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ABSTRACT 

A new closed-form equation for the local instability of pultruded fibre-reinforced plastic 

beams in bending is derived by substituting suitable buckling approximating functions 

for compression flange and web into the total potential energy functional. Being 

obtained from a full-section approach, the equation does not require independent 

calculations for web and compression flange, which are typical of discrete plate 

analysis. Moreover, the contribution of the elastic restraint stiffness commonly used to 

reproduce the web–flange junction behavior naturally arises in the proposed formulation 
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because of the assumed buckling shape. From comparisons with available experiments 

on 10 beams and FE solutions for 55 beams, the proposed equation appears to be 

accurate and reliable. 

Keywords: Pultruded beam; Bending; Local buckling; Closed-form equation. 

 

1. INTRODUCTION 

Pultruded Fibre-Reinforced Plastic (PFRP) thin-walled profiles can be considered, from 

a macro-mechanical viewpoint, as linearly elastic, homogeneous, and orthotropic, with 

the axes of orthotropy coinciding with the principal axes of the cross-sections. Their 

behavior is highly affected by the relatively low values of the Young's modulus, 

especially in the transverse direction [1], and of the transverse shear elastic modulus [2, 

3], which more or less coincides with that of the polymeric resin and shows a strong 

time dependency (see [4] and references cited herein). Moreover, warping strains play 

an important role in the mechanical response of composite thin-walled beams, 

especially in the case of open sections [5]. These features can provoke non-negligible 

increases in deformations and deflections with respect to isotropic materials and affect 

both local and global buckling loads. Finally, post-buckling of pultruded shapes is 

influenced by the strength of web–flange junctions [1, 6, 7], resin-rich zones from 

which failure typically propagates [8−10]. As a consequence, PFRP profiles exhibit a 

complex behavior related to the multi-interaction between shear deformability, non-

uniform torsion, and creep, and therefore require suitable modeling criteria. 

The flexural-torsional (global) response of PFRP beams has been widely investigated 

in the literature with regard to both vibrations [11] and buckling [5, 12−15]. The present 
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paper, instead, focuses on the local bucking phenomenon, starting from a wide overview 

of the literature, reported in the next section. 

 

2. LITERATURE REVIEW 

A brief survey of the literature concerning analytical studies on local buckling of 

composite structural sections is presented herein. The referenced papers are subdivided 

into two main categories according to the type of analysis presented. 

 

2.1. Discrete plate analysis 

The local buckling analysis of a PFRP shape under axial compression, uniform bending, 

pure shear, or combinations of the relevant stress states is generally reduced to the 

analysis of each of the wall segments comprising the shape, which is considered as an 

individual orthotropic plate that has suitable boundary conditions and is subjected to in-

plane loading. In this approach, usually referred to as discrete plate analysis, the 

longitudinal edges shared by two or more wall segments are usually provided with a 

continuous elastic restraint, reproducing the stiffening effect due to the adjacent plates. 

In [16], the local instability of carbon-fiber-reinforced flanges of I-section beams and 

columns was analyzed by taking the web restraint coefficient into account. 

In [17], a model for the local buckling analysis of I- and box sections was developed, 

considering the compression flange as an orthotropic plate that was elastically restrained 

in correspondence with the web–flange junctions. The rotational spring stiffness was 

assumed to coincide with the bending stiffness of the web in the transverse direction.  

The buckling load of orthotropic plates in uniaxial compression, simply supported 

along the loaded edges and having one of the unloaded edges elastically restrained and 
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the other free, was found in [18] by solving the governing characteristic transcendental 

equation numerically. On the basis of a parametric analysis highlighting the role of the 

coefficient of elastic restraint, R, a procedure is presented to estimate, from test data on 

FRP beams, the value of R to be used in the local buckling analysis of the compression 

flange. 

