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ABSTRACT 

A systematic procedure is proposed to determine variable excitation sources coming from pressure 

evolution inside tooth spaces in external gear pumps. Pressure force and torque are estimated with respect 

to the angular position of the gears, taking into account the phenomena that occur during the meshing 

course. In particular, the paper proposes a general methodology aiming at determining pressure force and 

torque components along the three coordinates axes and suitable to be applied on both spur and helical 
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gears. Firstly, the method to calculate pressure loads acting on a single tooth space during a complete 

revolution is given, then the total pressure force and torque loading the gear center is obtained. Particular 

attention is addressed on the description of the helical gear scenario. As an example, the method is applied 

to a tandem gear pump, characterized by the presence of two stages, one with spur gears and one with 

helical gears. An experimentally assessed model to analyze the fluid-dynamic behavior of the tandem 

pump is described and the proposed procedure for pressure load estimation is applied. Eventually, the 

pressure loads estimated with the present procedure are compared with other estimation methods already 

described in the literature. The comparison shows that the present methodology is able to describe a wider 

range of phenomena involved in the meshing evolution. 

Keywords 

Gear pump, spur gear, helical gear, variable pressure load, dynamic analysis. 

1.Introduction 

Due to their features regarding the wide operating condition range, small dimensions and costs, spur 

gear pumps are nowadays considered as useful power sources for several applications (e.g. steering 

systems, automatic gearboxes and cooling systems). Within this framework, the need to improve their 

Noise, Vibration and Harshness (NVH) behavior without affecting their performances is becoming more 

and more compelling. The elasto-dynamic analysis of gear pump is a fundamental task to evaluate the 

pump’s performances in terms of vibrations and emitted noise [1]. As it is well-known, the definition of 

an effective dynamic model and the load determination generated by the different sources of the pumps 

are the two main steps to achieve this goal. When modeling the dynamic behavior of a gear pump, a 

number of main loads has usually to be considered: the torque transmitted by the driving motor, the 
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meshing forces, the bearing reactions and the torque and force generated by the oil pressure evolution 

inside tooth spaces [2, 3]. 

The dynamic behavior of gear-pair systems has been widely studied during the last two decades; 

several authors have proposed numerical models to take into account periodic meshing stiffness, backlash 

and the presence of journal bearings [4, 5, 6]. These works took advantages from previous studies focused 

on the determination of excitation sources, e.g. the periodic meshing stiffness [7] and reactions, e.g. the 

journal bearing impedance [8, 9]. Moreover, since the improvements in the result quality obtained by 

these dynamic models are strictly connected with the improvements in the excitation sources and bearing 

reactions estimation, various methodologies have been later presented. The meshing stiffness has been 

estimated by means of different approaches, both analytical [10] and numerical [11, 12]. Concurrently, 

efforts have been given in developing analytical models on journal bearings reaction estimation, based on 

approximate methods [13, 14] or exact solutions [15]. 

From this brief review, variable pressure loads result to be the ones with the most critical 

determination and, thus, with a deep influence on the pump’s dynamic behavior and axial balance [16, 

17]. A method for pressure force definition is introduced in [16] and later improved in [18], where the 

loading condition is calculated by a finite difference method and used to analyze the designing of bearing 

blocks balancing surfaces. The importance related to the determination of pressure force for investigating 

the performances of external gear pumps was already underlined in [19], being one of the main excitation 

sources for vibration of the pump case. Nevertheless, in [19] the authors did not provide a systematic 

method regarding their determination. 

Moreover, the need to improve the NVH behavior of gear pumps has led to spread the use of helical 

gear pumps, mostly where low levels of pressure difference and high flow rates are required, even if, in 

the literature, this kind of gear pump has been rarely studied. The first works on helical gear pumps date 
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back to the forties and they were focused on giving some slight details on the instantaneous and mean 

flow rate [20, 21]. Later, in [22] the author provided an exhaustive explanation on the way the helix affects 

the theoretical outlet flow ripple. More recently, in [23] the pressure force and torque acting on helical 

gears has been discussed, nevertheless, the adopted approach is based on simplified hypothesis that led 

authors to neglect the components due to the presence of the helix, i.e. the axial pressure force and 

relative torque components. 

In the present work, a systematic procedure for the determination of the pressure force and torque 

acting on the gear shafts is introduced. The purpose is to clearly define an accurate and flexible 

methodology that can be straightforwardly applied both to simulated and measured pressure data in a 

wide variety of gear pumps. The outlined method is suitable to analyze both spur and helical gear pumps 

by determining all the spatial components (forces along three coordinate axes and relative torques). In 

order to assess this methodology, a tandem pump made of two stages, one with spur gears and one with 

helical gears, has been studied with a lumped parameter model to determine the tooth space pressure 

ripple. Hence, the results have been used to evaluate the pressure load by the proposed methodology in 

comparison with methods already described in the literature. 

The contents of the paper are as follows. In Section 2, the original methodology for pressure force 

and torque estimation is described, focusing the attention on both spur and helical gears. Firstly, the 

method restricted to spur gears is shown, later it is generalized to helical gears, defining the pressure force 

along three coordinate axes and the relative torques. Section 3 is devoted to the description of the 

mechanical standpoint of the tandem pump, taken as an example of application, addressing the 

mathematical model and relative experimental verification adopted to determine the tooth space 

pressure ripple for the two stages of the pump. Section 4 concerns the assessment of the methodology 

for pressure force determination; within this framework, the method, introduced in section two, is applied 
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on the tandem pump taking advantage of pressure ripple estimated with the lumped parameter model. 

The results are compared with the ones obtained applying other methods already described in the 

literature. Eventually, the last section is devoted to concluding remarks. 

 

Nomenclature 

𝛽 Helix angle on the pitch circle. 

𝛽𝐵  Oil bulk modulus. 

ϑ Angular position of the reference control volume. 

μ Oil dynamic viscosity. 

ρ Oil density. 

ω Angular speed in rad/s. 

𝐴 Surface used to define turbulent flows. 

𝑏 Gear width. 

𝐶𝑑 Coefficient of resistance. 

𝐹 Pressure force. 

𝐹𝑡𝑜𝑡,𝑖  Total pressure force applied to the gear center by tooth space 𝑖. 

fr Rotational frequency in Hz. 

ℎ Channel height. 

i,j Indexes of the reference control volumes related to the driving gear (i) and the driven gear (j). 

𝑘 Frame of calculus. 

𝐿 Channel length. 

𝑀 Pressure torque. 
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𝑀𝑡𝑜𝑡,𝑖  Total pressure torque applied to the gear center by tooth space 𝑖. 

𝑛 Rotational speed in rpm. 

𝑃 Oil pressure in the reference control volume. 

