Studies in Systems, Decision and Control

Volume 197

Series Editor

Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

The series "Studies in Systems, Decision and Control" (SSDC) covers both new developments and advances, as well as the state of the art, in the various areas of broadly perceived systems, decision making and control-quickly, up to date and with a high quality. The intent is to cover the theory, applications, and perspectives on the state of the art and future developments relevant to systems, decision making, control, complex processes and related areas, as embedded in the fields of engineering, computer science, physics, economics, social and life sciences, as well as the paradigms and methodologies behind them. The series contains monographs, textbooks, lecture notes and edited volumes in systems, decision making and control spanning the areas of Cyber-Physical Systems, Autonomous Systems, Sensor Networks, Control Systems, Energy Systems, Automotive Systems, Biological Systems, Vehicular Networking and Connected Vehicles, Aerospace Systems, Automation, Manufacturing, Smart Grids, Nonlinear Systems, Power Systems, Robotics, Social Systems, Economic Systems and other. Of particular value to both the contributors and the readership are the short publication timeframe and the world-wide distribution and exposure which enable both a wide and rapid dissemination of research output.

** Indexing: The books of this series are submitted to ISI, SCOPUS, DBLP, Ulrichs, MathSciNet, Current Mathematical Publications, Mathematical Reviews, Zentralblatt Math: MetaPress and Springerlink.

More information about this series at http://www.springer.com/series/13304

Krzysztof Patan

Robust and Fault-Tolerant Control

Neural-Network-Based Solutions

Krzysztof Patan Institute of Control and Computation Engineering University of Zielona Góra Zielona Góra, Poland

ISSN 2198-4182 ISSN 2198-4190 (electronic) Studies in Systems, Decision and Control ISBN 978-3-030-11868-6 ISBN 978-3-030-11869-3 (eBook) https://doi.org/10.1007/978-3-030-11869-3

Library of Congress Control Number: 2018967749

MATLAB[®] and Simulink[®] are registered trademarks of The MathWorks, Inc., 1 Apple Hill Drive, Natick, MA 01760-2098, USA, http://www.mathworks.com.

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To my family

Foreword

This monograph aims at presenting novel ideas, concepts and results in robust fault-tolerant control. Rapid developments in control technology have an impact on all the areas of the control discipline: there emerge new theories, advanced control solutions, new industrial processes, computer methods and implementations, new applications, new philosophies, and, inescapably, new challenges. Much of this development work is presented in the form of industrial reports, feasibility study papers and reports on advanced collaborative projects. Therefore, this monograph offers an opportunity for researchers, practitioners and students to gain access to an extended and clear exposition of new investigations in all the aspects of robust fault-tolerant control, intended for a rapid dissemination of the results and accessible to a wider readership.

As many technological systems are becoming increasingly complex, more widespread and integrated, the effects of system faults can potentially be devastating to the infrastructure of any modem society. Feedback control is just one important component of the total system supervision. Fault-tolerant control describes another set of components having extensive commercial, industrial and societal implications; it is imperative, however, that we are able to make use of them in a robust and inexpensive manner. The model-based approach is the usual solution of the practical fault-tolerant control design but, as the author Krzysztof Patan has highlighted in this monograph, the methodologies based on neural networks can also be successfully exploited. The search for reliable, robust and inexpensive fault-tolerant control methods has been ongoing since the early 1980s. Since 1991, the SAFEPROCESS Steering Committee, created by the International Federation of Automatic Control (IFAC), is in operation promoting research, developments and applications in the field of fault-tolerant control. The last decade has seen the formalisation of several theoretical approaches accompanied by some attempts to standardise the nomenclature in the field.

There are not many research publications within this important research area: one can point to certain monographs that can be said to provide interesting contributions to fault-tolerant control describing, however, the topic from slightly different points of view. To these, we can now add this monograph by Krzysztof Patan. The key features of this text include a useful survey material, a description of new approaches (utilising data-driven and neural-network-based methodologies), as well as a number of experimental studies helpful in understanding the advantages and the drawbacks of the suggested strategies and tools. Different groups of readers, from industrial engineers wishing to gain insight into the applications potential of new fault-tolerant control methods relying on artificial intelligence tools, to the academic control community looking for new problems to tackle will find much to learn from this monograph.

