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Abstract

COVID-19 infection caused by SARS-CoV-2 pathogen is a catastrophic pan-
demic outbreak all over the world with exponential increasing of confirmed cases
and, unfortunately, deaths. In this work we propose an AI-powered pipeline,
based on the deep-learning paradigm, for automated COVID-19 detection and
lesion categorization from CT scans. We first propose a new segmentation mod-
ule aimed at identifying automatically lung parenchyma and lobes. Next, we
combined such segmentation network with classification networks for COVID-19
identification and lesion categorization. We compare the obtained classification
results with those obtained by three expert radiologists on a dataset consisting of
162 CT scans. Results showed a sensitivity of 90% and a specificity of 93.5%
for COVID-19 detection, outperforming those yielded by the expert radiologists,
and an average lesion categorization accuracy of over 84%. Results also show
that a significant role is played by prior lung and lobe segmentation that allowed
us to enhance performance by over 20 percent points. The interpretation of the
trained AI models, moreover, reveals that the most significant areas for sup-
porting the decision on COVID-19 identification are consistent with the lesions
clinically associated to the virus, i.e., crazy paving, consolidation and ground
glass. This means that the artificial models are able to discriminate a pos-
itive patient from a negative one (both controls and patients with interstitial
pneumonia tested negative to COVID) by evaluating the presence of those le-
sions into CT scans. Finally, the AI models are integrated into a user-friendly
GUI to support AI explainability for radiologists, which is publicly available at
http: // perceivelab. com/ covid-ai . The whole AI system is unique since,
to the best of our knowledge, it is the first AI-based software, publicly available,
that attempts to explain to radiologists what information is used by AI methods
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for making decision and that involves proactively them in the decision loop to
further improve the COVID-19 understanding.

1. Introduction

At the end of 2019 in Wuhan (China) several cases of an atypical pneumo-
nia, particularly resistant to the traditional pharmacological treatments, were
observed. In early 2020, the COVID-19 virus [1] has been identified as the re-
sponsible pathogen for the unusual pneumonia. From that time, COVID-19 has
spread all around the world hitting, to date about 32 million of people (with
about 1M deaths), stressing significantly healthcare systems in several countries.
Since the beginning, it has been noted that 20% of infected subjects appear to
progress to severe disease, including pneumonia and respiratory failure and in
around 2% of cases death [2].

Currently, the standard diagnosis of COVID-19 is de facto based on a biomolec-
ular test through Real-Time Polimerase Chain Reaction (RT-PCR) test [3, 4].
However, although widely used, this biomolecular method is time-consuming
and appears to be not quite accurate suffering from a large number of false-
negatives [5].

Recent studies have outlined the effectiveness of radiology imaging through
chest X-ray and mainly Computed Tomography (CT) given the pulmonary in-
volvement in subjects affected by the infection [5, 6]. Given the extension of the
infection and the number of cases that daily emerge worldwide and that call for
fast, robust and medically sustainable diagnosis, CT scan appears to be suitable
for a robust-scale screening, given the higher resolution w.r.t. X-Ray. In this
scenario, artificial intelligence may play a fundamental role to make the whole
diagnosis process automatic, reducing, at the same time, the efforts required by
radiologists for visual inspection [7].

In this paper, thus, we present an innovative artificial intelligent approach to
achieve both COVID-19 identification and lesion categorization (ground glass,
crazy and paving consolidation) that are instrumental to evaluate lung damages
and the prognosis assessment. Our method relies only on radiological image
data avoiding the use of additional clinical data in order to create AI models
that are useful for large-scale and fast screening with all the subsequent benefits
for a favorable outcome. More specifically, we propose an innovative automated
pipeline consisting of 1) lung/lobe segmentation, 2) COVID-19 identification
and interpretation and 3) lesion categorization. We tested the AI-empowered
software pipeline on multiple CT scans, both publicly released and collected at
the Spallanzani Institute in Italy, and showed that: 1) our segmentation net-
works is able to effectively extract lung parenchyma and lobes from CT scans,
outperforming state of the art models; 2) the COVID-19 identification module
yields better accuracy (as well as specificity and sensitivity) than expert radi-
ologists. Furthermore, when attempting to interpret the decisions made by the
proposed AI model, we found that it learned automatically, and without any
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supervision, the CT scan features corresponding to the three most common le-
sions spotted in the COVID-19 pneumonia, i.e., consolidation, ground glass and
crazy paving, demonstrating its reliability in supporting the diagnosis by using
only radiological images. As an additional contribution, we integrate the tested
AI models into an user-friendly GUI to support further AI explainability for ra-
diologists, which is publicly available at http://perceivelab.com/covid-ai.
The GUI processes entire CT scans and reports if the patient is likely to be af-
fected by COVID-19, showing, at the same time, the scan slices that supported
the decision.

