytic expression of K, Eq. (38) provides, cannot be further simplified [23, 35, 36] to the 

form kJTJ since their actuators are not of the same type. Nevertheless, a normalized expression [23, 31, 38] of 

the matrix JTJ obtained by dividing all the manipulator lengths by a characteristic length (e.g., b1 or b2 of Fig. 4) 

still is important during design to find isotropic configurations (i.e., configurations where the input-output both 

static and instantaneous kinematic relationships do not depend on directions). The matrix JTJ of the studied 

DPMs has the following expression 

 

JTJ  
T T T 1 T 1 T T 1 T T 1

3
T T 1 1 T T 1 T T 1

3

        

      

     
     

    

H D M H 0 H H D M M D D M M N

0 N M M D M N N M M D N M M N
 (39) 

 

Anyway, the introduction of the q and p expressions deduced from Eq. (36), that is, 

 

 
  

q

p
  diag(k) –1 , (40) 

 

into inequalities (31) and (33) figures out how flexible these DPMs could be. Indeed, the resulting formulas 

clearly shows that, at parity of actuated joints’ stiffness, their stiffness worsens at the configurations where the 

positioning precision worsens, too (i.e, the nearer the type-II singularity, the worse both the stiffness and the 

positioning precision). 
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6. Conclusions 

Manipulators with fully or partially decoupled kinematics allow the use of simplified path-planning algorithms 

which sequentially involve a limited number of actuators and make the machine behave in an easy-to-visualize 

manner that facilitates the operator. 

A novel family of decoupled parallel manipulators has been identified which contains sixty-three DPM 

architectures. The DPMs of this family feature only three limbs with connectivity six and all the actuators on or 

near to the base. These features make all the members of this family as fast as fully-parallel manipulators with 

complex kinematics without the use of cumbersome six-limbed architectures. 

The position analysis of all the proposed DPMs has been solved through a unified approach and the 

demonstration that both the direct and the inverse position analyses of these DPMs are easily solvable in closed 

form has been provided. 

Also, their instantaneous kinematics has been addressed and all the singularity conditions of these DPMs have 

been analytically determined and geometrically interpreted. 

Eventually, one DPM architecture of the proposed family has been found which exhibits three limbs with the 

same topology and a much simple kinematics. 

The obtained results provide all the tools necessary to design these DPMs and demonstrate that their control can 

be implemented by using analytical relationship with a clear geometric meaning. This and the fact that the DPMs 

of this family feature only three limbs with actuators on or near to the base make them interesting design 

options. 
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Appendix A 

The following type of trigonometric equation 

  

h2 cosx + h1 sinx + h0 = 0, (A1) 
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where the coefficients hi for i=0, 1, 2 are real constants and x is the unknown, can be transformed into a 

quadratic algebraic equation in t=tan(x/2) by introducing the trigonometric identities 

 

2

2

1 t
cos x

1 t





,                 

2

2 t
sin x

1 t



 (A2) 

 

and, then, rationalizing the resulting expression. 

This algebraic manipulation transforms Eq. (A1) as follows 

 

(h0 – h2) t2 + 2 h1 t + (h0 + h2) = 0 (A3) 

 

Equation (A3) yields the following two explicit-form solutions 

 

2 2 2
1 1 2 0

0 2

h h h h
t = 

h h

   


 (A4) 

 

 

Appendix B 

This appendix deduces some general expressions of the entries of the matrix M that appears in Eq. (19). Such 

expressions hold for all the above-identified limbs of type XRYS, XYRS, RXYS, ZUS and UZS. Hereafter, x, y 

and z denote the actuated-joint variables of the actuated pairs X, Y and Z, respectively. 

With reference to the RS limb of Fig. 4, the first formula of Eqs. (1b) yields 

 

B1 = A1 + d1 [u1 cos2 + (u2u1) sin2] (B1) 

 

where B1 and A1 are position vectors of B1 and A1, respectively, and all the vectors are measured in a reference 

system fixed to the base. 

In the XRYS limbs (i.e., the two limb types RRPS and PRPS), A1, u1 and u2 depend only on x; whereas, yd1. 

