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Abstract: This paper presents a comparison of two static nondestructive methods used to assess 

compressive loads in columns of steel space frames. The first method requires knowledge of the 

flexural rigidity of the column under investigation, whereas the second method requires knowledge 

of the column’s buckling load. In each method, short-term displacements are measured at given 

cross sections along the member under examination, which is subjected to an additional transverse 

load. The two methods were verified in this study through experimental and numerical tests on a 

column of a small-scale space frame prototype with generic connections and end conditions. 

Estimations of compressive forces were generally reliable when second-order effects were 

accurately considered. In conclusion, the two methods can be successfully used to test steel space 

frames in a laboratory or under real conditions. 
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1. Introduction 

The identification of compressive column loads is required in steel space frames to support 

restoration projects or to ascertain how close a frame is to failure. Despite uncertainties regarding 

dead loads, an accurate evaluation of in situ compressive column forces is necessary for the safety 
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assessment of the entire space frame. Specifically, considerable internal force redistribution may 

indicate structural damage. Compressive load evaluation is also crucial for the safety assessment of 

steel storage pallet racks. In recent decades, advanced approaches for racks have been developed for 

estimating the key parameters governing static and seismic design.
1–6

 

Axial load identification in slender beam-columns has been studied using static and dynamic 

nondestructive methods.
7–12

 In particular, vibration-based estimations of axial loads in generic space 

frames require accurate selection of the flexural mode shape to be utilized in the identification 

process.
10,11

 Such methods are particularly sensitive to experimental and model errors and it is also 

difficult selecting a priori the optimal frequency for estimating the compressive load. Moreover, 

different natural frequencies yield different degrees of accuracy in axial force estimations. A static 

approach to axial load identification in bar elements of simple prestressed trusses was investigated 

by Turco.
13

 However, this nondestructive procedure considers only the axial stiffness of elements; 

thus, it cannot be applied to the columns of civil space frames or storage pallet racks, where rigid or 

semirigid joints must also be considered. Duan et al.
14

 proposed the use of an elasto-magneto-

electric sensor to directly and accurately identify axial force in steel cables. Specifically, this 

monitoring method is feasible only for new cable-stayed bridges, because the cables must be 

instrumented during construction. Similarly, structural health monitoring systems can be installed 

when completing the construction of a structure for continuous monitoring of structural responses.
15

 

In this paper, the performance of two static nondestructive methods used for compressive load 

identification in generic space frames is compared. The first method extends the procedure 

proposed by Tullini
9
 to steel space frames. Notably, this method was applied only on a steel tie-rod 

in a laboratory, and thus, no experimental verifications on beam-columns under compressive loads 

were obtained.
9
 The corresponding algorithm can estimate the compressive force in a column by 

measuring five short-term displacements along the length of the column after applying a lateral load 

at the mid-span. Knowledge of the flexural rigidity of the column under examination is required, 

whereas the boundary conditions of the single member can be unknown. The second nondestructive 
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method in this study is based on the magnification factor method, which uses a simplified formula 

to estimate second-order displacements.
16,17

 Specifically, the compressive axial load can be 

identified by measuring one short-term displacement along the column span when an additional 

lateral load is applied to the member. Knowledge of the Euler buckling load of the single column is 

the other fundamental requirement. The aforementioned methods use static parameters only; thus, in 

contrast to dynamic procedures, they do not require the selection of experimental data for use in the 

algorithms. Experimental and analytical tests conducted on a small-scale space frame prototype 

with generic connections and end conditions confirmed the robustness of both procedures. 

Therefore, both methods could be successfully applied in a laboratory or in situ on any slender 

column of a steel space frame or storage pallet rack, where in-plane bending with respect to a 

symmetrical axis must be exerted to avoid the coupling effects of bending and torsion. 

 

2. Nondestructive Testing Methods 

A prismatic column of a generic regular steel frame is considered (Fig. 1(a)). The reference model 

consists of a prismatic beam-column of length L constrained by two sets of end elastic springs 

whose parameters )(ikϕϕ , )(i

vk ϕ , and )(i

vvk  (i = 0, 1) are collected by the 2 × 2 stiffness matrices K0 and 

K1 (Fig. 1(b)), because the extremities of a generic column can be subjected to displacements and 

rotations. The member is subjected to a compressive force N and an additional transverse load F 

located at a generic abscissa x = a (Fig. 1(b)). The elastic modulus E and cross-sectional second 

moment of area I of each element of the frame are assumed to be known constants. 