Ferrara, Italy October 2018 Silvio Simani

Preface

Indisputably, what is known as the robust and the fault-tolerant approaches have become important and essential subclasses of modern control theory. Nowadays, control systems designed for industrial plants have to meet the high requirements for the operation safety, stability and control performance. The notion of system robustness is made more concrete by means of the following two important notions. *Robust stability* means that the system remains stable for every plant belonging to the uncertainty set, whereas robust performance means that the performance specifications are satisfied for every plant belonging to the uncertainty set. Arguably, both of these are some of the most desirable features of the designed control systems. Robustness, however, is a problem that is hard to solve in the context of nonlinear systems. While robust control strategies allow a system to cope with model uncertainty, fault-tolerant control allows the system to cope with possible faulty situations occurring in industrial plants. The main objective of fault-tolerant control is to continue the plant operation, possibly at a reduced performance, and to preserve stability conditions in the presence of unexpected changes of system work caused by faults. There are, however, many problems encountered when designing fault-tolerant control for nonlinear systems.

Solutions of both robust control and fault-tolerant control problems can be obtained through the use of artificial neural networks. Neural networks can be effectively applied to deal with uncertainty modelling for the robust control purposes as well as to design the fault diagnosis units required by fault-tolerant control. The book proposes a number of strategies based on neural networks for nonlinear systems, e.g. model predictive control, control reconfiguration approaches and iterative learning control. Each proposed control strategy is accompanied by an example showing its applicability.

The material included in the monograph results from research that has been carried out by the author at the Institute of Control and Computation Engineering (the University of Zielona Góra, Poland) for the last eight years in the area of the modelling of nonlinear dynamic processes as well as control of industrial processes. Some of the presented results were developed with the partial support of the Ministry of Science and Higher Education in Poland under the grants N N514

678440 Predictive fault tolerant control for nonlinear systems (2011–2014), 2014/15/B/ST7/03208 Improvement of the control performance using iterative learning (2015–2018) and 2017/27/B/ST7/01874 Learning-based methods for high-performance robust control (2018–2021).

The monograph is divided into seven chapters. Chapter 1 introduces the subject matter. Chapter 2 is a survey of artificial neural networks that have possible applications to modelling and control. Some space is also devoted to the important problems of model training and the development of robust models. Chapter 3 describes the notion of control systems synthesis, focusing on the role of neural networks in that context. We also highlight the notions of robust and fault-tolerant control. Chapter 4 presents the model of predictive control based on neural networks. Fault tolerance as well as robustness of the proposed nonlinear predictive schemes are also discussed there. Chapter 5 presents the fault accommodation and control reconfiguration approach where neural networks are used in the following ways: (1) to process modelling; (2) to design what is known as a nonlinear observer and (3) to aid in uncertainty modelling. Chapter 6 discusses a number of methods that make use of neural networks in the context of iterative learning control with an emphasis on the problems of convergence and stability. Finally, Chap. 7 presents our contribution to the area of control in the context of industrial processes.

At this point, I would like to express my sincere thanks to all the colleagues from the Institute of Control and Computation Engineering at the University of Zielona Góra for many stimulating discussions and a friendly atmosphere, which was a big factor in my success in writing up this monograph. In particular, I would like to thank my former Ph.D. student Andrzej Czajkowski for his contribution to Chap. 5, my brother Maciek for his contribution to Chap. 6, and Wojtek Paszke who pointed my attention to the area of iterative learning control. Finally, I would like to express my gratitude to Dr. Adam Trybus for proofreading the text and providing linguistic advice.

Zielona Góra, Poland September 2018 Krzysztof Patan

Acknowledgements

The ideas on robust and fault-tolerant control presented in this monograph were developed over the last few years and have previously appeared in a number of publications. However, the purpose of the book is to provide a unified presentation of these solutions and bring them together in a single publication. In order to achieve this objective, it has been necessary at times to reuse some material that we published in earlier works. In spite of the fact that such material has been modified, expanded and rewritten for the monograph, permission from the following publishers is acknowledged.

Springer, Berlin is acknowledged for permission to reuse portions of the following chapters.