Local buckling of box and I-sections under non-uniform bending was analyzed in 

[19]. In particular, it was assumed that bending is mainly resisted by the flanges, which 

were subjected to constant compression or tension stresses, whereas non-uniform 

bending stresses on the web panels were ignored. The web panels were instead 

subjected to in-plane shear. The local buckling of compression flanges and webs, 

elastically restrained in correspondence with the web-flange junctions, was then 

evaluated by solving two transcendental equations simultaneously. Simplified 

expressions for the buckling strengths were finally obtained using a regression analysis. 

Explicit expressions for the local buckling strengths of flange and web panels of box 

and I-section profiles were reported in [20] and [21], respectively. In particular, an 

equation for the local buckling of web panels undergoing non-uniform normal stresses 

and elastically restrained along the unloaded edges was given in [20], seemingly for the 

first time. Other explicit expressions for web and flange panels of different FRP 

structural shapes were derived in [22], whereas in [23] the explicit solution to the 

eigenvalue problem for a composite plate in uniaxial compression with all four edges 

elastically restrained was reported, followed by an application to honeycomb sandwich 

structures. 

Currently, the best compromise between accuracy and simplicity, and thus 

practicality in design, is probably represented by the closed-form local buckling 
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expressions for orthotropic plates derived by Kollár in [24] by combining the buckling 

loads of plates without bending stiffness, without torsional stiffness and Huber-

orthotropic plates. Following the method outlined by Bleich [25] for steel profiles, these 

expressions, which take account of the rotational restraint offered by adjacent wall 

segments, were then applied in [26] to the local buckling analysis of thin-walled FRP 

columns and beams. 

Kollár's formulation was adopted by the Italian Design Guide CNR DT 205/2007 

[27]. With regard to the local flange buckling of I-section beams, an interesting 

sensitivity analysis of Kollár's equation was presented in [28, 29], where it was shown 

that this equation correlates significantly better with the experimental results than those 

that assume that the half-flanges are simply supported in correspondence with the web–

flange junction. Comments on the need to take account of the elastic restraint at the 

web–flange junction and on the advantages of using Kollár's formulation were reported 

in [30]. 

 

2.2. Analysis of plate assemblies 

An approach alternative to that described above consists in applying a variational 

formulation to the whole thin-walled profile and then minimizing the resulting 

functional. 

Following the work of Bulson [31] on isotropic thin-walled profiles, Zureick and 

Shih [32] studied the local buckling in FRP beams and columns and deduced the 

governing stability equations for box and I-section members as special cases. In their 

proposal, the authors assumed that all plates have the same orthotropic material 

properties. 
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In [33], the case of composite I-sections under pure compression was analyzed with 

regard to both initial buckling and post-buckling, and a numerical solution to the 

stability equations was finally developed. 

In [34], the solution to the general characteristic transcendental buckling equation for 

FRP profiles subjected to eccentric compression was obtained numerically (pure 

bending was regarded as a particular case). In particular, the actual stress state on the 

cross-section was approximated by constant and piecewise constant normal stress 

distributions applied to flange and web panels, respectively. Different properties were 

considered for web and flanges. 

The formulations presented in [32−34] undoubtedly lead to very accurate reference 

solutions to the local buckling problem for orthotropic profiles, but they are barely 

applicable for design purposes. In this context, the development of closed-form 

expressions would be welcome. 

To the authors' knowledge, the only relatively simple closed-form expressions 

concerning the local buckling of FRP profiles studied as a whole (and not by a discrete 

plate analysis) are those recently derived in [35] for box, angle-, I-, and C-shaped 

sections using the Rayleigh energy method [36]. The closed-form local buckling 

equation for I-sections presented in [36] was proposed again in [37]. These expressions, 

based on the hypothesis of infinitely long profiles (so as to ignore the influence of the 

end effects), are restricted to the case of uniform axial compression and assume the 

same thickness and material properties for all plates comprising the column. 
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3. MOTIVATION FOR THE STUDY 

Kollár's equation [26] is the most widely used expression for the local (flange) buckling 

resistance of PFRP beams in bending. McCarthy [28] and McCarthy and Bank [29] 

showed that, in the case of wide-flange I-section beams, the professional bias for 