𝑃𝑇𝐴𝑁𝐾  Oil pressure inside the tank. 

𝑄𝑙  Volumetric flow rate under laminar condition. 

𝑄𝑡 Volumetric flow rate under turbulent condition. 

r,t Subscripts used to indicate the radial (r) and tangential (t) component of the pressure force 

applied by a single tooth space. 

𝑟𝑒𝑥𝑡 Radius of the external circle. 

𝑟𝑟𝑜𝑜𝑡  Radius of the root circle. 

𝑢 Tangential velocity. 

𝑉 Volume of the reference control volume.  

𝑉𝑣𝑎𝑟  Variable volume added to the inlet/outlet chamber. 

𝑤 Channel width. 

𝑧𝑛 Number of teeth. 

𝑥, 𝑦, 𝑧 Superscripts used to indicate the reference Cartesian components of the pressure force and 

torque. 

 

2.Pressure force and torque estimation 

The methodology introduced hereafter can be considered as a complete method to determine the 

pressure forces and torques in external gear pumps. Figure 1 depicts the reference scheme of the 

proposed procedure in a generic external gear pump; on the center of each gear, a 3D reference system 
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is located and the pressure forces applied on the two gears are studied separately. Let consider the 

generic tooth space 𝑉𝑖  of the driving gear and the two adjacent tooth spaces, namely 𝑉𝑗  and 𝑉𝑗−1, which 

share oil flow rates during the meshing course. Along a complete revolution, two different configurations 

are identified, distinguishing if the reference tooth space is outside, or inside, the meshing zone. 

 

2.1.Tooth spaces out of the meshing zone 

Within this layout, the oil pressure acts symmetrically on the entire tooth space surface and, 

therefore, pressure force 𝐹𝐿𝑅 does not have a tangential component (𝐹𝐿𝑅=𝐹𝐿𝑅,𝑟), as it can be seen in Figure 

1. In this frame, 𝐹𝐿𝑅 can be determined, as described in [2], with Eqn. ( 1 ): 

 

|𝐹𝐿𝑅| = 2 ∙ 𝑃𝑖 ∙ sin (
𝜗𝐿 − 𝜗𝑅

2
) ∙ 𝑏 ∙ 𝑟𝑒𝑥𝑡 ( 1 ) 

 

The absence of a tangential component leads to the absence of pressure torques applied to the gear. 

The total force loading the gear center can be therefore calculated with Eqns. ( 2 ) and ( 3 ): 

 

𝐹𝑡𝑜𝑡,𝑖
𝑥 = −|𝐹𝐿𝑅| ∙ cos (

𝜗𝑅 + 𝜗𝐿

2
) ( 2 ) 

 

𝐹𝑡𝑜𝑡,𝑖
𝑦 = −|𝐹𝐿𝑅| ∙ sin (

𝜗𝑅 + 𝜗𝐿

2
) ( 3 ) 

 

2.2.Tooth spaces inside the meshing zone 

When tooth space 𝑉𝑖  enters within the meshing zone, it is necessary to consider that a different 

discretization of the control volume is adopted and, in particular, three different control volumes 
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contribute to the definition of the reference tooth space surface (Figure 2.a). It has to be underlined that 

within such a methodology, the meshing zone starts when the tooth of the driven gear enters into the 

circle defined by radius 𝑟𝑒𝑥𝑡  and not when the real contact occurs; concurrently, it ends when the tooth 

of the driven gear exits from the same circle and not when the real contact ends. As a result, the tooth 

space is divided into three regions, each one under the loading of a different pressure and separated by 

the contact point K and the point of minimum distance H (Figure 2). Pressure 𝑃𝑖  of the reference control 

volume acts on the central region, while the two external regions are influenced by pressures 𝑃𝑗  and 𝑃𝑗−1, 

belonging to control volumes 𝑉𝑗  and 𝑉𝑗−1 previously defined; the three regions are analyzed separately, 

defining for each one the acting forces (see Figure 2.b and Figure 2.c). 

In the region located on the left side of the tooth space, between points L and K, pressure 𝑃𝑗−1 is 

acting and the connected pressure force 𝐹𝐿𝐾 can be divided in two components along the radial and 

tangential directions, respectively named 𝐹𝐿𝐾,𝑟 and 𝐹𝐿𝐾,𝑡 (Figure 2), calculated with Eqn. ( 4 ) and ( 5 ): 

 

|𝐹𝐿𝐾,𝑟| = 2 ∙ 𝑃𝑗−1 ∙ sin (
𝜗𝐿 − 𝜗𝐾

2
) ∙ 𝑏 ∙ 𝑟𝑒𝑥𝑡 ( 4 ) 

 

|𝐹𝐿𝐾,𝑡| = 𝑃𝑗−1 ∙ 𝑏 ∙ (𝑟𝑒𝑥𝑡 − 𝑟𝐾) ( 5 ) 

 

The presence of a non-zero tangential component leads to the non-zero pressure torque 𝑀𝐿𝐾, which 

can be calculated with the following equation ( 6 ): 

 

|𝑀𝐿𝐾| = |𝐹𝐿𝐾,𝑡| ∙ (
𝑟𝑒𝑥𝑡 + 𝑟𝐾

2
) ( 6 ) 
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The force 𝐹𝐿𝐾 has now to be referred into the coordinates system of Figure 1 using Eqn. ( 7 ) and ( 8 ): 

 

𝐹𝐿𝐾
𝑥 = −|𝐹𝐿𝐾,𝑟| ∙ cos (

𝜗𝐿 + 𝜗𝐾

2
) − |𝐹𝐿𝐾,𝑡| ∙ sin (

𝜗𝐿 + 𝜗𝐾

2
) ( 7 ) 

 

𝐹𝐿𝐾
𝑦 = −|𝐹𝐿𝐾,𝑟| ∙ sin (

𝜗𝐿 + 𝜗𝐾

2
) + |𝐹𝐿𝐾,𝑡| ∙ cos (

𝜗𝐿 + 𝜗𝐾

2
) ( 8 ) 

 

A similar procedure can be applied to the right side of the tooth space, between points H and R (Figure 

2): here pressure 𝑃𝑗  produces force 𝐹𝐻𝑅, defined along the radial and tangential directions, and torque 

𝑀𝐻𝑅, which can be calculated with Eqn. ( 9 ), ( 10 ) and ( 11 ): 

 

|𝐹𝐻𝑅,𝑟| = 2 ∙ 𝑃𝑗 ∙ sin (
𝜗𝐻 − 𝜗𝑅

2
) ∙ 𝑏 ∙ 𝑟𝑒𝑥𝑡  ( 9 ) 

 

|𝐹𝐻𝑅,𝑡| = 𝑃𝑗 ∙ 𝑏 ∙ (𝑟𝑒𝑥𝑡 − 𝑟𝐻) ( 10 ) 