The formulations of the two nondestructive testing (NDT) methods presented in this study are 

described in the following sections. 

 

2.1. NDT method 1: extension of the method proposed by Tullini
9
 

In this section, the method proposed by Tullini
9
 is extended to steel space frames. As mentioned, for 

the proposed method, no experimental verifications on beam-columns under compressive loads 

were obtained. The algorithm enables the estimation of the tensile or compressive load in a slender 
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beam-column by using five displacements measured along the column’s length after a point load 

has been applied at the mid-span. Knowledge of the flexural rigidity EI of the prismatic beam-

column is required, whereas the boundary conditions of the member of the space structure can be 

unknown. This aspect is crucial because the column extremities of a steel frame can generally be 

subjected to displacements and rotations and its length can be undefined because of the finite 

dimensions of the end joints (Fig. 1). 

Following the application of the lateral load F at the mid-span (i.e., at x = x2 in Fig. 1), five 

short-term displacements, v0, v1, v2, v3, and v4, are recorded at the coordinates x0 = 0, x1 = L/4, x2 = 

L/2, x3 = 3L/4 and x4 = L. The constant L is the length of the substructure along the column, where 

v0 and v4 are the deflections at the extremities of the assigned length L. With a positive sign being 

assigned to the compressive forces, the displacements v0, v1, v2, v3, and v4 are used in the following 

transcendental equation to calculate the nondimensional compressive axial load n = N L
2
/EI: 
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where ψ = FL
3
/EI is the load parameter with a length dimension. 

For simply supported members that are of length L and constrained by two end rotational 

springs, v0 = v4 = 0, and Eq. (1) is reduced to Eq. (10) reported in Tullini et al.
8
 

In summary, load identification must conform to the following steps: 

1) Evaluate the displacements v0, v1, v2, v3, and v4 through a three-point bending test. 

2) Solve transcendental Eq. (1) for the unknown constant n by using the ratios (v1 + v3)/v2 and (v0 + 

v4)/v2, as well as the expression for ψ. 

3) Determine the analytical value Na = n EI/L
2
 of the compressive force. 
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2.2. NDT method 2: magnification factor method 

During the execution of preliminary design computations for steel frames, access to an approximate 

formula for determining the displacements in columns under compressive axial loads is often 

useful. In particular, the total deflection vtot is equal to the product of two terms
16,17

: the first-order 

deflection vI (neglecting the effect of the compressive load) and a magnification factor 1/(1 − 

N/NcrE), where N is the compressive force in the column and NcrE is the corresponding first Euler 

buckling load of the member, expressed as follows: 

 
crE

I
tot

1 NN

v
v

−
= . (2) 

In general, the simplified formula can be used with high accuracy if the first-order deformed 

shape of the beam-column and the first buckling shape are similar. 

Equation (2) can be used to estimate the compressive axial force in the column. After the load 

F is applied, one displacement vtot = vi is recorded at the ith cross section, such as v2 (Fig. 1). To 

identify the compressive load N, the simplified Eq. (2) can be rearranged as follows: 

 







−=

tot

I
crE 1

v

v
NN . (3) 

The first-order displacement vI can be calculated analytically using a finite element (FE) model 

of the entire space frame or experimentally if it is possible to obtain the deflection vI without 

second-order effects such as those during the construction of the civil frame or assembly of the 

storage pallet rack. Similarly, the Euler buckling load NcrE = π
2
 EI/l0

2
 can be determined 

numerically using the adopted FE model or simplified formulas for braced or unbraced compression 

members, considering the restraints at the column ends and geometric and material properties of the 

frame, as expressed in Eqs. (5.15) and (5.16) of Eurocode 2.
18

 In the experiments performed on a 

space frame prototype described in the next section, the effective length l0 of the column under 
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examination was obtained using Eq. (5.16) of Eurocode 2
18

 for isolated unbraced members with a 

constant cross section in regular frames, expressed as follows: 

 0 4 0 4
0

0 4 0 4

max 1 10 ; 1 1
1 1

k k k k
l L

k k k k

    ⋅ = ⋅ + + ⋅ +    + + +    
, (4) 

where k0 and k4 are the flexibilities of the rotational restraints at column ends 0 and 4, respectively. 