Kollár's equation, defined as the ratio of the experimentally determined local buckling 

strength to the strength predicted by the equation, takes a mean value of 1.20 and 

exceeds 1.5 for two of the ten profiles investigated (see Table 1, where the reciprocals 

of this ratio are reported according to a convention more usual in Europe). The test 

results included in the study were collected from [38], where the profile stiffnesses 

obtained from coupon tests were also reported. In the case of columns in pure 

compression, the professional bias of Kollár's equation is 1.07 [29], indicating that the 

overestimation of the local buckling strength is influenced by the stress distribution on 

the web. 

 

3.1. Relationship between local buckling moment and bending moment resistance 

The Italian Design Guide [27] recommends that the bending moment resistance of 

PFRP beams in pure bending be determined as 

( ) Rdloc,Rd MM MM λχ=  (1) 

where Mloc,Rd is the design value of the local buckling moment and χM(λM) is a function 

of non-dimensional slenderness RdFT,Rdloc, MMM =λ  (with MFT,Rd being the design 

value of the flexural-torsional buckling moment), which accounts for the interaction 

between local and global buckling modes [9]. 
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It can be shown that if Mloc,Rd is underestimated by 20 and 50% (in line with the 

mean and maximum values of the professional bias for Kollár's equation reported by 

McCarthy [28]), the moment MRd obtained from Eq. (1) turns out to be underestimated 

by about 10 and 21%, respectively. Therefore, because of the relation between Mloc,Rd 

and MRd, it appears evident that an accurate prediction of moment Mloc,Rd is required for 

design purposes. 

The main objective of the present study is then the development of a new closed-

form equation for I-section beams that provides Mloc-predictions that are more accurate 

than those provided by Kollár's equation. The approach used in the paper is that 

mentioned in Section 2.2. Therefore, distinct buckling stress calculations for flange and 

web panels are not required, and the resulting full-section equation can be applied to 

estimate Mloc independently of whether local instability is triggered by compression 

flange or web.  

 

4. PROPOSED CLOSED-FORM EQUATION 

The closed-form expressions developed in this paper apply to I-section beams with 

overall cross-section depth H, flange breadth bf, and web and flange thicknesses tw and 

tf, respectively (Fig. 1a). Since the flange and web panels of commercial profiles 

typically show different mechanical properties [39], subscripts "f" and "w" will be used 

in the following to refer to flanges and web, respectively. Note that in standard PFRP 

structural shapes the equality tw = tf generally holds, but for generality of the wording it 

will be assumed that flanges and web have different thicknesses. 

The assumptions at the basis of the formulation presented hereinafter are the same as 

those typically adopted for the local buckling analysis of PFRP sections (see for 
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example [19, 32, 34]); that is, (1) each of the panels constituting the pultruded shape is a 

linearly elastic orthotropic plate with the orthotropy axes coinciding with the principal 

axes of the plate; (2) deformations are small and no geometric imperfection is 

considered; (3) on buckling, the junctions between adjacent panels remain straight; (4) 

the original angles between adjacent panels remain unchanged; (5) the wavelengths of 

the various buckled panels are the same; and (6) instability occurs simultaneously for 

every panel. Because of assumption no. (4), the buckling shape of the compression 

flange turns out to be symmetric with respect to the web–flange junction. 

For a PFRP beam in major-axis bending, the local buckling moment may be 

evaluated from the following relation (see [27]): 

locmaxloc fWM =  (2) 

where Wmax is the beam section modulus in the bending plane and floc indicates the 

critical normal stress. Thin-walled profiles can usually be reduced to their middle 

surface. Under this assumption, floc in Eq. (2) corresponds to the stress acting at 

buckling along the compression flange. At the same time, the tension flange is subjected 

to constant stress −floc, whereas the web undergoes a linearly varying stress distribution 

between −floc and floc. 