 

|𝑀𝐻𝑅| = |𝐹𝐻𝑅,𝑡| ∙ (
𝜗𝐻 + 𝜗𝑅

2
) ( 11 ) 

 

As done regarding 𝐹𝐿𝐾, force 𝐹𝐻𝑅 has to be referred into the coordinates system in Figure 1 applying 

Eqn. ( 12 ) and ( 13 ): 

 

𝐹𝐻𝑅
𝑥 = −|𝐹𝐻𝑅,𝑟| ∙ cos (

𝜗𝐻 + 𝜗𝑅

2
) + |𝐹𝐻𝑅,𝑡| ∙ sin (

𝜗𝐻 + 𝜗𝑅

2
) ( 12 ) 
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𝐹𝐻𝑅
𝑦 = −|𝐹𝐻𝑅,𝑟| ∙ sin (

𝜗𝐻 + 𝜗𝑅

2
) − |𝐹𝐻𝑅,𝑡| ∙ cos (

𝜗𝐻 + 𝜗𝑅

2
) ( 13 ) 

 

The middle part of the tooth space, which results to be bounded by points K and H, is subjected to 

pressure 𝑃𝑖; in this case, the pressure force is additionally subdivided into two forces, namely 𝐹𝐾𝑀 and 

𝐹𝑀𝐻. Force 𝐹𝐾𝑀 and torque 𝑀𝐾𝑀 are determined with Eqn. ( 14 ), ( 15 ) and ( 16 ): 

 

|𝐹𝐾𝑀,𝑟| = 2 ∙ 𝑃𝑖 ∙ sin (
𝜗𝐾 − 𝜗𝑀

2
) ∙ 𝑏 ∙ 𝑟𝑒𝑥𝑡  ( 14 ) 

 

|𝐹𝐾𝑀,𝑡| = 𝑃𝑖 ∙ 𝑏 ∙ (𝑟𝐾 − 𝑟𝑀) ( 15 ) 

 

|𝑀𝐾𝑀| = |𝐹𝐾𝑀,𝑡| ∙ (
𝜗𝐾 + 𝜗𝑀

2
) ( 16 ) 

 

Concurrently, force 𝐹𝑀𝐻, and the relative torque 𝑀𝑀𝐻, are calculated with Eqn. ( 17 ), ( 18 ) and ( 19 ): 

 

|𝐹𝑀𝐻,𝑟| = 2 ∙ 𝑃𝑖 ∙ sin (
𝜗𝑀 − 𝜗𝐻

2
) ∙ 𝑏 ∙ 𝑟𝑒𝑥𝑡 ( 17 ) 

 

|𝐹𝑀𝐻,𝑡| = 𝑃𝑖 ∙ 𝑏 ∙ (𝑟𝐻 − 𝑟𝑀) ( 18 ) 

 

|𝑀𝑀𝐻| = |𝐹𝑀𝐻,𝑡| ∙ (
𝑟𝑀 + 𝑟𝐻

2
) ( 19 ) 

 

Focusing the attention on Figure 2.b and Figure 2.c, it can be noticed that the layout of the applied 
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forces changes during the meshing evolution; in particular, it depends on the position of the contact point 

with respect to the line of action. When the meshing occurs along the line of approach (Figure 2.b), radius 

𝑟𝐾 < 𝑟𝐻  and 𝑟𝐾 = 𝑟𝑀; therefore, 𝐹𝐾𝑀,𝑡 becomes zero, as well as torque 𝑀𝐾𝑀, while 𝐹𝑀𝐻,𝑡 is applied on the 

right flank of the tooth space. On the opposite, when the meshing occurs along line of recess (Figure 2.c), 

radius 𝑟𝐾 > 𝑟𝐻 and 𝑟𝐻 = 𝑟𝑀; therefore, 𝐹𝑀𝐻,𝑡 becomes zero, as well as 𝑀𝑀𝐻, while 𝐹𝐾𝑀,𝑡 is applied on the 

left flank of the tooth space. 

Force 𝐹𝐾𝐻, defined as the sum of 𝐹𝐾𝑀 and 𝐹𝑀𝐻, is calculated with Eqn. ( 20 ) and ( 21 ): 

 

𝐹𝐾𝐻
𝑥 = −|𝐹𝐾𝑀,𝑟| ∙ cos (

𝜗𝐾 + 𝜗𝑀

2
) − |𝐹𝐾𝑀,𝑡| ∙ sin (

𝜗𝐾 + 𝜗𝑀

2
) − |𝐹𝑀𝐻,𝑟| ∙ cos (

𝜗𝑀 + 𝜗𝐻

2
) + |𝐹𝑀𝐻,𝑡| ∙ sin (

𝜗𝑀 + 𝜗𝐻

2
) ( 20 ) 

 

𝐹𝐾𝐻
𝑦 = −|𝐹𝐾𝑀,𝑟| ∙ sin (

𝜗𝐾 + 𝜗𝑀

2
) + |𝐹𝐾𝑀,𝑡| ∙ cos (

𝜗𝐾 + 𝜗𝑀

2
) − |𝐹𝑀𝐻,𝑟| ∙ sin (

𝜗𝑀 + 𝜗𝐻

2
) − |𝐹𝑀𝐻,𝑡| ∙ cos (

𝜗𝐾 + 𝜗𝐻

2
) ( 21 ) 

 

The total force 𝐹𝑡𝑜𝑡,𝑖  and the total torque 𝑀𝑡𝑜𝑡,𝑖  loading the gear center can be obtained from the sum of 

all the contributions estimated above: 

 

𝐹𝑡𝑜𝑡,𝑖
𝑥 = 𝐹𝐿𝐾

𝑥 + 𝐹𝐾𝐻
𝑥 + 𝐹𝐻𝑅

𝑥 ( 22 ) 

 

𝐹𝑡𝑜𝑡,𝑖
𝑦 = 𝐹𝐿𝐾

𝑦 + 𝐹𝐾𝐻
𝑦 + 𝐹𝐻𝑅

𝑦 ( 23 ) 

 

𝑀𝑡𝑜𝑡,𝑖 = −|𝑀𝐻𝑅| − |𝑀𝑀𝐻| + |𝑀𝐿𝐾| + |𝑀𝐾𝑀| ( 24 ) 

 

Once the calculus of the pressure force and torque has been terminated for a complete revolution, it 

is possible to determine the total loads acting on the gear center as the sum of each tooth space 
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contribution. Thus, this final step allows the calculation of the variable pressure force (and torque) at each 

frame of calculus 𝑘 along the pitch, which is the fundamental period of such loads (Eqn. ( 25 ), ( 26 ) and ( 

27 )). 