Studies have proposed dynamic testing methods for determining the buckling load in frame 

structures.
19–26

 Recently, Blostotsky et al.
27

 improved the static test procedure proposed by 

Vaswani
28

 for use in regular frames. 

In summary, the process of the NDT method must conform to the following procedural steps: 

1) Measure the displacement vtot in a cross-section along the column span following the application 

of a point load F. 

2) Use an FE model or simplified formulas to numerically determine the Euler buckling load NcrE. 

3) Evaluate the first-order displacement vI in the same cross section of the total displacement vtot 

either experimentally, by conducting a preliminary test, or analytically, by applying an FE model, 

while considering the magnitude and position of the load F. 

4) Determine the analytical compressive force Na through Eq. (3). 

Notably, the additional load F can be applied at different cross sections along the span, thereby 

underlining that the first-order displacement vI and experimental displacement vtot must be in 

reference to the same cross section. 

 

3. Application of NDT Methods in a Space Frame Prototype 

A space frame prototype with unknown connections was used to verify both NDT methods. The 

prototype had a height of LC = 680 mm and beam spans of LB = 400 mm, as shown in Fig. 2(a). The 

prototype was composed of slender beam-columns of aluminum alloy with a tube cross section of 

10.0 mm in external diameter and 1.0 mm in tube thickness. The objective was to simulate the 

behavior of a steel space frame. The second moment of area for the tube cross section Iexact was 
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289.8 mm
4
. All geometric dimensions of the frame prototype were verified by measuring systems of 

0.01 mm tolerance (laser rangefinder and caliper) once the prototype had been fixed onto a steel 

table for laboratory testing (Fig. 2(b, c)). The yield stress, fyk = 320 MPa, and elastic modulus, E = 

74.13 GPa, of the aluminum alloy were experimentally evaluated. These parameters were identified 

as the mean values of tensile tests on three specimens with solid circular cross sections of 10 mm in 

diameter and 500 mm in length. 

The space frame prototype had welded nodes (Fig. 2(b)). A rigid plastic plate was used to 

create support for the vertical load, which was necessary for experimental verifications (Fig. 2(b)). 

For both NDT methods, vertical loads were applied by adding cast iron bricks with known mass to 

the upper portion of the prototype (Fig. 2(b)), causing the resultant external load Q to split at the 

upper nodes and at the mid-span of the beams (Fig. 3). Two strain gauges were fixed at 

diametrically opposite positions close to the bases of the four columns (Fig. 2(c)). The 

corresponding strains were recorded every second for nearly 40 seconds by a data acquisition unit, 

in each experimental test combination. The mean value of the strain measures was used to evaluate 

the experimental compressive forces Nx. The transverse load F was applied by using an endless 

screw and measured with a 10 kN load cell of 2.0 mV/V accuracy. The space frame prototype was 

always preserved in the elastic range during the experimental and analytical verifications of both 

NDT methods. 

 

3.1. Verifications of NDT method 1 

In this section, the experimental and analytical tests of the method proposed by Tullini
9
 are 

described. Four assigned compressive force Nx values were applied to the frame prototype through 

the external load Q, as presented in Table 1. For each assigned compressive force Nx, two equal and 

opposite forces F with initial values of 29.4 + 29.4 N were applied to the two columns at the mid-

span; the initial values were then gradually increased to 58.8 + 58.8 and 68.6 + 68.6 N in order to 

investigate the compressive forces Na of the right column (Fig. 3 and Table 1). This loading 
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condition can easily be made viable in a laboratory or in situ by stretching a cable between two steel 

columns and measuring the corresponding applied forces F. 

 

3.1.1. Experimental testing 

In the experimental verifications, the five short-term displacements v0, v1, v2, v3, and v4 of the 

deflected shape of the right column were measured using dial indicators after each application of 

the transverse loads F + F (Fig. 4(a, b, c)). 

Two test configurations, both with substructure length L = LC = 680 mm (Fig. 3), were 

considered. Test 1 entailed employing the three sensors located at cross sections 1, 2, and 3, 

assuming v0 = v4 = 0 and also assuming the existence of two rotational springs at the column ends 

only. By contrast, Test 2 entailed considering all five short-term total displacements and assuming 

the boundary conditions of the right column under investigation to be unknown. Table 1 presents 

the parameters measured for each combination used in Eq. (1) to identify the compressive loads Na. 