In the present paper, the critical normal stress will be expressed in the general form:  
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where EL,f, υLT,f, and υTL,f are the longitudinal elastic modulus and the major and minor 

in-plane Poisson's ratios of the flanges, respectively, whereas D11,f, whose definition is 

reported in Table 2, is the longitudinal bending stiffness of the flange panels. Finally, 
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kloc in Eq. (3) represents a buckling coefficient to be determined by making the total 

potential energy of the buckled beam stationary. 

 

4.1. Variational formulation 

A Cartesian coordinate system (O; x, y) is considered. A generic, rectangular orthotropic 

plate i is assumed to have one of the vertexes coinciding with the origin O and edges 

with dimensions a and b parallel to the directions x and y, respectively. If the plate is 

subjected to an out-of-plane displacement function wi(x, y), its strain energy, neglecting 

transverse shear deformations, takes the following form [40]: 
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where coefficients D11,i, D22,i, D12,i, and D66,i represent the plate bending stiffnesses (see 

Table 2). 

The work done by a constant compressive stress fx applied to the plate edges parallel 

to the y-axis can be written as [40]: 
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where ti indicates the plate thickness. Otherwise, the work done by a normal stress 

distribution applied to the same edges but varying linearly between compression stress 

fx (at y = 0) and tension stress −fx (at y = b) is given by [20]: 
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For an I-beam in major-axis bending, it is assumed that, at buckling, the tension 

flange remains undeformed [32]. Therefore the total potential energy, comprising the 

contributions of the compression flange and web only, can be written as: 

wwff VUVU −+−=Π  (7) 

where, for a beam of length L corresponding to one single half-wave in the buckling 

shape, Uf and Vf are obtained by doubling Eqs. (4) and (5), respectively, written for 

i = f, a = L, and b = bf/2. Moreover, Uw and Vw follow from Eqs. (4) and (6), 

respectively, for i = w, a = L, and b = H − tf = bw. 

The local buckling stress for a given L, floc,L, corresponds to the value of fx that 

minimizes Eq. (7). 

 

4.2. Assumed buckling shape 

Suitable displacement fields wi must be substituted into Eqs. (4)−(6) to obtain a reliable 

prediction of the local buckling stress. In this paper, the buckling shape is approximated 

using sinusoidal and polynomial functions.  

To express functions wi for compression flange and web, three local coordinate 

systems are introduced, with the origin placed at the web–flange junction (Fig. 1a). 

With regard to the buckling displacements in the plane of the beam cross-section, the 

cubic shape function proposed in [21, 22] is used for each of the half-flanges, whereas 

the product of a sinusoidal function with a linear polynomial is proposed for the web. 

The resulting buckling approximating functions can be written as (see Fig. 1b): 
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where α represents the amplitude of the flange buckling shape, whereas [ ]1,0∈ω  is a 

constant coefficient to be determined by imposing suitable boundary conditions. Note 

that, for ω = 0, Eq. (8) yields zero curvature in the flange transverse direction. 

Moreover, for ω = 1, no rotation is allowed at the web–flange junction in compression, 

leading, from Eq. (9), to ww = 0 everywhere. 

It can readily be observed that Eqs. (8) and (9) satisfy the boundary conditions 

wfj(x, 0) = ww(x, 0) = 0 and [ ] [ ]
0ww0ff

wf
==

∂∂=∂∂
yyjj ywyw

j

 at the web–flange junction in 

compression. Moreover, Eq. (9) also satisfies the boundary conditions ww(x, bw) = 0 and 

[ ] 0
w

w =∂∂ =byw
w

yw  at the web–flange junction in tension. 

The moment equilibrium at the web–flange junction in compression yields: 

( ) )(1424 wfw,22

2

ff,22 bbDbD ω−=ω  (10) 

from which ω is obtained in the form: 

( )[ ] 1

fw2261
−+=ω bbc  (11) 

where coefficient c22 takes the definition reported in Table 2. 