 

𝐹𝑡𝑜𝑡
𝑥(𝑘) = ∑ 𝐹𝑡𝑜𝑡,𝑖

𝑥(𝑘)

𝑧𝑛

𝑖=1

 ( 25 ) 

 

𝐹𝑡𝑜𝑡
𝑦(𝑘) = ∑ 𝐹𝑡𝑜𝑡,𝑖

𝑦(𝑘)

𝑧𝑛

𝑖=1

 ( 26 ) 

 

𝑀𝑡𝑜𝑡(𝑘) = ∑ 𝑀𝑡𝑜𝑡,𝑖(𝑘)

𝑧𝑛

𝑖=1

 ( 27 ) 

 

The present procedure can be straightforwardly applied to the driven gear; in this case if 𝑉𝑗   is the 

reference control volume, then it is necessary to take into account the influence of control volumes 𝑉𝑖  

and 𝑉𝑖+1. 

 

2.3.Model extension to helical gears 

Hereafter, the methodology has been extended to helical gears, with the aim to define a general 

method for pressure force and torque estimation. 

In order to estimate pressure force and torque under the effects of helix, the helical gear is divided 

into an arbitrary number of spur gears, obtained by cutting the helical one along the axial direction. The 

methodology for calculating the pressure force and torque is applied to each spur gear by using Eqns. (1-
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24), obtaining the evolution of such loads along a complete revolution. It has to be underlined that in case 

of helical gears the oil pressure is acting perpendicularly with respect to the teeth surface. Therefore, to 

correctly determine the pressure force components along axes x and y, pressure 𝑃𝑖 , 𝑃𝑗  and 𝑃𝑗−1 should be 

multiplied by cos(𝛽). 

Moreover, the application of such procedure cannot be considered exhaustive: the particular shape 

of helical gears necessarily causes the presence of non-zero components of the pressure force along the 

axial direction, and two more components of the pressure torque, along axes x and y. Hence, it has to be 

considered that, in case of helical gears, pressure force and torque should be expressed along all the three 

Cartesian coordinates. Thus, with the aim of defining a general method, the procedure has been extended 

to all the remaining components. 

 

2.3.1.Helical tooth spaces out of the meshing zone. 

Along the axial direction, the tooth space appears to be unbalanced only inside the meshing zone. In this 

latter case, the calculus of the pressure force along the axial direction depends on the position of the 

contact point with respect to the line of action, as previously explained about 𝐹𝐾𝐻. Within this framework, 

when the meshing occurs along the line of approach, force 𝐹𝐾𝑀
𝑧 is equal to zero even if the radial 

component exists; the same effect is obtained regarding 𝐹𝑀𝐻
𝑧 when the meshing occurs along the line of 

recess. Nevertheless, a single equation can be obtained to determine 𝐹𝑡𝑜𝑡,𝑖
𝑧: 

 

𝐹𝑡𝑜𝑡,𝑖
𝑧 = ± tan(𝛽) ∙ (|𝐹𝐿𝐾,𝑟| + |𝐹𝐿𝐾,𝑡| − |𝐹𝐻𝑅,𝑟| − |𝐹𝐻𝑅,𝑡| + |𝐹𝐾𝑀,𝑡| − |𝐹𝑀𝐻,𝑡| +

1 + 𝑠𝑖𝑔𝑛(𝑟𝐾 − 𝑟𝐻)

2
|𝐹𝐾𝑀,𝑟| −

1 − 𝑠𝑖𝑔𝑛(𝑟𝐾 − 𝑟𝐻)

2
|𝐹𝑀𝐻,𝑟|) ( 28 ) 

 

The correct choice between plus or minus in Eqn. ( 28 ) depends on the type of gears analyzed and, 

in particular, whether they are right-handed or left-handed gears. 
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Regarding the estimation of pressure torque along axes x and y, an approach similar to the one 

proposed for the definition of the pressure torque along axial direction is hereafter defined, but applied 

to all the positions assumed by the tooth space during a complete revolution. Focusing the attention on 

a tooth space outside the meshing zone, such a tooth space is not balanced with respect to the torque 

along axes x and y. Moreover, to calculate its value it is necessary to firstly divide the tooth space in two 

specular parts, namely right-side and left-side, through his axial plane of symmetry and later determine 

the pressure force applied on each part along axis z. Thus, Eqn. ( 29 ) and ( 30 ) show the two opposite 

forces, which have the same amplitude and a different loading point (Figure 3). 

 

𝐹𝐿𝑁
𝑧 = ± tan(𝛽) ∙ (

𝐹𝐿𝑅
2⁄ + 𝑃𝑖 ∙ 𝑏 ∙ (𝑟𝑒𝑥𝑡 − 𝑟𝑟𝑜𝑜𝑡)) ( 29 ) 

 

𝐹𝑁𝑅
𝑧 = ∓ tan(𝛽) ∙ (

𝐹𝐿𝑅
2⁄ + 𝑃𝑖 ∙ 𝑏 ∙ (𝑟𝑒𝑥𝑡 − 𝑟𝑟𝑜𝑜𝑡)) ( 30 ) 

 

Again, the correct choice between plus or minus depends on the type of gears analyzed. It is now 

possible to directly calculate the pressure torque along axis x and y using Eqn. ( 31 ) and ( 32 ). 

 

𝑀𝑡𝑜𝑡,𝑖
𝑥 = 𝐹𝑁𝑅

𝑧 ∙ (
𝑟𝑒𝑥𝑡 + 𝑟𝑟𝑜𝑜𝑡

2
) ∙ cos(𝜗𝑀𝑅

) − 𝐹𝐿𝑁
𝑧 ∙ (

𝑟𝑒𝑥𝑡 + 𝑟𝑟𝑜𝑜𝑡

2
) ∙ cos(𝜗𝑀𝐿

) ( 31 ) 

 

𝑀𝑡𝑜𝑡,𝑖
𝑦 = 𝐹𝑁𝑅

𝑧 ∙ (
𝑟𝑒𝑥𝑡 + 𝑟𝑟𝑜𝑜𝑡

2
) ∙ sin(𝜗𝑀𝑅

) − 𝐹𝐿𝑁
𝑧 ∙ (

𝑟𝑒𝑥𝑡 + 𝑟𝑟𝑜𝑜𝑡

2
) ∙ sin(𝜗𝑀𝐿

) ( 32 ) 

 

By assuming that each force, 𝐹𝑁𝑅
𝑧 and 𝐹𝐿𝑁

𝑧, acts along the axis of symmetry of the angular sector which 
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defines it, angles 𝜗𝑀𝑅
 and 𝜗𝑀𝐿

 are respectively defined by Eqn. ( 33 ) and ( 34 ): 

 

𝜗𝑀𝑅
= 𝜗𝑅 −

2𝜋

4𝑧𝑛

∓
𝜋

2
 ( 33 ) 

 

𝜗𝑀𝐿
= 𝜗𝐿 +

2𝜋

4𝑧𝑛

±
𝜋

2
 ( 34 ) 

 

2.3.2.Helical tooth spaces into the meshing zone. 