2. Related Work

The COVID-19 epidemic caught the scientific community flat-footed and in
response a high volume of research has been dedicated at all possible levels. In
particular, since the beginning of the epidemic, AI models have been employed
for disease spread monitoring [8, 9, 10], for disease progression [11] and prognosis
[12], for predicting mental health ailments inflicted upon healthcare workers [13]
and for drug repurposing [14, 15] and discovery [16].

However, the lion’s share in employing AI models for the fight against
COVID-19 belongs to the processing of X-rays and CT scans with the pur-
pose of detecting the presence of COVID-19 or not. In fact, recent scientific
literature has demonstrated the high discriminative and predictive capability
of deep learning methods in the analysis of COVID-19 related radiological
images[17, 18]. The key radiological techniques for COVID-19 induced pneu-
monia diagnosis and progression estimation are based on the analysis of CT
and X-ray images of the chest, on which deep learning methodologies have been
widely used with good results for segmentation, predictive analysis, and discrim-
ination of patterns [19, 20, 21]. If, on one hand, X-Ray represents a cheaper
and most effective solution for large scale screening of COVID-19 disease, on
the other hand, its low resolution has led AI models to show lower accuracy
compared to those obtained with CT data.

For the above reasons, CT scan has become the gold standard for investiga-
tion on lung diseases. In particular, deep learning, mainly in the form of Deep
Convolutional Neural Networks (DCNN), has been largely applied to lung dis-
ease analysis from CT scans images, for evaluating progression in response to
specific treatment (for instance immunotherapy, chemotherapy, radiotherapy)
[22, 23], but also for interstitial lung pattern analysis [24, 25] and on segmenta-
tion and discrimination of lung pleural tissues and lymph-nodes [26, 27]. This
latter aspect is particularly relevant for COVID-19 features and makes artifi-
cial intelligence an extremely powerful tool for supporting early diagnosis of
COVID-19 and disease progression quantification. As a consequence, several
recent works have reported using AI models for automated categorization of
CT scans [21] and also on COVID-19 [28, 29, 30] but without being able to
distinguish between the various types of COVID-19 lesions.

Thus, the main contributions of this paper w.r.t. the state of the art are the
following ones:
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• We propose a novel lung-lobe segmentation network outperforming state
of the art models;

• We employ the segmentation network to drive a classification network
in first identifying CT scans of COVID-19 patients, and, afterwards, in
automatically categorizing specific lesions;

• We then provide interpretation of the decisions made by the employed
models and discover that, indeed, those models focus on specific COVID-
19 lesions for distinguishing whether a CT scan pertains COVID-19 pa-
tients or not;

• We finally integrate the whole AI pipeline into a web platform to ease
use for radiologists, supporting them in their investigation on COVID-19
disease.

3. Explainable AI for COVID-19 data understanding

The proposed AI system aims at 1) extracting lung and lobes from chest
CT data, 2) categorizing CT scans as either COVID-19 positive or COVID-19
negative; 3) identifying and localizing typical COVID-19 lung lesions (consoli-
dation, crazy paving and ground glass); and 4) explaining eventually what CT
slices it based its own decisions.

3.1. AI Model for Lung Segmentation

Our lung-lobe segmentation model is based on the Tiramisu network [31],
a fully-convolutional DenseNet [32] in a U-Net architecture [33]. The model
consists in two data paths: the downsampling one, that aims at extracting
features and the upsampling one that aims at generating the output images
(masks). Skip connections (i.e., connections starting from a preceding layer in
the network’s pipeline to another one found later bypassing intermediate layers)
aim at propagating high-resolution details by sharing feature maps between the
two paths.