Krzysztof Patan, Locally Recurrent Neural Networks of Artificial Neural Networks for the Modelling and Fault Diagnosis of Technical Processes, vol. 377 in the series Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin, 2008.

Acknowledgement is given to the Institute of Electrical and Electronic Engineers for permission to reproduce parts of the following papers.

Krzysztof Patan, Neural Network-Based Model Predictive Control: Fault Tolerance and Stability, *IEEE Transactions on Control Systems Technology*, vol. 23, no. 3, pp. 1147–1155, 2015.

Krzysztof Patan, Maciej Patan, Damian Kowalów, Optimum training design for neural network in synthesis of robust model predictive control, in *Proceedings of 55th IEEE Conference on Decision and Control*, Las Vegas, USA, pp. 3401–3406, 2016.

We acknowledge the permission of the Elsevier to reproduce portions of the following papers.

Andrzej Czajkowski, Krzysztof Patan, Mirosław Szymański, Application of the state-space neural network to the fault-tolerant control system of the PLC-controlled laboratory stand, *Engineering Applications of Artificial Intelligence*, vol. 30, pp. 168–178, 2014.

Krzysztof Patan, Two stage neural network modelling for robust model predictive control, *ISA Transactions*, vol. 72, pp. 56–65, 2018.

Zielona Góra, Poland October 2018 Krzysztof Patan

Contents

1	Intro	duction	1	1
	1.1	Scope	of the Book	1
	1.2	The S	tructure of the Book	5
	Refer	ences.		6
2	Neur	al Netw	vorks	9
	2.1	Introd	uction	9
	2.2	Static	Models	11
		2.2.1	The Model of an Artificial Neuron	11
		2.2.2	Feed-Forward Multilayer Networks	12
		2.2.3	Radial Basis Networks	13
		2.2.4	A Kohonen Network	15
		2.2.5	A Learning Vector Quantization	16
		2.2.6	Deep-Belief Networks	17
		2.2.7	A Neural Network Ensemble	18
		2.2.8	Probabilistic Networks	19
	2.3	Dynar	mic Models	20
		2.3.1	Neural Networks with External Dynamics	21
		2.3.2	Fully Recurrent Networks.	23
		2.3.3	Partially Recurrent Networks	24
		2.3.4	Locally Recurrent Networks	26
		2.3.5	State-Space Neural Networks	31
		2.3.6	Spiking Neural Networks	35
		2.3.7	A Long Short-Term Memory	38
	2.4	Devel	oping Models	39
		2.4.1	Forward Modelling	39
		2.4.2	Inverse Modelling	42

	2.5	Robust Models 4	44
		2.5.1 Nonlinear Set-Membership Identification 4	44
		2.5.2 Model Error Modelling 4	47
		2.5.3 Statistical Bounds 5	50
	2.6	Conclusions	53
	Refer	rences	54
2	Dohu	uct and Fault Talarant Control	50
3	KODU	The Context of Control Systems	39 50
	5.1	1 In Control Decod on Neural Networks)9 (1
	2.2	5.1.1 Control Based on Neural Networks) ((
	3.2	Robust Control	30 67
	2.2	3.2.1 Uncertainty Description)/ 70
	3.3	Fault-Tolerant Control	/0
	3.4	Conclusions	13
	Refer	rences	/4
4	Mode	el Predictive Control	77
	4.1	Introduction	77
	4.2	Nonlinear Model Predictive Control	78
		4.2.1 System Modelling	80
		4.2.2 Uncertainty Handling	81
		4.2.3 Stability Analysis	83
		4.2.4 Nonlinear Optimization with Constraints	86
		4.2.5 Terminal Constraints Handling	87
		4.2.6 A Complete Optimization Procedure	89
		4.2.7 Model Linearization	90
	4.3	Fault-Tolerant MPC	92
		4.3.1 A Fault-Diagnosis Unit	92
		4.3.2 Sensor Fault Size Estimation	94
	4.4	An Experimental Study — A Tank Unit	95
		4.4.1 A Tank Unit	95
		4.4.2 Plant Modelling	97
		4.4.3 Control	39
		4.4.4 Fault Diagnosis	01
		4.4.5 Fault Tolerance)4
	4.5	Robust MPC	06
		4.5.1 Robust Stability)9
	4.6	An Experimental Study — A Pneumatic Servo 11	12
		4.6.1 The Fundamental Model	13
		4.6.2 Constrained MPC 11	15
		4.6.3 Robust Performance	16
		464 Uncertainty Modelling	17
		4.6.5 Robust MPC 11	18
		4.6.6 Stability Considerations	10
			17