The same procedure can be applied to tooth spaces inside the meshing zone. In particular, in Figure 2, the 

tooth space is divided into the two specular parts (right-side causing 𝑀𝐻𝑅
𝛽, 𝑀𝑁𝐻

𝛽, and left-side causing 

𝑀𝐿𝐾
𝛽 and 𝑀𝐾𝑁

𝛽) and their contribution to the pressure torque components along axes x and y is 

estimated. When the meshing occurs along the line of approach, the pressure torque components caused 

by the left-side are: 

 

|𝑀𝐿𝐾
𝛽| = tan(𝛽) ∙ (|𝐹𝐿𝐾,𝑟| + |𝐹𝐿𝐾,𝑡|) ∙ (

𝑟𝑒𝑥𝑡 + 𝑟𝐾

2
) ( 35 ) 

 

|𝑀𝐾𝑁
𝛽| = tan(𝛽) ∙ 𝑃𝑖 ∙ 𝑏 ∙ [2 ∙ 𝑟𝐾 ∙ sin (

𝜗𝐾 − 𝜗𝑁

2
) ∙ (

𝑟𝑟𝑜𝑜𝑡 + 𝑟𝐾

2
) + (

𝑟𝐾
2 − 𝑟𝑟𝑜𝑜𝑡

2

2
)] ( 36 ) 

 

Concurrently, the pressure torque components caused by the right-side are: 

 

|𝑀𝐻𝑅
𝛽| = tan(𝛽) ∙ (|𝐹𝐻𝑅,𝑟| + |𝐹𝐻𝑅,𝑡|) ∙ (

𝑟𝑒𝑥𝑡 + 𝑟𝐻

2
) ( 37 ) 
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|𝑀𝑁𝐻
𝛽| = tan(𝛽) ∙ 𝑃𝑖 ∙ 𝑏 ∙ [2 ∙ 𝑟𝐻 ∙ sin (

𝜗𝑁 − 𝜗𝐻

2
) ∙ (

𝑟𝑟𝑜𝑜𝑡 + 𝑟𝐻

2
) + (

𝑟𝐻
2 − 𝑟𝑟𝑜𝑜𝑡

2

2
)] ( 38 ) 

 

Therefore, the total pressure torque applied along the Cartesian axes x and y are obtained applying 

equations ( 39 ) and ( 40 ), respectively: 

 

𝑀𝑡𝑜𝑡,𝑖
𝑥 = ∓|𝑀𝐿𝐾

𝛽| ∙ sin (
𝜗𝐿 + 𝜗𝐾

2
) ∓ |𝑀𝐾𝑁

𝛽| ∙ sin (
𝜗𝐾 + 𝜗𝑁

2
) ± |𝑀𝑁𝐻

𝛽| ∙ sin (
𝜗𝑁 + 𝜗𝐻

2
) ± |𝑀𝐻𝑅

𝛽| ∙ sin (
𝜗𝐻 + 𝜗𝑅

2
) ( 39 ) 

 

𝑀𝑡𝑜𝑡,𝑖
𝑦 = ±|𝑀𝐿𝐾

𝛽| ∙ cos (
𝜗𝐿 + 𝜗𝐾

2
) ± |𝑀𝐾𝑁

𝛽| ∙ cos (
𝜗𝐾 + 𝜗𝑁

2
) ∓ |𝑀𝑁𝐻

𝛽| ∙ cos (
𝜗𝑁 + 𝜗𝐻

2
) ∓ |𝑀𝐻𝑅

𝛽| ∙ cos (
𝜗𝐻 + 𝜗𝑅

2
) ( 40 ) 

 

Once the calculus has been repeated for every spur gear which the helical gear was divided into, it is 

necessary to execute a numerical integration along the width of the gear for all the components x, y and 

z of pressure force 𝐹𝑡𝑜𝑡,𝑖  and torque 𝑀𝑡𝑜𝑡,𝑖. The result is the variation of the actions produced by the oil 

pressure inside a helical tooth space during a revolution; in order to obtain the total actions applied on 

the gear center along the angular pitch, Eqn. ( 25 ) must be applied and extended to every component of 

the pressure force and torque. 

 

3. Application: tandem gear pump.  

3.1 Mechanical set up 

In order to assess the methodology on both spur and helical gears, the procedure has been applied 

on a tandem gear pump, which is described in detail in the present section. The tooth space pressure 
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ripple has been firstly calculated applying a numerical model, later the results have been validated, in 

terms of outlet pressure ripple and volumetric efficiency, with experimental data, hence the pressure force 

and torque have been determined. 

Generally, a tandem pump consists of two couples of coaxial gearwheels. The tandem pump being 

studied has one gear stage working at high pressure level and the other stage working at a lower pressure 

level. The two driver gears and the two driven gears are located on the same driving and driven shafts, 

respectively, being the stages coaxial. This mechanical setup forces the stages to work at the same mean 

angular velocity. Figure 4 shows the setup of the pump: the Low-Pressure Stage, hereafter called LPS, is 

located directly inside the casing and consists of two helical gearwheels with same number of teeth. The 

LPS is hydraulically divided from the High-Pressure Stage, namely HPS, by a mid-plate. The HPS consists of 

a couple of external spur gearwheels, which work between the mid-plate and the cover-plate. Two couples 

of journal bearings, directly shaped inside the casing and the cover-plate, support the rotating shafts. The 

HPS and LPS share a common inlet chamber, whilst they have two separated outlet chambers. The LPS and 

HPS are put in communication with inlet and their relative outlet chambers by the presence of grooves 

that allow the oil to flow inside and outside the tooth spaces easily. At the same time, grooves are shaped 

in order to keep the chambers hydraulically divided by the pressurization zone and the meshing zone, 

where the relief grooves. 

The clearance between the shafts and the mid-plate holes is rather large; thus, a slight friction 

between them is present. In this scenario, the two volumes defined between the shaft and the mid-plate 

can be considered such as “drainage chambers” that slightly connect the two stages and allow oil 

exchange. 
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3.2 .Variable pressure modeling  

A brief review of the mathematical approach used to determine the pressure variation around the 

gear pump for a complete gear rotation is given, focusing the attention on the control volumes scheme 

adopted to model the tandem pump and the several flow rates determined for each stage. The complexity 

of the pump geometry, due to the presence of the double stage, several grooves and the LPS with helical 

gears, has led to develop a lumped parameter (LP) model which uses some results provided by a 

Computational Fluid Dynamic (CFD) model. The LP approach has been adopted to evaluate the 

performances of the tandem pump in terms of outlet mass flow rate, outlet pressure ripple, oil pressure 

evolution for both the LPS and HPS during a complete gear rotation and instantaneous volumetric 

efficiency. Concurrently, in order to improve the LP model results accuracy, a 2D and a 3D CFD model have 

been developed. These models have been used with the aim at investigating some specific fluid dynamics 

phenomena that occur in several pump areas that play an important role in the resulting oil pressure. The 

complete CFD model will be presented in further papers of the authors. 