 

4.3. Local buckling stress 

Substituting Eqs. (8) and (9) into Eq. (7) and making the total potential energy 

stationary yield the critical stress floc,L for a given value of half-wave length L. If floc,L is 

expressed in the same form as Eq. (3), the corresponding buckling coefficient, kloc,L, 

takes the following expression: 
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with c12, c32, c62, c122, c12,w, c32,w, and Fωi (i = 1, ..., 5) being coefficients reported in 

Table 2. From minimization of kloc,L with respect to L, the half-wave length Lmin 

satisfying the relation 0loc, =∂∂ Lk L  is obtained in the form: 
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Finally, substituting Eq. (13) into Eq. (12) leads to the following expression for the 

minimum buckling coefficient: 
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In conclusion, the present proposal for estimating the local buckling moment for PFRP 

I-section beams relies upon Eq. (2) in conjunction with Eqs. (3) and (14) for local 

buckling stress floc and coefficient kloc, respectively, and with coefficient ω computed 

from Eq. (11). 

The assumption that ω = 0 does not allow the moment equilibrium at the web–flange 

junction in compression to be satisfied locally, and Eq. (14) reduces to: 
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5. VALIDATION OF THE PROPOSED EQUATION 

Reported in this section are the comparisons of the proposed equation with available 

experimental results and closed-form equations as well as with finite element (FE) 

solutions. The acronym “PA” will be used in the following to indicate the results of the 

present analysis.  

 

5.1. Comparison with available experimental data 

The present formulation is compared in Table 1 with the experimental results reported 

in [28]. In particular, the mean value of the ratio rPA between the local buckling moment 

obtained from Eqs. (2), (3), (11), and (14) (Mloc,PA) and the experimental buckling 

moment (Mloc,exp) is approximately 0.98, a value significantly closer to unity than the 

mean value of the ratio rKo = Mloc,Ko/Mloc,exp (= 0.85), with Mloc,Ko being the local 

buckling moment provided by Kollár's equation. The coefficients of variation (COVs) 

of rPA and rKo are substantially coincident. 

 

5.2. Numerical validation 

The effectiveness of the proposed formulation is also verified by comparison with the 

FE-computed local buckling stresses. For this purpose, several FE models of simply 

supported PFRP beams are developed using ABAQUS [41]. In particular, four-node 

plate elements S4 are adopted. The constitutive model adopted to describe the beam 

behavior was the transversally isotropic one. An orthotropic constitutive model, with the 

orthotropy axes parallel to the principal beam axes, is assigned to each element. 

At the beam end sections, whilst flexural rotations are left free, in-plane 

displacements are prevented at each node in order to reproduce the simply supported 
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configuration. Moreover, to avoid any possible rigid body motion in the beam 

longitudinal direction, axial displacement of the midspan cross-section centroid is 

prevented. Finally, in order to avoid flexural-torsional instability, displacements of the 

web–flange junctions in the transverse direction are fixed. 

Taking account of the actual flange thickness, an offset locating the meshes on the 

inner surfaces of the flanges is introduced, making it possible to avoid overlapping web 

and flanges at the web–flange junctions. 

Uniform major-axis bending is reproduced by means of linearly varying normal 

stress distributions applied at the end sections as depicted in Fig. 2. The critical stress 

associated with the first local buckling mode, floc,FEM, is searched for using an 

eigenvalue analysis. 

A preliminary convergence test on the beam referred to as V8A in Table 1 is 

performed to define the optimal mesh to be used (see Table 3). The mesh finally 

adopted is composed of 20 and 18 subdivisions along each of the flanges and the web, 

respectively, and 274 subdivisions along the span length, resulting in 15892 finite 

elements (mesh #6 in Table 3). A typical local buckling shape obtained from the FE 

analysis is shown in Fig. 3. 