	4.7	Robust MPC via Statistical Bounds	120
	4.8	An Experimental Study — The Pneumatic Servo Revisited	121
		4.8.1 Modelling	121
		4.8.2 Uncertainty Modelling	123
		4.8.3 Control	124
	4.9	Concluding Remarks	126
	Refer	ences	127
5	Cont	rol Reconfiguration	131
	5.1	Introduction	131
	5.2	Problem Formulation	132
	5.3	Process Modelling	134
		5.3.1 A Model of the Process	134
		5.3.2 A Nonlinear Observer	135
		5.3.3 A Linearization of the State-Space Model	135
	5.4	Fault Detection	136
	5.5	Stability Analysis	137
		5.5.1 P Controller	137
		5.5.2 PI Controller	139
		5.5.3 Sufficient Conditions for Stability	140
	5.6	An Experimental Study — The Tank Unit Revisited	142
		5.6.1 Process Modelling	142
		5.6.2 Model Error Modelling	145
		5.6.3 Fault Compensation	147
		5.6.4 Stability Analysis	148
	5.7	An Experimental Study — A Two-Tank Laboratory System	151
		5.7.1 The System Assumptions and Configuration	154
		5.7.2 Modelling	154
		5.7.3 Fault Detection	157
		5.7.4 Fault Compensation	157
		5.7.5 Stability Analysis	162
	5.8	Conclusions	166
	Refer	ences	166
6	Itera	tive Learning Control	169
	6.1	Introduction	169
	6.2	Iterative Learning Control Design	171
	6.3	Static Learning Controller	173
		6.3.1 A Model of the System	174
		6.3.2 Neural Controller	176
		6.3.3 An Update Rule	177
	6.4	Convergence Analysis	178

	6.5	An Experimental Study — The Pneumatic Servo Revisited	185
		6.5.1 Modelling	185
		6.5.2 ILC Synthesis	185
	6.6	An Illustrative Example — A Magnetic Suspension System	189
	6.7	Dynamic Learning Controller	193
		6.7.1 A Model of the System	193
		6.7.2 Neural Controller	193
		6.7.3 An Update Rule.	194
	6.8	Stability Analysis	194
	6.9	An Illustrative Example — The Pneumatic Servo Revisited	196
		6.9.1 Neural Controller	196
		6.9.2 ILC Synthesis	197
	6.10	Concluding Remarks	199
	Refer	ences	200
7	Conc	luding Remarks and Further Research Directions	203
Index		207	

Notation

Symbols

Set of real numbers
Set of nonnegative integers
Continuous and discrete-time indexes
Trial index
System output and estimated system output
System input and estimated system input
State vector, estimated state and nominal state
Input vector
Output vector
Activation function and vector-valued activation function
Cost function
State matrix
Weight matrix
Output matrix
Input (control) matrix
Transfer matrix
Normally distributed random number with the expectation value
m and the standard deviation σ
Significance level
Tabulated value assigned to the significance level α
Class of continuously differentiable mappings
Prediction horizon, control horizon, constraint horizon and output
constraint horizon
Sampling time
Identity matrix
Zero matrix

$\varphi(\cdot),\phi(\cdot)$	Regression vectors
L	Lipschitz constant
$e(\cdot)$	Tracking error

Operators

∇	Gradient
∂	Partial derivative
Т	Matrix transposition
sup	Least upper bound (supremum)
inf	Greatest lower bound (infimum)
max	Maximum
min	Minimum
arg max	Argument of a maximum value
arg min	Argument of a minimum value
rank(A)	Rank of a matrix A
det(A)	Determinant of a matrix A
trace(A)	Trace of a matrix A
$\ oldsymbol{w}\ $	Vector norm
$\ W\ $	Matrix norm
W^{-}	Matrix pseudoinverse