Regarding the LP model, the entire pump and the relative outlet piping system of the test bench have 

been discretized with a constant number of control volumes in which all the fluid properties are 

considered as constant. Several authors [2, 24, 25, 26] have already applied a similar approach, each of 

them proposing a different subdivision of the pump volumes, in particular in the meshing zone. In the 

present model, the discretization of the meshing zone proposed by Vacca et al. in [24] has been 

implemented, but a different physical approach has been followed. Assuming that the pump works at 

constant angular speed, the time dependence of the physical properties can be replaced with an angular 

dependence and Eqn. ( 41 ) can be used to describe the pressure evolution inside each control volume. 
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𝑑𝑃𝑖

𝑑𝜗
=

𝛽𝐵

𝑉𝑖

[
1

𝜔
(∑ 𝑄𝑖

𝑖𝑛 − ∑ 𝑄𝑖
𝑜𝑢𝑡) − (

𝑑𝑉𝑖

𝑑𝜗
−

𝑑𝑉𝑖
𝑣𝑎𝑟

𝑑𝜗
)] ( 41 ) 

 

Applying Eqn. ( 41 ) to each control volume, with the appropriate definition of the exchanged flows, 

the unknown pressure can be calculated. Two different categories of flow rates are considered: laminar 

flow rates and turbulent flow rates. The formers have been defined using the modified Poiseuille’s 

equation (Eqn. ( 42 )), which accounts the dependence from the pressure drop and the contribute of the 

drag flow: 

 

𝑄𝑙 =
𝑤ℎ3

12𝜇

∆𝑃

𝐿
+

𝑤ℎ𝑢

2
 ( 42 ) 

 

The latter have been defined using Eqn. ( 43 ), obtained applying the Bernoulli’s equation under 

specific hypotheses: 

 

𝑄𝑡 = 𝐶𝑑𝐴√
2|∆𝑃|

𝜌
𝑠𝑖𝑔𝑛(∆𝑃) ( 43 ) 

 

According to the different links between flow and pressure drop defined by Eqn. ( 42 ) and ( 43 ), it is 

important to correctly interpret the nature of the several flows describing the interconnections between 

volumes. 

The tandem pump has been discretized using 65 control volumes: 34 related to the high-pressure 

gears, 22 to the low-pressure gears, 3 related to the common inlet chamber and the two outlet chambers, 

2 to the interconnecting volumes between stages and, finally, 4 to describe the outlet piping system of the 
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test bench. Figure 5 provides a global view of the model structure and the connections between control 

volumes. As it can be observed, the 66th control volume, namely TANK, has been added to represent the 

environmental boundary conditions: the oil pressure inside this volume is not calculated but defined as a 

constant and equal to the atmospheric pressure. The set of volumetric flow rates that connects the TANK 

to the inlet chamber and the outlet chamber to the TANK has been considered as turbulent and, therefore, 

modelled by using Eqn. ( 43 ). The turbulent behavior was also used to model the presence of the two 

valves that define the pressure drop between the outlet pressures (LPS and HPS) and the TANK pressure. 

The model has been implemented in Matlab environment. In Table 1 the main parameters concerning the 

physical properties of the oil, considered as constant values, are shown. By using the parameters in Table 

1, a mean outlet pressure equal to 30bar for the HPS and 3bar for the LPS and a constant angular step Δθ 

equal to 0.2406°, the time computational cost to simulate a complete rotation is about 4 hours. 

 

3.3.Experimental model verification 

In the present subsection the most remarkable results, calculated with the numerical model formerly 

described, are introduced and discussed, comparing them with some experimental data. A test rig is used 

to evaluate the tandem pump performances in terms of outlet pressure ripple and outlet mass flow rate. 

It consists of a common tank, which provides the necessary oil flow rate, and two outlet pipelines, each 

one connecting the outlet chamber of one stage with the tank. An electrical motor controlled by inverter 

drives the pump. The outlet pressure provided by the two stages is settled separately on both pipelines 

through a control valve. A specific system is also used to control and maintain the oil temperature as 

constant. A high frequency piezoelectric transducer (model PCB S102B) has been used in order to measure 

the pressure ripple in the pipelines. 

Figure 6 shows the comparison between measured and simulated results concerning the outlet 
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pressure ripple of the LPS (divided by the mean delivery pressure) in time domain during a complete 

revolution. These results have been obtained considering the pump working at nominal conditions, 

therefore the initial transient is not taken into account. As it can be noticed, the pressure ripple is 

characterized by the presence of 11 main peaks, which represent the 11 meshing events occurring along 

the complete revolution. A similar analysis has been simultaneously conduced for the HPS and the 

comparison between measured and simulated delivery pressure ripple in time domain is shown in Figure 

7. As observed in the LPS results, the outlet pressure ripple is mainly characterized by the presence of a 

number of peaks equals to the number of meshing events that occur during a complete revolution. 

From this analysis, it can be affirmed that the numerical model provides a satisfactory reproduction 

of the main characteristics of the measured outlet pressure ripple; a good agreement is also obtained 

comparing the measured and simulated volumetric efficiency of the two stages (see Table 2). 

 

4.Results and discussion 

In the present section the results concerning the methodology presented in Section 2 are shown and 

discussed, comparing them with the results obtained applying previous methods described in [2, 17]. 

In particular, the pressure evolution in the HPS and LPS estimate din Section 3 has been used as input 

data for the estimation of the pressure loads by using the proposed methodology (Section 2) and a 

method proposed in [2], namely past model 1 (PM1), and the method described in [17], namely past 

model 2 (PM2). These three methods are identified by a different way of modelling the pressure force 

and torque inside the meshing zone. In particular, in the PM1 the meshing phenomenon is not considered, 

therefore the pressure force is estimated by using Eqn. ( 1 ) along the entire revolution. Moreover, in the 

PM1 the pressure torque is calculated without considering the effects of the pressure in the tooth space 
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located between meshing teeth. In the PM2, the effects produced during the meshing evolution on the 

pressure force are evaluated, but a different definition of the control volumes is used. The PM2 takes into 

account the effects of the meshing phenomenon just when a double contact point exists. When a single 

contact point exists, in the PM2 the pressure torque is estimated as in PM1. Moreover, both PM1 and 

PM2 are explicitly built up to study spur gears and they can be applied on helical gears just under specific 

hypothesis [23]. 