Therefore, the time derivative of Eq. (B1) is 
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1 1 2 1
1 1 2 1 2 2

1 2 2 1 2 1 2 2 1 2 2 1 2

d d d d
x d cosθ sinθ

dx dx dx dx

y[ cosθ ( )sinθ ] d θ [ cosθ ( )sinθ ]

             
    

     

A u u u
B u u

u u u u u u u

 



 (B2) 

 

whose dot products by u2 and by (B1 – A1) yield 

 

1 1 2
11 2 1 2 1 2 12

d d d
m d cosθ sinθ ; m 0

dx dx dx

            
    

A u u
u u  (B3a) 

1
21 1 1 2 2 1 2 22 1

d
m d [ cosθ ( )sinθ ] ; m d

dx
    

A
u u u  (B3b) 

 

In the XYRS limbs (i.e., the three limb types RRRS, RPRS and PPRS), A1, u1 and u2 depend both on x and on y. 

Therefore, the time derivative of Eq. (B1) is 

 

1 1 2 1
1 1 2 1 2 2

1 1 2 1
1 2 1 2 2 1 2 2 1 2 2 1 2

x d cosθ sinθ
x x x x

y d cosθ sinθ d θ [ cosθ ( )sinθ ]
y y y y

                       
                         

A u u u
B u u

A u u u
u u u u u u

 


 (B4) 

 

whose dot products by u2 and by (B1 – A1) yield 

 

1 1 2
11 2 1 2 1 2m d cosθ sinθ

x x x

                   

A u u
u u  (B5a) 

1 1 2
12 2 1 2 1 2m d cosθ sinθ

y y y

                   

A u u
u u  (B5b) 

1
21 1 1 2 2 1 2m d [ cosθ ( )sinθ ]

x


   


A

u u u  (B5c) 

1
22 1 1 2 2 1 2m d [ cosθ ( )sinθ ]

y


   


A

u u u  (B5d) 

 

In the RXYS limbs (i.e., the two limb types RRPS, RPPS), u1 and u2 are fixed to the base, A1 is constrained to 

lie on the axis of the passive R pair so that the relationship A1 = A10 + x u2 where A10 is a base point can always 

be introduced together with the position yd1. Therefore, the time derivative of Eq. (B1) is 



 27

 

1 2 1 2 2 1 2 1 2 2 1 2 2 1 2x y[ cosθ ( )sinθ ] d θ [ cosθ ( )sinθ ]       B u u u u u u u u    (B6) 

 

whose dot products by u2 and by (B1 – A1) yield 

 

11 12 21 22 1m 1; m 0; m 0; m d     (B7) 

 

With reference to the US limb of Fig. 4, if it is generated through a limb of UZS type (i.e, a UPS limb), point A2 

is fixed to the base, zd2 and 2 2 2 2( ) z d  B B A   which brings to conclude that n=d2. Otherwise, that is, if it is 

generated through a limb of ZUS type (i.e, either an RUS limb or a PUS limb), the position vector A2 depends 

only on z, which yields 2
2

d
z

dz


A
A  , and d2 is constant, which yields 2 2 2 2 2 2( ) ( )    B B A A B A ; thus 

2
2 2

d
n ( )

dz
  

A
B A . 
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Figure Captions 
 

Figure 1: A structure of type S-RS-US. 
 
Figure 2: Three limbs of (3W)S type: (a) the RRPS limb, (b) the single-loop R(2R||R)S limb, and (c) single-

loop R(2RP)S limb. 
 
Figure 3: The RRPS-RRPS-UPS architecture. 
 
Figure 4: S-RS-US structure: notations. 
 
Figure 5: Kinematic schemes of the three limbs of (3W)S type shown in Fig. 2 : (a) scheme of the RRPS limb, 

(b) scheme of the single-loop R(2R||R)S limb, and (c) scheme of the single-loop R(2RP)S limb. 
 
Figure 6: Translation singularities: geometric conditions identifying a limb singularity (a) of the single-loop 

R(2R||R)S limb and (b) of the single-loop R(2RP)S limb. 
 
Figure 7: Rotation singularities: a configuration that satisfies geometric condition (c). 
 
Figure 8: Studied RRPS-RRPS-UPS architecture: top view of the home position. 
 
Figure 9: Singularity-free workspace of the studied RRPS-RRPS-UPS: top views of the constant-platform-

orientation configurations where (a) points A0 and O, (b) points A1 and B1, and (c) points A2 and B2 lie on 
the same vertical line; (d) front view of the configuration (b) with the minimum and maximum limb lengths 
necessary to make the platform translate of 0.5 l.u. along its normal. 

 
 
 