Abbreviations

ANN	Artificial Neural Network
ARX	Auto-Regressive with eXogenous input
BDM	Binary Diagnostic Matrix
BP	Back-Propagation
BPTT	Back-Propagation Through Time
CMPC	Constrained Model Predictive Control
CRHPC	Constrained Receding Horizon Predictive Control
DBN	Deep Belief Network
DFT	Discrete Fourier Transform
ESN	Echo State Network
FD	Fault Diagnosis
FDI	Fault Detection and Isolation
FIM	Fisher Information Matrix
FIR	Finite Impulse Response
FPE	Final Prediction Error
FSS	Feasible System Set
FTC	Fault-Tolerant Control

GMDH	Group Method and Data Handling
GPC	Generalised Predictive Control
IF	Integrate and Fire
IIR	Infinite Impulse Response
ILC	Iterative Learning Control
IMC	Internal Model Control
KKT	Karush–Kuhn–Tucker
LM	Levenberg–Marquardt
LMI	Linear Matrix Inequality
LQ	Linear Quadratic
LRGF	Locally Recurrent Globally Feed-forward
LSTM	Long Short-Term Memory
LVQ	Learning Vector Quantization
MDM	Multivalued Diagnostic Matrix
MEM	Model Error Modelling
MPC	Model Predictive Control
MPCD	Model Predictive Control with Disturbance model
MRAC	Model Reference Adaptive Control
MSE	Mean Square Error
NAR	Nonlinear Auto-Regressive
NARMAX	Nonlinear Auto-Regressive Moving Average with eXogenous input
NARX	Nonlinear Auto-Regressive with eXogenous input
NFIR	Nonlinear Finite Impulse Response
NIIR	Nonlinear Infinite Impulse Response
NLARX	NonLinear wavelet Autoregressive Regressive with eXogernous
	input
NOE	Nonlinear Output Error
OED	Optimum Experimental Design
PCNN	Pulse-Coupled Neural Network
PD	Proportional Derivative
PI	Proportional Integral
PID	Proportional Integral Derivative
PNN	Probabilistic Neural Network
RBF	Radial Basis Function
RBM	Restricted Boltzmann Machine
RMLP	Recurrent Multi-Layer Perceptron
RMPC	Robust Model Predictive Control
RNN	Recurrent Neural Network
RTRL	Real-Time Recurrent Learning
RTRN	Real-Time Recurrent Network
SGPC	Stable Generalised Predictive Control
SM	Set Membership
SNN	Spiking Neural Networks
SOM	Self-Organising Map
SSE	Sum of Squared Errors

SSIF	State-Space Innovation Form
SSNN	State-Space Neural Network
TDL	Tapped Delay Line
TDNN	Time Delay Neural Network
TDRBP	Time-Dependent Recurrent Back-Propagation

List of Figures

Fig. 2.1	Selected neural networks in control applications	11
Fig. 2.2	Neuron scheme with <i>n</i> inputs and one output	12
Fig. 2.3	A forward network with two hidden layers.	13
Fig. 2.4	A structure of a radial basis function network	14
Fig. 2.5	A two-dimensional self-organizing map	15
Fig. 2.6	A LVQ neural network	17
Fig. 2.7	A deep belief network (a) and a restricted Boltzmann	
	machine (b)	17
Fig. 2.8	A parallel expert scheme	19
Fig. 2.9	A probabilistic neural network	19
Fig. 2.10	External dynamics approach realization	21
Fig. 2.11	A fully recurrent network of Williams and Zipser	23
Fig. 2.12	Partially recurrent networks due to Elman (a)	
	and Jordan (b)	25
Fig. 2.13	A generalized structure of the dynamic neuron unit (a),	
	network composed of dynamic neural units (b)	26
Fig. 2.14	A neuron architecture with local activation feedback	28
Fig. 2.15	A neuron architecture with local synapse feedback	28
Fig. 2.16	A neuron architecture with local output feedback	29
Fig. 2.17	Memory neuron architecture	29
Fig. 2.18	A neuron architecture with the IIR filter	30
Fig. 2.19	A structure of the state-space neural network	31
Fig. 2.20	A structure of an echo-state neural model	34
Fig. 2.21	A single neuron of PCNN	36
Fig. 2.22	An illustration of a neuron receptive field.	37
Fig. 2.23	A simplified structure of an LSTM unit (o – Hadamard	
	product)	39
Fig. 2.24	A series-parallel identification scheme	40
Fig. 2.25	A parallel identification scheme	41
Fig. 2.26	A parallel identification scheme for recurrent networks	41