Figure 8 shows the comparison between pressure force and torque on both driving and driven gear, 

obtained by applying the new methodology, namely current methodology CM, and the PM1 for the HPS. 

The forces (torques) are normalized with respect to the absolute value of the mean pressure force 

(torque) applied in x (z) direction on the driving gear by using the CM. As already discussed, the PM1 does 

not take into account the meshing phenomena, which results in a low level of agreement between these 

two methods. In particular, the estimation of the pressure torque on the driving gear appears to give 

completely different results (Figure 8.c), while there is, in general, a good accordance regarding the 

estimation of the pressure torque applied on the driven gear (Figure 8.f). The lack of agreement in the 

estimation of the pressure torque is due to the different approach: in the CM the pressure torque directly 

derives from the estimation of the pressure force applied along the tangential direction whilst in the PM1 

the pressure torque is evaluated analyzing geometrically the meshing phenomenon. 

In order to better understand why the estimation of the pressure force by using PM1 method gives 

so different results, it is possible to focus the attention, as an example, on the pressure force transmitted 

along the axis y by the tooth space defined by volume 𝑉𝑗  (belonging to the driven gear) during a complete 

revolution. In Figure 9 the evolution of such pressure force component during a complete revolution 

calculated by using the CM and by using the PM1 is shown, together with the pressure evolution inside 

the control volumes used for their determination. As expected, the two forces coincide for the entire 
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revolution, except for the meshing interval, in which the PM1 does not take into account the effect 

produced by two phenomena: (i) the light difference between the pressure evolution in control volumes 

𝑉𝑗  and 𝑉𝑖 ,  and (ii) the pressure drop in control volume 𝑉𝑖+1 that occurs an angular pitch before the 

pressure drop in 𝑉𝑖. This latter phenomenon strongly affects the pressure force effectively transmitted to 

the gear axis and, therefore, it cannot be neglected. The phenomenon (ii), in particular, is taken into 

account in the calculus procedure defined by PM2, which has been demonstrated to give more accurate 

results with respect to PM1 in the elasto-dynamic analysis of gear pumps [17]. 

Figure 10 shows the same comparison between the CM and the PM2 in the HPS. As it can be noticed, 

the two methods provide an almost coincident estimation of the pressure force transmitted along x 

direction, while a major level of discordance is observed in the estimation of the pressure force 

transmitted along y direction. These light discrepancies occur because of the procedure defined in PM2, 

which does not take into account the phenomenon (i). The oil pressure inside the tooth spaces referred 

to two meshing teeth, as observed in Figure 9, is almost equal during the meshing evolution. Nevertheless, 

when these tooth spaces start facing to the inlet chamber, the pressure drop in both control volumes 

determines an increase of the pressure difference between them and, therefore, a light difference in the 

pressure force estimated by the two models occurs. 

Regarding the pressure torque, it is possible to observe that similar results are obtained only till the 

35% of the angular pitch (Figure 10.c and Figure 10.f); the remaining 65% is characterized by a higher level 

of discordance, especially for the pressure torque applied on the driving gear. The reason of these results 

has to be found in the modelling procedure defined by PM2, in which the calculus is split in two sub-cases. 

When there are two pairs of teeth in contact (till about 40% of the angular pitch), the pressure torque 

estimation takes into account the oil pressure in the control volume between the two pairs of teeth. 

Therefore, within this angular interval, the pressure torque estimation is similar for both the PM2 and the 
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CM and the results show a satisfactory agreement. When there is only a pair of teeth in contact, PM2 

coincides with PM1, ergo the results show the same differences noticed in Figure 8. 

Following this discussion, it can be affirmed that the estimation of the pressure force and torque 

transmitted by the oil to the gears is strongly influenced by the several phenomena that occur during the 

meshing interval. By neglecting one of them affects the results with a relevance which depends on the 

angular extension of the neglected phenomenon itself. 

In Figure 11 the results regarding the pressure force (torque) provided by the application of the CM 

on the helical driving gear located in the LPS are shown as percent of the absolute value of the mean 

pressure force (torque) along axis x (z). 

Focusing the attention on the pressure force along the three axes, it can be noticed that 𝐹𝑍 has a 

considerable lower magnitude compared to 𝐹𝑋 and 𝐹𝑌. The pressure force along the axial direction 

strongly depends on the helix angle, which is around 10° for the analyzed gears. Moreover, this aspect 

becomes even more effective considering the pressure torque along axes x and y, which results to have a 

magnitude more than 100 times lower than along the axial direction. For this reason, the x and y 

components of the pressure torque could be neglected for the development of a simplified elasto-

dynamic analysis of helical gear pumps. Nevertheless, they could become considerably high in case of high 

values of outlet pressure and important in order to study the pump balancing or its dynamic behavior.  

 

5.Concluding remarks 

This paper presents an analytical methodology for the calculation of pressure forces and torques in 

both spur and helical gear pumps. The methodology consists in a systematic and general procedure to 

consider the major number of phenomena, which characterize the meshing evolution. In order to assess 



25 
 

its effectiveness, the methodology has been applied to a real tandem gear pump by comparisons with 

other methodologies available in the literature.  

The comparison has shown that the determination of pressure force and torque transmitted to the 

gears is strongly influenced by a number of phenomena, which are taken into consideration by the 

proposed model. 

The methodology applied to the helical gear stage enable to estimate all the force and torque 

components. The obtained results have shown that the pressure force along the axial direction, depending 

on the helix angle which is usually around 10° in gear pumps, is characterized by a magnitude 10 times 

lower than the magnitude of the pressure force along the other two directions. Moreover, the shape of 

helical gears leads to the presence of non-zero components of the pressure torque along axes x and y, 

even if the magnitude of these components is considerably lower than the pressure torque applied in axial 

direction. Nevertheless, they could become considerably high in case of high values of outlet pressure and 

important in order to study the pump balancing or the dynamic behavior in a 3D scenario. 

The application of the proposed allows to estimate the real importance of the force components 

related to the helix and consequently, to evaluate the negligible components with respect to the degree 

of accuracy needed. The proposed methodology can represent a useful tool to precisely estimate one of 

the main excitation sources that contribute to define the dynamic behavior of these machines. 

 

Acknowledgment 

The authors wish to thank TRW Automotive Italia S.r.l.— Automotive Pumps Division (Ostellato, 

Ferrara, Italy) and the engineers of this Company for co-operation and assistance in the collection of model 

data. This work has been developed within the Advanced Mechanics Laboratory (MechLav) of Ferrara 



26 
 

Technopole, realized through the contribution of Regione Emilia-Romagna – Assessorato Attività 

Produttive, Sviluppo Economico, Piano telematico – POR-FESR2007-2013, Attività I.1.1. 