In this work, our segmentation model follows the Tiramisu architecture, but
with two main differences:

• Instead of processing each single scan individually, convolutional LSTMs [34]
are employed at the network’s bottleneck layer to exploit the spatial axial
correlation of consecutive scan slices.

• In the downsampling and upsampling paths, we add residual squeeze-and-
excitation layers [35], in order to emphasize relevant features and improve
the representational power of the model.

Before discussing the properties and advantages of the above modifications,
we first introduce the overall architecture, shown in Fig. 1.
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Figure 1: The proposed segmentation architecture, consisting of a downsampling path (top)
and an upsampling path (bottom), interconnected by skip connections and by the bottleneck
layer.

The input to the model is a sequence of 3 consecutive slices – suitably re-
sized to 224×224 – of a CT scan, which are processed individually and com-
bined through a convolutional LSTM layer. Each slice is initially processed
with a standard convolutional layer to expand the feature dimensions. The
resulting feature maps then go through the downsampling path of the model
(the encoder) consisting of five sequences of dense blocks, residual squeeze-
and-excitation layers and transition-down layers based on max-pooling. In the
encoder, the feature maps at the output of each residual squeeze-and-excitation
layer are concatenated with the input features of the preceding dense block, in
order to encourage feature reuse and improve their generalizability. At the end
of the downsampling path, the bottleneck of the model consists of a dense block
followed by a convolutional LSTM. The following upsampling path is symmetric
to the downsampling one, but it features: 1) skip connections from the down-
sampling path for concatenating feature maps at the corresponding layers of
the upsampling path; 2) transition-up layers implemented through transposed
convolutions. Finally, a convolutional layer provides a 6-channel segmentation
map, representing, respectively, the log-likelihoods of the lobes (5 channels, one
for each lobe) and non-lung (1 channel) pixels.

In the following, we review the novel characteristics of the proposed archi-
tecture.

Residual squeeze-and-excitation layers. Explicitly modeling interdepen-
dencies between feature channels has demonstrated to enhance performance of
deep architectures; squeeze-and-excitation layers [35] instead aim to select in-
formative features and to suppress the less useful ones. In particular, a set
of input features of size C ×H ×W is squeezed through average-pooling to a
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Figure 2: Example of lung and lobes segmentation.

C × 1 × 1 vector, representing global feature statistics. The “excitation” op-
erator is a fully-connected non-linear layer that translates the squeezed vector
into channel-specific weights that are applied to the corresponding input feature
maps.

Convolutional LSTM. We adopt a recurrent architecture to process the out-
put of the bottleneck layer, in order to exploit the spatial axial correlation
between subsequent slices and enhance the final segmentation by integrating
3D information in the model. Convolutional LSTMs [34] are commonly used
to capture spatio-temporal correlations in visual data (for example, in videos),
by extending traditional LSTMs using convolutions in both the input-to-state
and the state-to-state transitions. Employing recurrent convolutional layers al-
lows the model to take into account the context of the currently-processed slice,
while keeping the sequentiality and without the need to process the entire set
of slices in a single step through channel-wise concatenation, which increases
feature sizes and loses information on axial distance.

Fig. 2 shows an example of automated lung and lobe segmentation from
a CT scan by employing the proposed segmentation network. The proposed
segmentation network is first executed on the whole CT scan for segmenting
only lung (and lobes); the segmented CT scan is then passed to the downstream
classification modules for COVID-19 identification and lesion categorization.

3.2. Automated COVID-19 Diagnosis: CT classification

After parenchima lung segmentation (through the segmentation model pre-
sented in 3.1) a deep classification model analyzes slice by slice, each segmented
CT scan, and decides whether a single slice contains some evidence of the
COVID-19 disease. Afterwards, a voting method provides its final prediction
according to all the per-slice decisions. At this stage, the system does not carry
out any identification and localization of COVID-19 lesions, but it just identifies
all slices where patterns of interest may be found and according to them, makes
a guess on the presence or not of COVID-19 induced infection. An overview
of this model is shown in Fig. 3: first the segmentation network, described in
the previous section, identifies lung areas from CT scan, then a deep classifier
(a DenseNet model in the 201 configuration [32]) processes the segmented lung
areas to identify if the slice shows signs of COVID-19 virus.
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Figure 3: Overview of the COVID-19 detection approach for CT scan classification as
either COVID-19 positive or negative.