Using the same FE discretization, all beams of Table 1 are analyzed and the results 

are reported in Table 4 in terms of local buckling stress floc,FEM. Critical stresses floc,exp 

and floc,PA obtained from the experiments [28] and proposed formulation, respectively, 

and the ratios rf,exp = floc,exp/floc,FEM and rf,PA = floc,PA/floc,FEM are reported in the same 

table. Taking account of all possible sources of uncertainty affecting the experimental 

results, as well as the estimates of material properties reported in Table 1 (see [28, 38]), 

which do not consider possible differences between flange and web properties and, for 
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vinylester beams, were obtained from coupon data from two actual beams and then 

averaged for all eight beams, a good agreement between the FE analysis and 

experimental results is obtained. 

Therefore, FE models such as that described above can be regarded as the reference 

for assessing the predictive capacity of the proposed formulation. With regard to the ten 

beams of Table 1, the ratio rf,PA takes a mean value and a COV of 1.053 and 0.070, 

respectively (Table 4), indicating a very good agreement. 

For a deeper assessment of the proposed equations, a parametric analysis is finally 

carried out. A total of 55 beams, comprising wide-flange (WF) and narrow-flange (NF) 

profiles, are investigated. In particular, with regard to WF beams (Table 5), eight 

property sets are considered, in conjunction with three different values of the cross-

section thickness (ti, i = 1, ..., 3) and two values of the in-plane shear modulus (Gj, j = 1, 

2), resulting in 48 PFRP profiles. These profiles are referred to as WF(X-ti-Gj), with X 

being the integer part of the transverse Young's modulus of the flanges, ET,f, expressed 

in gigapascals. With regard to NF beams (Table 6), seven different profiles are 

considered. These profiles are referred to as NF(X1-X2-X3), with X1, X2, and X3 

indicating the integer parts of cross-section depth and wall thickness in millimeters and 

the transverse Young's modulus of the web (ETw) in gigapascals, respectively. 

The span lengths of the profiles analyzed are so large that the number of half-waves 

in the first local buckling shape ranges between 8 and 20. Therefore, the FE-computed 

buckling stress can be regarded as a very accurate approximation of the minimum local 

buckling stress. 

The results of the comparison between the present analysis and FE models are 

summarized in Fig. 4 (data points indicated by solid circles) in terms of the ratio 
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floc,pred/floc,FEM between the predicted and FE-computed buckling stresses. Reported in 

the same figure is an analogous ratio but with floc,pred referred to Kollár's equation (data 

points indicated by open circles). In particular, the mean values of floc,pred/floc,FEM are 

0.966 (thick solid line in Fig. 4) and 0.827 (dashed line in Fig. 4) in the cases of the 

present analysis and Kollár's equation, respectively. The coefficients of variation for the 

two cases are 0.042 and 0.044. In conclusion, at equal scatter, the proposed equation is 

more accurate. 

Assuming that ω = 0 and then calculating the buckling coefficient from Eq. (15) 

rather than from Eq. (14) produces an increase in the buckling stress. In particular, 

floc,pred/floc,FEM takes a mean value of 1.036, whereas the coefficient of variation becomes 

0.057. 

 

6 CONCLUSIONS 

A new closed-form equation for the local buckling moment of pultruded FRP beams in 

bending is derived using suitable displacement functions for compression flange and 

web in the total potential energy expression. Being obtained from a full-section 

approach, the equation does not require independent calculations for web and 

compression flange, which are typical of discrete plate analysis. 

Comparisons with available experiments on 10 beams and FE solutions for 55 beams 

indicate that the proposed equation is very accurate and reliable. 

A simplified version of the buckling coefficient proposed, based on the assumption 

of zero curvature in the buckled flange, is proved to be satisfactory from a technical 

viewpoint. Its implementation into the Italian Design Guide [27] is suggested. 
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Fig. 1. PFRP I-shaped profile: (a) cross-section dimensions and definition of the local 

coordinate systems for the web and compression flange (c.f.); and (b) cross-sectional view of 

the assumed buckled shapes for ω = 0, 0.2, 0.5, and 1. 
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Fig. 2. Normal stress distribution applied at one end section to reproduce major-axis bending.  
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Fig. 3. Typical local buckling shape obtained from the FE analysis. 
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Fig. 4. Ratio of the predicted (floc,pred) to the FE-computed local buckling stress (floc,FEM) for the 

beams analyzed. Comparison between present analysis (PA) and Kollár's equation. 
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Table 1. Ratios rKo = Mloc,Ko/Mloc,exp (reciprocals of the values reported in [28]) and rPA = 