Fig. 2.27	Inverse modelling using external dynamic neural networks.	42
Fig. 2.28	Inverse modelling using external dynamic neural networks.	12
1.8. 2.20	Specialized training	43
Fig. 3.1	Open-loop (a) versus closed-loop control (b)	60
Fig. 3.2	An example of an automatic control system	60
Fig. 3.3	A general scheme of the closed-loop control system	60
Fig. 3.4	A classification of the control strategies [21]. Reproduced	
U	by courtesy of Hyo-Sung Ahn	62
Fig. 3.5	Direct control	63
Fig. 3.6	Model reference control	63
Fig. 3.7	Internal model control	64
Fig. 3.8	Feed-forward control.	64
Fig. 3.9	Predictive control	65
Fig. 3.10	Optimal control.	66
Fig. 3.11	The idea of structural uncertainty	68
Fig. 3.12	Examples of unstructured uncertainty	69
Fig. 3.13	Possible fault locations in the control loop	70
Fig. 3.14	A general scheme of active FTC	72
Fig. 3.15	A classification of active fault-tolerant control systems [47].	
	©2008 Elsevier. Reproduced with permission	72
Fig. 4.1	A real-life laboratory installation [34]. ©2015 IEEE.	
	Reproduced with permission	96
Fig. 4.2	A block scheme of the tank unit and possible fault placement	
	[34]. ©2015 IEEE. Reproduced with permission	96
Fig. 4.3	The training data: the input (upper graph), and the output	
	signals (lower graph)	98
Fig. 4.4	The 15-step ahead predictor testing	99
Fig. 4.5	Process output (solid) and reference (dashed) (a), the control	
	signal (b) [34]. ©2015 IEEE. Reproduced with permission	100
Fig. 4.6	The evolution of the cost function J [34]. ©2015 IEEE.	
	Reproduced with permission	101
Fig. 4.7	Fault tolerance: the fault f_2 (a), and f_6 (b) [34]. ©2015 IEEE.	
-	Reproduced with permission	105
Fig. 4.8	Fault tolerance: the fault f_5 [34]. ©2015 IEEE. Reproduced	
-	with permission	106
Fig. 4.9	The scheme of the pneumatic servomechanism.	113
Fig. 4.10	The reference trajectory [35]. ©2018 Elsevier. Reproduced	
	with permission	114
F1g. 4.11	The accumulation of the prediction error along the prediction	
F ' 4.12	steps [35]. ©2018 Elsevier. Reproduced with permission	115
F1g. 4.12	The system output (a) and the prediction cost J_{pred} in time	
	(b) [35]. ©2018 Elsevier. Reproduced with permission	115