Once the COVID-19 identification model is trained, we attempt to under-
stand what features it employs to discriminate between positive and negative
cases. Thus, to interpret the decisions made by the trained model we compute
class-discriminative localization maps that attempt to provide visual explana-
tions of the most significant input features for each class. To accomplish this we
employ GradCAM [36] combined to VarGrad [37]. More specifically, GradCAM
is a technique to produce such interpretability maps through by investigat-
ing output gradient with respect to feature map activations. More specifically,
GradCAM generates class-discriminative localization map for any class c by first
computing the gradient of the score for class c, sc, w.r.t feature activation maps
Ak of a given convolutional layer. Such gradients are then global-average-pooled
to obtain the activation importance weights w, i.e.:

wc
k =

∑
i

∑
j

∂yc

∂Ak
ij

(1)

Afterwards, the saliency map Sc, that provides an overview of the activation
importance for the class c, is computed through a weighted combination of
activation maps, i.e.:

Sc = ReLU

(∑
k

wc
kA

k

)
(2)

VarGrad is a technique used in combination to GradGAM and consists in
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Figure 4: The DenseNet architecture. Convolutional processing layers are grouped in Dense
Blocks (top). Features extracted in previous layers are concatenated and fed to all the next
layers in the same Dense Block ensuring maximum information flow. Given that feature maps
from previous layers are passed to the next layers, redundancy is avoided (i.e., later layers do
not need to learn almost identical information from the immediately previous ones). In this
way, each successive layer adds only a small number of feature maps, the so called growth
factor, thus requiring fewer parameters to achieve state-of-the-art performance. Multiple
Dense Blocks can be concatenated and form a deeper network (bottom).

performing multiple activation map estimates by adding, each time, Gaussian
noise to the input data and then aggregating the estimates by computing the
variance of the set.

3.3. COVID-19 lesion identification and categorization

An additional deep network activates only if the previous system identifies a
COVID-19 positive CT scan. In that case, it works on the subset of slices iden-
tified as COVID-19 positives by the first AI system with the goal to localize and
identify specific lesions (consolidation, crazy paving and ground glass). More
specifically, the lesion identification system works on segmented lobes to seek
COVID-19 specific patterns. The subsystem for lesion categorization employs
the knowledge already learned by the COVID-19 detection module (shown in
Fig. 3) and refines it for specific lesion categorization. An overview of the whole
system is given in Fig. 5.

3.4. A Web-based Interface for Explaining AI decisions to Radiologists

In order to explain to radiologists, the decisions made by a “black-box”
AI system, we integrated the inference pipeline for COVID-19 detection into a
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Figure 5: Overview of COVID-19 lesion categorization approach.

web-based application. The application was designed to streamline the whole
inference process with just a few clicks and visualize the results with a variable
grade of detail (Fig. 6). If the radiologists desire to see which CT slices were
classified as positive or negative, they can click on “Show slices” where a detailed
list of slices and their categorization is showed (Fig. 7).

Because the models may not achieve perfect accuracy, a single slice inspec-
tion screen is provided, where radiologists can inspect more closely the result of
the classification. It also features a restricted set of image manipulation tools
(move, contrast, zoom) for aiding the user to make a correct diagnosis (Fig. 8).

The AI-empowered web system integrates also a relevance feedback mecha-
nism where radiologists can correct the predicted outputs, and the AI module
exploits such a feedback to improve its future assessments. Indeed, both at the
CT scan level and at the CT slice level, radiologists can correct models’ predic-
tion. The AI methods will then use the correct labels to enhance their future
assessments.

4. Results and Discussion

4.1. Dataset

Our dataset contains 72 CT scans of COVID-19 positive patients (positivity
confirmed both by a molecular - reverse transcriptase–polymerase chain reaction
for SARS-coronavirus RNA from nasopharyngeal aspirates - and an IgG or IgM
antibody test) and 94 CT scans of COVID-19 negative subjects (35 patients
with interstitial pneumonia but tested negative to COVID-19 and 59 controls).
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Figure 6: The main page of the AI-empowered web GUI for explainable AI. The user is
presented with a list of the CT scan classifications reporting the models’ prediction.