 

6.References 

1. Mucchi E, Rivola A and Dalpiaz G. Modelling dynamic behavior and noise generation in gears 

pumps: procedure and validation. Appl Acoust 2013; 77:99-111. 

2. Mucchi E, Dalpiaz G and Fernàndez del Rincòn A. Elastodynamic analysis of a gear pump. part I: 

pressure distribution and gear eccentricity. Mech Syst Signal Pr 2010; 24(7):2160-2179. 

3. Mucchi E, Dalpiaz G and Rivola A. Elastodynamic analysis of a gear pump. part II: meshing 

phenomena and simulation results. Mech Syst Signal Pr 2010; 24(7):2180-2197. 

4. Arakere N G and Nataraj C. Numerical simulation of nonlinear spur gear dynamics. In: ASME 

Design Engineering Technical Conferences, Las Vegas, Nevada, USA, 1999. 

5. Theodossiades S and Natsiavas S. Non-linear dynamics of gear-pair systems with periodic 

stiffness and backlash. Journal of Sound and Vibration 2000; 229(2):287-310. 

6. Theodossiades S and Natsiavas S. On geared rotordynamic systems with oil journal bearings. 

Journal of Sound and Vibration 2001; 243(4):721-745. 

7. Kahraman A and Singh R. Interactions between time-varying mesh stiffness and clearance 

nonlinearities in a geared system. Journal of Sound and Vibration 1991; 146:135-156. 

8. Childs D, Moes H and Van Leeuwen H. Journal bearing impedance descriptions for rotordynamic 

applications. ASME Journal of Lubrication Technology 1977; 99:198-210. 



27 
 

9. Van de Vorst E L B, Fey R H B, De Kraker A et al. Steady-state behavior of flexible rotordynamic 

systems with oil journal bearings. Nonlinear Dynamics 1996; 11:295-313. 

10. Kuang H and Yang T. An estimate of mesh stiffness and load sharing ratio of a spur gear pair. In: 

International Power Transmission and Gear Conference, 1992; pp. 1–9 

11. Fernandez del Rincon A, Viadero F, Iglesias M. et al. A model for the study of meshing stiffness 

in spur gear transmissions. Mechanism and Machine Theory 2013; 61:30-58. 

12. Chang L, Liu G and Wu L. A robust model for determining the mesh stiffness of cylindrical gears. 

Mechanism and Machine Theory 2015; 87:93-114. 

13. Bastani Y and De Queiroz M. A new analytic approximation for the hydrodynamic forces in finite-

length journal bearings. ASME Journal of Tribology 2010; 132:1-9. 

14. Lahmar M, Haddad A and Nicolas D. An optimized short bearing theory for nonlinear dynamic 

analysis of turbulent journal bearings. Eur. J. Mech. A/Solids 2000; 19:151–177 

15. Chasalevris A and Sfyris D. Evaluation of the finite journal bearing characteristics, using the exact 

analytical solution of the Reynolds equation. Tribology International 2013; 57:216-234. 

16. Borghi M, Milani M and Toderi G. Sul calcolo della spinta sulle fiancate nelle machine 

oleodinamiche ad ingranaggi esterni. In: 51st ATI Congress, Udine, Italy, 1996 pp. 1675-1687. 

17. Mucchi E, Dalpiaz G and Fernàndez del Rincòn A. Elasto-dynamic analysis of a gear pump. part 

IV: improvement in the pressure ripple distribution modelling. Mech Syst Signal Pr 2015; 50-

51:193-213. 



28 
 

18. Borghi M, Milani M, Paltrinieri F et al. Studying the axial balance of external gear pumps- SAE 

paper 2005-01-3634, 2005. 

19. Bidhendi M, Foster K and Taylor R. Computer prediction of cyclic excitation sources for an 

external gear pump. Journal of Engineering Manufacture 1985; 199(3):175-180. 

20. Meldahl A. Théorie des pompes a engrenages. Revue Brown Boveri 1939; pp. 259-261. 

21. Takahashi Y. On the trapping of fluid between the teeth of the involute gear pump. Trans. of the 

Japan Society of Mechanical Engineers 1940; 3(6):6-10. 

22. Bonacini C. Sulle pompe ad ingranaggi a dentatura elicoidale. Tecnica Italian 1965; 3:5-11. 

23. Mucchi E and Dalpiaz G. Elasto-dynamic analysis of a gear pump. part III: experimental validation 

procedure and model extension to helical gears. Mech Syst Signal Pr 2015; 50-51:174-192 

24. Vacca A and Guidetti M. Modelling and experimental validation of external spur gear machines 

for fluid power applications. Simul Model Pract Th 2011; 19:2007-2031. 

25. Falfari S and Pelloni P. Setup of a 1D model for simulating dynamic behaviour of external gear 

pumps. SAE paper 2007-01-4228, 2007. 

26. Mancò S, Nervegna N, Simulation of an external gear pump and experimental verification. In: 

1st JHPS International Symposium on Fluid Power, Tokio, Japan, 1989 pp. 139-152. 

  



29 
 

TABLES 

Table 1. Main parameters used to determine the pressure distribution. 

 

Parameters Value 

𝛽𝐵  1.13∙109 Pa 

μ 0.0103 Pa∙s 

ρ 806.7 kg/m3 

PTANK 105 Pa 

n 3020 rpm 
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Table 2. Comparison between calculated and measured volumetric efficiency. 

 

Stage Simulated efficiency Measured efficiency 

LPS 0.980 0.987 

HPS 0.787 0.890 
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FIGURES 

 

 

 

Figure 1. Reference scheme for pressure force determination. 
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Figure 2. Discretization of the tooth space in the meshing zone (a), and definition of the forces loading 
the tooth space surface in detail, along the line of approach (b) and along the line of recess (c). 
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Figure 3. Pressure torque modelling when the tooth space is outside the meshing zone. 
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Figure 4. Mechanical setup of the tandem pump. 
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Figure 5. Control volumes and relative connections. 
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Figure 6. Comparison between measured and calculated outlet pressure of the LPS. 
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Figure 7. Comparison between measured and calculated outlet pressure of the HPS. 
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Figure 8. Comparison between pressure force and torque along the angular pitch for both driving and 
driven gear, in the HPS, calculated with the PM1 and the CM. 
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Figure 9. FY transmitted by a single tooth space Vj during a complete revolution estimated by using the 
CM and by using the PM1; pressure evolution in the tooth spaces used for the force estimation. 
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Figure 10. Comparison between pressure force and torque along the angular pitch for both driving and 
driven gear, in the HPS, calculated with the PM2 and the CM. 
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Figure 11. Pressure force and torque applied on the driving gear of the LPS. 

 