Mloc,PA/Mloc,exp of predicted to experimental buckling moments (Mloc,exp), with Mloc,Ko and Mloc,PA 

indicating buckling moments provided by Kollár's equation and the present analysis, 

respectively. 

Beam ID(a) H=bf tf=tw EL
(b)

 ET
(b)

 GLT
(b)

 υLT
(b)

 L Wmax Mloc,exp
(b)

 rKo
(b)

 rPA 

 [mm] [mm] [GPa] [GPa] [GPa] [–] [m] [10
5
×mm

3
] [kNm] [–] [–] 

V8A 203.2 9.53 24.6 10.3 3.7 0.33 2.74 4.07 30.62 0.927 1.075 

V8B 203.2 9.53 24.6 10.3 3.7 0.33 2.74 4.07 33.89 0.837 0.971 

V81 203.2 9.53 24.6 10.3 3.7 0.33 2.74 4.07 33.10 0.857 0.994 

V82 203.2 9.53 24.6 10.3 3.7 0.33 2.74 4.07 33.22 0.854 0.991 

V83 203.2 9.53 24.6 10.3 3.7 0.33 2.74 4.07 33.56 0.846 0.981 

V84 203.2 9.53 24.6 10.3 3.7 0.33 2.74 4.07 30.73 0.923 1.071 

V87 203.2 12.7 24.6 10.3 3.7 0.33 2.74 5.20 67.00 0.967 1.119 

V88 203.2 12.7 24.6 10.3 3.7 0.33 2.74 5.20 68.69 0.943 1.091 

P81 203.2 9.53 24.0 7.5 2.6 0.31 2.74 4.07 33.56 0.659 0.761 

P82 203.2 9.53 24.0 7.5 2.6 0.31 2.74 4.07 34.01 0.650 0.751 

         Mean 0.846 0.981 

         COV 0.131 0.131 
(a)

 Capital letters V and P in the beam ID refer to vinylester and polyester resins, respectively. 
(b)

 For details on material properties and experimental results, see [28, 38].  

 

 

 

Table 2. Expressions for the elastic constants and parameters used in Eqs. (11)−(14). 

Elastic constants (i = f, w)  

D11,i EL,iti
3
/12(1 − υLT,iυTL,i) 

D22,i ET,iti
3
/12(1 − υLT,iυTL,i) 

D12,i υLT,iD22,i 

D66,i GLT,iti
3
/12 

D33,i D12,i + 2D66,i 

Inhomogeneity and anisotropy ratios  

c11 D11,f/D11,w 

c22 D22,f/D22,w 

c12 D11,f/D22,w 

c122 D12,f/D22,w 

c62 2D66,f/D22,w 

c32 D33,f/D22,w 

c12,w D11,w/D22,w 

c32,w D33,w/D22,w 

ω−functions  

Fω1 (2π2 − 3)(ω − 1)
2
 

Fω2 Fω1 + 36(ω − 1)
2
 

Fω3  140 − 49ω+8ω2
 

Fω4 Fω1 − (π2
+3)(ω − 1)

2
 

Fω5 Fω1 + 6(ω − 1)
2
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Table 3. Convergence test for beam V8A of Table 1: number of subdivisions along each of the 

flanges (nf), web (nw), and span length (nL); total number of FEs [nel = (2nf + nw)nL]; and 

corresponding critical stress for six FE models with increasing mesh refinement.  