Figure 7: The summarized classification result showing the CT slices that the neural network
classified as positive or negative.
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Figure 8: The slice inspection screen. In this screen the user can inspect each single slice and
the AI models’ decisions.

CT scans were performed on a multi-detector row helical CT system scanner
5 using 120 kV pp, 250 mA, pitch of 1.375, gantry rotation time of 0,6 s and time
of scan 5,7 s. The non-contrast scans were reconstructed with slice thicknesses
of 0.625 mm and spacing of 0.625 mm with high-resolution lung algorithm. The
images obtained on lung (window width, 1,000–1,500 H; level, –700 H) and
mediastinal (window width, 350 H; level, 35–40 H) settings were reviewed on a
picture archiving and communication system workstation6. CT scans of positive
patients were also annotated by three expert radiologists (through consensus)
who selected a subset of slices and annotated them with the type (Consoli-
dation, Ground Glass and Crazy Paving) and the location (combinations of
left/right/central and posterior/anterior) of the lesion. In total about 2,400
slices were annotated with COVID-19 lesions and about 3,000 slices of negative
patients with no lesion. Tab. 1 provides an overview of all the CT scans and
annotations in our dataset.

For training the lung/lobe segmentation model we adopted a combination
of the LIDC [38], LTRC7 and [39] datasets, for a total of 300 CT scans. Anno-
tations on lung/lobe areas were done manually by three expert radiologists.

4.2. Training Procedure

The COVID-19 detection network is a DenseNet201, which was used pre-
trained on the ImageNet dataset [40]. The original classification layers in
DenseNet201 were replaced by a 2-output linear layer for the COVID-19 posi-
tive/negative classification. Among the set of 166 CT scans, we used 95 scans

5Bright Speed, General Electric Medical Systems, Milwaukee, WI
6Impax ver. 6.6.0.145, AGFA Gevaert SpA, Mortsel, Belgium
7https://ltrcpublic.com/
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Dataset statistics

CT Data

CT Scans 166

COVID-19+ 72
COVID-19- 94

Annotations

Positive slices 2,390

Ground Glass 1,035
Crazy Paving 757
Consolidation 598

Negative slices 2,988

Table 1: CT Dataset for training and testing of the AI models.

(36 positives and 59 negatives) for training, 9 scans for validation (5 positives
and 4 negatives) and 62 scans (31 positives and 31 negatives) for test. To com-
pare the AI performance to the human one, the test set of 62 CT scans was
provided to three expert radiologists for blind evaluation. Given the class im-
balance in the training set, we used the weighted binary cross-entropy (defined
in 3) as training loss and RT-PCR virology test as training/test labels.

The weighted binary cross-entropy loss for a sample classified as x with
target label y is then calculated as:

WBCE = −w [y · log x + (1 − y) · log(1 − x)] (3)

where w is defined as the ratio of the number negative samples to the total
number of samples if the label is positive and vice versa. This way the loss
results higher when misclassifying a sample that belongs to the less frequent
class. It is important to highlight that splitting refers to the entire CT scan and
not to the single slices: we made sure that full CT scans were not assigned in
different splits to avoid any bias in the performance analysis. This is to avoid
the deep models overfit the data by learning spurious information from each
CT scan, thus invalidating the training procedure, thus enforcing robustness to
the whole approach. Moreover, for the COVID-19 detection task, we operate
at the CT level by processing and categorizing each single slice. To make a
decision for the whole scan, we perform voting: if 10% of total slices is marked
as positive then the whole exam is considered as a COVID-19 positive, otherwise
as COVID-19 negative. The choice of the voting threshold was done empirically
to maximize training performance.