List of Figures

Fig. 4.13	CMPC (4.55): the reference – dashed, the system – solid [35]. ©2018 Elsevier, Reproduced with permission	116
Fig 4 14	A system with input and output multiplicative uncertainty	116
Fig. 4.15	The stability of MPC: stable robust MPC (a). MPC without	110
119	stability considerations (b) Reference (dashed) and plant	
	output (solid) [35] @2018 Elsevier Reproduced	
	with permission	120
Fig. 4.16	A section of training data [38] @2016 IEEE Reproduced	120
115. 4.10	with permission	122
Fig 4 17	The modelling results: the outputs of the process (solid)	122
1 lg. 4 .17	and the model (dashed) [38] ©2016 IEEE Reproduced	
	with permission	122
Fig 1 18	The variances of the model response prediction	122
11g. 4.10	for the optimum design (the crosses) and random	
	design (the circles) [38] @2016 IEEE Deproduced	
	with permission	123
Fig / 10	The model output (black line) along with the uncertainty	123
11g. 4.19	ragion (the gray lines) marked [38] ©2016 IEEE Reproduced	
	with permission	124
Eig 4 20	The treating regults DMDC [28] @2016 IEEE Depreduced	124
Fig. 4.20	with normission	125
Eig. 4.21	The treaking regults DID [28] @2016 IEEE Deproduced	123
Fig. 4.21	with normission	126
Fig 5.1	The block scheme of the proposed control system	120
Fig. 5.1	The DET spectrum of random stops (100,000, samples)	1.04
Fig. 5.2	The modelling results (process (deshed), model (solid)):	145
Fig. 5.5	training phase (a), testing phase (b)	144
Fig 54	An illustration of MEM decision making	144
Fig. 5.4	Model error modelling: the system output (solid)	140
Fig. 5.5	and the uncertainty bounds (deshed)	146
Fig 56	A comparison of DL and ETC control with different foult	140
Fig. 5.0	A comparison of F1 and F1C control with different fault detection methods in the case of $f_1(a)$, $f_2(b)$, $f_3(b)$, $f_4(c)$, and $f_5(c)$.	
	detection methods in the case of f_1 (a), f_2 (b), f_3 (c) and f_4	147
Fig 57	(u) fault scenarios	147
Fig. 3.7	The convergence of the control-system states without a fault. the original system (\mathbf{a}) the transformed system (\mathbf{b})	140
Eia 5 9	The convergence of the control system states with a faulty (f)	140
Fig. 5.8	The convergence of the control-system states with a faulty (f_1)	140
E:- 5.0	system: the original system (a), the transformed system (b)	149
Fig. 5.9	The convergence of the control-system states with a faulty (f_2)	1.40
F ' 7 10	system: the original system (a), the transformed system (b) \ldots	149
F1g. 5.10	The convergence of the control-system states with a faulty (f_3)	1.50
	system: the original system (\mathbf{a}) , the transformed system (\mathbf{b})	150
F1g. 5.11	The convergence of the control-system states with a faulty (f_4)	1.50
	system: the original system (a), the transformed system (b)	150

Fig. 5.12	The laboratory installation, front (left) and back (right) sides	
	[4]. ©2014 Elsevier. Reprinted with permission	152
Fig. 5.13	The block scheme of the considered system with fault	
	placement	153
Fig. 5.14	The training results [4]. ©2014 Elsevier. Reprinted	
	with permission	156
Fig. 5.15	The system operation in the case of the fault f_1 [4].	
	©2014 Elsevier. Reprinted with permission	156
Fig. 5.16	The system operation in the case of the fault f_2 [4].	
T ' C 1 C	©2014 Elsevier. Reprinted with permission	157
Fig. 5.17	Model error modelling; the system output (solid)	
	and uncertainty bands (dashed) in the case of a faulty	1.50
F ' 5 10	scenario f_1 [4]. ©2014 Elsevier. Reprinted with permission	158
Fig. 5.18	Model error modelling; system output (solid) and uncertainty	
	bands (dashed) in the case of a faulty scenario f_2 [4].	150
E'. 5 10	©2014 Elsevier. Reprinted with permission	158
F1g. 5.19	Model error modelling; system output (solid) and uncertainty	
	bands (dashed) in the case of a faulty scenario f_3 [4].	150
Eig. 5 20	©2014 Elsevier. Reprinted with permission	139
Fig. 3.20	Fault accommodation for the faulty scenario f_1 [4].	160
Eig 5 21	Eault accommodation for the faulty scenario f [4]	100
Fig. 3.21	Fault accommodation for the faulty scenario f_2 [4].	160
Fig 5.22	Fault accommodation for the faulty scenario f. [4]	100
1 lg. J.22	$\bigcirc 2014$ Elsevier. Reprinted with permission	161
Fig 5.23	The convergence of the control system states with faulty (f_i)	101
1 19. 0.20	system: the original states (a) the transformed states (b) [4]	
	©2014 Elsevier. Reprinted with permission	162
Fig. 5.24	The convergence of the control system states with faulty (f_2)	10-
	system: the original states (a), the transformed states (b) [4].	
	©2014 Elsevier. Reprinted with permission	163
Fig. 5.25	The convergence of the control system states with faulty (f_3)	
U	system: the original states (a), the transformed states (b) [4].	
	©2014 Elsevier. Reprinted with permission	164
Fig. 5.26	The results of solving LMI in the f_1 faulty scenario:	
-	the number of iteration (a), solving time (b)	164
Fig. 5.27	The results of solving LMI in the f_2 faulty scenario:	
	the number of iteration (a), solving time (b)	165
Fig. 5.28	The results of solving LMI in the f_3 faulty scenario:	
	the number of iteration (a), solving time (b)	165
Fig. 6.1	Parallel architectures of current-iteration ILC	172
Fig. 6.2	Serial architectures of current-iteration ILC	172
Fig. 6.3	A general structure of iterative learning control based	
	on neural networks	173