Mesh # nf nw nL nel floc,FEM 

     [MPa] 

1 8 8 110 2640 87.33 

2 10 10 137 4110 86.82 

3 14 12 183 7320 86.50 

4 16 16 228 10944 86.34 

5 18 16 249 12948 86.29 

6 20 18 274 15892 86.25 

 

 

Table 4. Ratios rf,exp = floc,exp/floc,FEM and rf,PA = floc,PA/floc,FEM, with floc,exp, floc,PA, and floc,FEM 

indicating local buckling stresses provided by experiments [28], the present analysis, and FE 

models, respectively. 

Beam ID floc,FEM floc,exp
(a)

 floc,PA
(b)

 rf,exp rf,PA 

 [MPa] [MPa] [MPa]   

V8A 86.25 75.32 80.97 0.946 1.017 

V8B 86.25 83.36 80.97 1.047 1.017 

V81 86.25 81.42 80.97 1.023 1.017 

V82 86.25 81.71 80.97 1.026 1.017 

V83 86.25 82.55 80.97 1.037 1.017 

V84 86.25 75.59 80.97 0.949 1.017 

V87 154.80 128.82 144.08 1.067 1.193 

V88 154.80 132.07 144.08 1.094 1.193 

P81 66.69 82.55 62.86 1.337 1.018 

P82 66.69 83.66 62.86 1.355 1.018 

   Mean 1.088 1.053 
   COV 0.132 0.070 

(a)
 Obtained from floc,exp = Mloc,exp/Wmax with Mloc,exp and Wmax reported in Table 1. 

(b)
 floc,PA = rPAMloc,exp/Wmax with rPA also reported in Table 1. 

 

 

Table 5. Mechanical properties of the 48 WF-section beams investigated. For all beams 

H = bf = 203.2 mm, EL,f = 23 GPa, and υLT,f = υLT,w = 0.33. 

tf = tw = ti (i = 1, 2, 3) GLT,f = GLT,w = Gj (j=1, 2) 
Beam ID ET,f EL,w ET,w t1 t2 t3 G1 G2 

 [GPa] [GPa] [GPa] [mm] [mm] [mm] [GPa] [GPa] 

WF(23-ti-Gj) 23.0 23.0 23.0 6.53  9.53 12.7 4.0 2.3 

WF(18-ti-Gj) 18.4 23.0 15.3 6.53  9.53 12.7 4.0 2.3 

WF(15-ti-Gj) 15.3 23.0 11.5 6.53  9.53 12.7 4.0 2.3 

WF(13-ti-Gj) 13.1 23.0 9.2 6.53  9.53 12.7 4.0 2.3 

WF(11-ti-Gj) 11.5 19.0 15.3 6.53  9.53 12.7 4.0 2.3 

WF(10-ti-Gj) 10.2 19.0 11.5 6.53  9.53 12.7 4.0 2.3 

WF(9-ti-Gj) 9.2 19.0 9.2 6.53  9.53 12.7 4.0 2.3 

WF(8-ti-Gj) 8.4 19.0 6.0 6.53  9.53 12.7 4.0 2.3 
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Table 6. Mechanical properties of the seven NF-section beams investigated. For all beams 

υLT,f = υLT,w = 0.33. 

Beam ID H bf tf=tw EL,f ET,f EL,w ET,w GLT,f = GLT,w 

 [mm] [mm] [mm] [GPa] [GPa] [GPa] [GPa] [GPa] 

NF(203-9-13) 203.2 101.6 9.53 23.0 13.1 23.0 13.1 4.0 

NF(203-9-9) 203.2 101.6 9.53 23.0 13.1 19.0 9.2 4.0 

NF(203-12-13) 203.2 101.6 12.7 23.0 13.1 23.0 13.1 4.0 

NF(254-9-13) 254 127 9.53 23.0 13.1 19.0 13.1 4.0 

NF(254-12-9) 254 127 12.7 23.0 13.1 19.0 9.2 4.0 

NF(305-12-13) 305 152 12.7 23.0 13.1 19.0 13.1 3.5 

NF(305-12-6) 305 152 12.7 17.2 6.2 17.2 6.2 2.9 

 