The lesion categorization deep network is also a DenseNet201 model where
classification layers were replaced by a 4-output linear layer (ground glass, con-
solidation, crazy paving, negative). The lesion categorization model processes
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lobe segments (extracted by our segmentation model) with the goal to identify
specific lesions. Our dataset contains 2,488 annotated slices; in each slice mul-
tiple lesion annotations with relative location (in lobes) are available. Thus,
after segmenting lobes from these images we obtained 5,264 lobe images. We
did the same on CT slices of negative patients (among the 2,950 available as
shown in Tab. 1) and selected 5,264 lobe images without lesions. Thus, in total,
the the entire set consisted of 10,528 images. We also discarded the images
for which lobe segmentation produced small regions indicating a failure in the
segmentation process. We used a fixed test split consisting of 195 images with
consolidation, 354 with crazy paving, 314 with ground glass and 800 images
with no lesion. The remaining images were split into training and validation
sets with the ratio 80/20. Given the class imbalance in the training set, we
employed weighted cross-entropy as training loss.

The weighted cross-entropy loss for a sample classified as x with target label
y is calculated as:

WCE = −w

C∑
y · log(x) (4)

where C is the set of all classes. The weight w for each class c is defined as:

wc =
N −Nc

N
(5)

where N is the total number of samples and Nc is the number of samples
that have label c.

Since the model is the same as the COVID identification network, i.e.,
DenseNet201, we started from the network trained on the COVID-identification
task and fine-tune it on the categorization task to limit overfitting given the
small scale of our dataset.

For both the detection network and the lesion categorization network, we
used the following hyperparameters: batch-size = 12, learning rate = 1e-04,
ADAM back-propagation optimizer with beta values 0.9 and 0.999, eps = 1e-08
and weight decay = 0 and the back-propagation method was used to update
the models’ parameters during training. Detection and categorization networks
were trained for 20 epochs. In both cases, performance are reported at the
highest validation accuracy.

For lung/lobe segmentation, input images were normalized to zero mean and
unitary standard deviation, with statistics computed on the employed dataset.
In all the experiments for our segmentation model, input size was set to 224 ×
224, initial learning rate to 0.0001, weight decay to 0.0001 and batch size to 2,
with RMSProp as optimizer. When C-LSTMs were employed, recurrent states
were initialized to zero and the size of the input sequences to the C-LSTM layers
was set to 3. Each training was carried out for 50 epochs.

4.3. Performance Evaluation

In this section report the performance of the proposed model for lung/lobe
segmentation, COVID-19 identification and lesion categorization.
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4.3.1. Lobe segmentation

Our segmentation model is based on the Tiramisu model [31] with the intro-
duction of squeeze-and-excitation blocks and of a convolutional LSTM (either
unidirectional or bidirectional) after the bottleneck layer. In order to under-
stand the contribution of each module, we first performed ablation studies by
testing the segmentation performance of our model using different architecture
configurations:

• Baseline: the vanilla Tiramisu model described in [31];

• Res-SE: residual squeeze-and-Excitation module are integrated in each
dense block of the Tiramisu architecture;

• C-LSTM: a unidirectional convolutional LSTM is added after the bottle-
neck layer of the Tiramisu architecture;

• Res-SE + C-LSTM: variant of the Tiramisu architecture that includes
both residual squeeze-and-Excitation at each dense layer and a unidirec-
tional convolutional LSTM after the bottleneck layer.

We also compared the performance against the U-Net architecture proposed
in [39] that is largely adopted for lung/lobe segmentation.

All architectures were trained for 50 epochs by splitting the employed lung
datasets into a training, validation and test splits using the 70/10/20 rule. Re-
sults in terms of Dice score coefficient (DSC) are given in Tab. 2. It has to noted
that unlike [39], we computed DSC on all frames, not only on the lung slices.
The highest performance is obtained with the Res-SE + C-LSTM configura-
tion, i.e., when adding squeeze-and-excitation and the unidirectional C-LSTM
at the bottleneck layer of the Tiramisu architecture. This results in an ac-
curacy improvement of over 4 percent points over the baseline. In particular,
adding squeeze-and-excitation leads to a 2 percent point improvement over the
baseline. Segmentation results are computed using data augmentation obtained
by applying random affine transformations (rotation, translation, scaling and
shearing) to input images. The segmentation network is then applied to our
COVID-19 dataset for prior segmentation without any additional fine-tuning to
demonstrate also its generalization capabilities.