List of Figures

Fig. 6.4	A transient behaviour of ILC without filtering (a),	
	with filtering (b) versus the plot of the convergence	
	condition (c)	187
Fig. 6.5	The control signal components	188
Fig. 6.6	Reference tracking: the reference (dash-dot) and the plant	
	output (solid), the PID controller (a), and ILC (b)	188
Fig. 6.7	A comparison of different ILC schemes	189
Fig. 6.8	The magnetic suspension laboratory stand	190
Fig. 6.9	The magnetic suspension: the trajectory tracking results	191
Fig. 6.10	The magnetic suspension: the tracking error norm	191
Fig. 6.11	The magnetic suspension: the convergence condition	
	satisfaction	192
Fig. 6.12	An example interval of training data: the output signal (a),	
C .	the control (b) and the tracking error (c)	197
Fig. 6.13	The reference tracking: the reference (dash-dot), the PI	
C .	controller (dashed), ILC (solid).	198
Fig. 6.14	The norm of the tracking error over 10 trials	199
Fig. 6.15	The stability results: the values of the criterion (6.92)	
-	along trials	199
	· · · · · · · · · · · · · · · · · · ·	

List of Tables

Table 4.1	A binary diagnostic matrix	93
Table 4.2	A multi-valued diagnostic matrix	94
Table 4.3	The specifications of process variables	97
Table 4.4	The specification of faulty scenarios [34]. ©2015 IEEE.	
	Reproduced with permission	97
Table 4.5	The quality indexes of the predictors [34]. ©2015 IEEE.	
	Reproduced with permission	99
Table 4.6	A binary diagnostic matrix	102
Table 4.7	A multi-valued diagnostic matrix [34]. ©2015 IEEE.	
	Reproduced with permission	103
Table 4.8	The model specification [34]. ©2015 IEEE. Reproduced	
	with permission	103
Table 4.9	The results of the fault diagnosis [34]. ©2015 IEEE.	
	Reproduced with permission	104
Table 4.10	The fault tolerance results [34]. ©2015 IEEE. Reproduced	
	with permission	104
Table 4.11	The process specification	113
Table 4.12	A comparison of robust models [35]. ©2018 Elsevier.	
	Reproduced with permission	118
Table 4.13	The uncertainty specification	118
Table 4.14	The control quality [35]. ©2018 Elsevier. Reproduced	
	with permission	118
Table 4.15	The control quality [35]. ©2018 Elsevier. Reproduced	
	with permission	119
Table 4.16	The control quality [38]. ©2016 IEEE. Reproduced	
	with permission	125
Table 5.1	The specification of the faulty scenarios considered	142
Table 5.2	The selection of the neural network structure	144
Table 5.3	The results of error modelling	145
Table 5.4	The quality indexes of the investigated decision making	
	method	146

		٠
XXVI	1	1

Table 5.5	The fault-tolerance quality measures	148
Table 5.6	The performance of the LMI solver	151
Table 5.7	The specification of the process variables	153
Table 5.8	The specification of the valves	153
Table 5.9	The specification of the faulty scenarios.	154
Table 5.10	The selection of neural network structures [4].	
	©2014 Elsevier. Reprinted with permission	155
Table 5.11	The results of the experiments in form of SSE and percentage	
	index [4]. ©2014 Elsevier. Reprinted with permission	161
Table 5.12	The performance of the LMI solver [4]. ©2014 Elsevier.	
	Reprinted with permission	163