4.3.2. COVID-19 assessment

We compute results both for COVID-19 detection and lesion categorization
and compare to those yielded by three experts with different degree of expertise:

1. Radiologist 1: a physician expert in thoracic radiology (∼30 years of ex-
perience) with over 30,000 examined CT scans;

2. Radiologist 2: a physician expert in thoracic radiology (∼10 years of ex-
perience) with over 9,000 examined CT scans;

3. Radiologist 3: a resident student in thoracic radiologist (∼3 years of ex-
perience) with about 2,000 examined CT scans.
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Model Lung segmentation Lobe segmentation

Baseline Tiramisu [31] 89.41 ± 0.45 77.97 ± 0.31
Baseline + Res-SE 91.78 ± 0.52 80.12 ± 0.28

Baseline + C-LSTM 91.49 ± 0.57 79.47 ± 0.38
Baseline + Res-SE + C-LSTM 94.01 ± 0.52 83.05 ± 0.27

Table 2: Ablation studies of our segmentation network in terms of dice score. Best results
are shown in bold. Note: we did not compute confidence intervals on these scores as they are
obtained from a very large set of CT pixels.

Sensitivity C.I. (95%)

Radiologist 1 83.9% [71.8% – 91.9%]
Radiologist 2 87.1% [75.6% – 94.3%]
Radiologist 3 80.6% [68.2% – 89.5%]

AI Model without lung segmentation 83.9% [71.8% – 91.9%]
AI Model with lung segmentation 90.3% [79.5% – 96.5%]

Table 3: Sensitivity (together with 95% confidence interval) comparison between manual
readings of expert radiologists and the AI model for COVID-19 detection without lung seg-
mentation and AI model with segmentation.

We also assess the role of prior segmentation on the performance. This means
that in the pipelines showed in Figures 3 and 5 we removed the segmentation
modules and performed classification using the whole CT slices using also infor-
mation outside the lung areas. Results for COVID-19 detection are measured
in terms of sensitivity and specificity and given in Tables 3 and 4.

Thus, the AI model using lung segmentation achieves the best performance
outperforming expert radiologists in the COVID-19 assessment. Furthermore,
performing lung segmentation improves by about 6 percent points both the
sensitivity and the specificity, demonstrating its effectiveness. The important
aspect to highlight is that expert radiologists during the annotation process did
not have to segment lungs or lobes, showing the generalization capabilities of
the proposed deep learning-based methods.

As a backbone model for COVID-19 identification, we employed DenseNet201
since it yielded the best performance when compared to other state of the art
models, as shown in Table 5. In all the tested cases, we used upstream segmen-
tation through the model described in Sect. 3.1. Voting threshold was set to
10% on all cases.

In order to enhance trust in the devised AI models, we analyzed what fea-
tures these methods employ for making the COVID-19 diagnosis decision. This
is done by investigating which artificial neurons fire the most, and then pro-
jecting this information to the input images. To accomplish this we combined
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Specificity C.I. (95%)

Radiologist 1 87.1% [75.6% – 94.3%]
Radiologist 2 87.1% [75.6% – 94.3%]
Radiologist 3 90.3% [79.5% – 96.5%]

AI Model without lung segmentation 87.1% [75.6% – 94.3%]
AI Model with lung segmentation 93.5% [83.5% – 98.5%]

Table 4: Specificity (together with 95% confidence interval) comparison between manual read-
ings of expert radiologists and the AI model for COVID-19 detection without lung segmenta-
tion and AI model with segmentation.

Model Variant Sensitivity (CI) Specificity (CI) Accuracy (CI)

AlexNet – 71.0% (57.9–81.6) 90.3% (79.5–96.5) 80.7% (68.3–89.5)

ResNet

18 71.0% (57.9–81.6) 93.5% (83.5–98.5) 82.3% (70.1–90.7)

34 80.7% (68.3–89.5) 90.3% (79.5–96.5) 85.5% (73.7–93.1)

50 83.9% (71.9–91.9) 90.3% (79.5–96.5) 87.1% (75.6–94.3)

101 77.4% (64.7–89.9) 87.1% (75.6–94.3) 82.3% (70.1–90.7)

152 77.4% (64.7–89.9) 90.3% (79.5–96.5) 83.9% (71.9–91.9)

DenseNet
121 77.4% (64.7–89.9) 93.5% (83.5–98.5) 85.5% (73.7–93.1)

169 67.9% (83.5–98.5) 93.5% (83.5–98.5) 81.4% (68.7–90.2)

201 90.3% (79.5–96.5) 93.5% (83.5–98.5) 91.9% (81.5–97.5)

SqueezeNet – 66.7% (54.5–78.9) 93.5% (83.5–98.5) 81.4% (68.7–90.2)

ResNeXt – 77.4% (64.7–86.9) 90.3% (79.5–96.5) 83.9% (71.9–91.9)

Table 5: COVID-19 classification accuracy by several state of the art models. Values in
parentheses indicate 95% confidence intervals (CI).

16



Figure 9: Lung salient areas identified automatically by the AI model for CT COVID-19
identification.

GradCAM [36] with VarGrad [37]8 and, Fig. 9 shows some examples of the
saliency maps generated by interpreting the proposed AI COVID-19 classifica-
tion network. It is interesting to note that the most significant activation areas
correspond to the three most common lesion types, i.e., ground glass, consolida-
tion and crazy paving. This is remarkable as the model has indeed learned the
COVID-19 peculiar patterns without any information on the type of lesions (to
this end, we recall that for COVID-19 identification we only provide, at training
times, the labels “positive” or “negative”, while no information on the type of
lesions is given).

For COVID-19 lesion categorization we used mean (and per-class) classifica-
tion accuracy over all lesion types and per lesion that are provided, respectively,
in Table 6.

8https://captum.ai/
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Model no segm Model w segm

Consolidation 77.8% (69.9–84.1) 97.9% (93.6–99.8)

Ground glass 18.6% (14.1–24.1) 41.3% (35.1–47.7)

Crazy Paving 57.1% (49.4–64.4) 98.3% (94.8–99.8)

Negative 99.3% (98.6–99.7) 99.9% (99.5–100)

Average 63.2% 84.4%

Table 6: Per-class accuracy for lesion categorization between manual readings of expert radiol-
ogists and the AI model without lung segmentation and AI model with segmentation. Values
in parentheses indicate 95% confidence intervals (CI).

Mean lesion categorization accuracy reaches, when operating at the lobe
level, about 84% of performance. The lowest performance is obtained on ground
glass, because ground glass opacities are specific CT findings that can appear
also in normal patients with respiratory artifact. Operating at the level of
single lobes yields a performance enhancement of over 21 percent points, and,
also in this case, radiologists did not have to perform any lobe segmentation
annotation, reducing significantly their efforts to build AI models. The most
significant improvement when using lobe segmentation w.r.t. no segmentation
is obtained Crazy Paving class, i.e., 98.3% against 57.1%.

Despite the CT diagnosis of COVID-19 pneumonia seems an easy task for
experienced radiologists, the results show that our system is able to outperform
them providing more accurate decisions. Artificial intelligence (AI), in partic-
ular, is able to identify more accurately lung lesions, in particular the smaller
and undefined ones (as those highlighted in Fig. 9) The identification elements
increases the sensitivity and specificity of the method for the correct diagnosis.
The results obtained both for COVID-19 identification and lesion categorization
pave the way to further improvement by implementing an advanced COVID-19
CT/RX image-driven diagnostic pipeline interpretable and strongly robust to
provide not only the diseases identification and differential diagnosis but also
the risk of disease progression.

5. Conclusions

In this work we have presented an AI-based pipeline for automated lung
segmentation, COVID-19 detection and COVID-19 lesion categorization from
CT scans. Results showed a sensitivity of 90% and a specificity of 93.5%
for COVID-19 detection and average lesion categorization accuracy of about
64%. Results also show that a significant role is played by prior lung and
lobe segmentation that allowed us to enhance performance of about 6 per-
cent points. The AI models are then integrated into an user-friendly GUI
to support AI explainability for radiologists, which is publicly available at
http://perceivelab.com/covid-ai. To the best of our knowledge, this is the
first AI-based software, publicly available, that attempts to explain radiologists
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what information is used by AI methods for making decision and that involve
proactively in the loop to further improve the COVID-19 understanding. These
results pave the way to further improvement to provide not only the diseases
identification and differential diagnosis but also the risk of disease progression.
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