The assumption of two end supports in the right column for Test 1 necessitated the proportional 

subtraction of displacement v4 from displacements v1, v2, and v3; specifically, v1, v2, and v3 were 

replaced by v1 − v4/4, v2 − v4/2, and v3 − 3v4/4, respectively (Table 1). The maximum measured 

displacement, v2, at the mid-span was less than LC/80. 

Table 2 shows the compressive column load evaluations Na for Tests 1 and 2, with the 

evaluation errors being ∆ = (Na − Nx)/Nx. A comparison of the estimated Na and measured Nx values 

for both tests for each transverse load F + F is presented in Figs. 5(a)–5(c). In general, Tests 1 and 2 

yielded accurate approximations of the estimated compressive force Na. These experiments 

provided load estimations of Na with errors ∆ < 10% (in absolute value) when the right column of 

the prototype was subjected to compressive loads Nx with second-order effects of 45% of the total 

displacements and subjected to transverse loads F > 58.8 N; this is because the estimation accuracy 

increased when higher second-order effects were induced. 
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3.1.2. Analytical verification 

An FE model of the space frame prototype was used to compute the five displacements v0, v1, v2, v3, 

and v4 by conducting second-order static analysis without provision for any imperfections in the 

geometric model. The FE model adopted for the prototype uses four FEs for each beam and column, 

where Euler–Bernoulli beams adopting exact shape functions describing second-order effects are 

used.
17

 Specifically, the frame prototype was loaded with point loads equal to Q/8 at the upper 

nodes and mid-span of the beams. Table 3 presents the displacements evaluated using the FE model 

and considering column flexural rigidity, EIexact = 74134 × 289.8 = 2.148 × 10
7
 Nmm

2
, for five 

assigned compressive load Nx values and for F = 68.6 N. 

To perform a sensitivity analysis, the displacements v1, v2, and v3 in Test 1 and v0, v1, v2, v3, and 

v4 in Test 2 were alternatively modified by adding +0.01 or −0.01 mm. The loads F were 

alternatively modified by adding +0.5 or −0.5 N in both tests to reproduce possible experimental 

errors. In total, 16 distinct combinations of simulated experimental values were obtained for Test 1 

and 64 distinct combinations of simulated experimental values were obtained for Test 2. The 

combinations refer to the five distinct assumed compressive loads Nx for each test configuration. 

Figures 5(a)–5(c) depict a comparison of the worst estimated Na and the assumed Nx values for 

Tests 1 and 2 in terms of sensitivity analyses when the loads were F = 29.4, 58.8, and 68.6 N. Test 1 

yielded the most accurate approximation of the compressive axial load. When F = 68.6 N, the Na 

values were between Nx − 22 N and Nx + 18 N. Test 2 also yielded accurate load estimates, because 

the Na values were between Nx − 19 N and Nx + 20 N (Fig. 5(c)). Finally, the sensitivity analyses 

reported in Figs. 5(a)–5(c) confirm that generally, a good compressive load identification Na can be 

obtained when the columns are subjected to larger lateral loads F, thereby increasing the transverse 

deflections due to the second-order effects. 

 

3.2. Verifications of NDT method 2 

The experimental verifications of the magnification factor method are presented in this section. For 

each vertical resultant load Q, a force F was applied at the top of the right column under 



 10 

investigation (Fig. 6) and the short-term horizontal displacement vtot at the same application point 

was recorded. Preliminary evaluations or FE spatial models are necessary to estimate the first-order 

displacement vI and Euler buckling load NcrE of a single column. 

 

3.2.1. Experimental testing 

A first-order short-term displacement vI,4 = 8.00 mm was recorded after the application of the 

horizontal load F4,x2 = 14.7 N on the unloaded prototype. Notably, the second-order effects in the 

right column were negligible without a vertical load Q. The lateral force F4,x2 did not engender 

significant second-order effects in terms of deflections (Figs. 7(a)–7(c)). Hence, the horizontal 

displacement vI,4 can be considered a first-order displacement and can be used in Eq. (3) in the NDT 

method. Conversely, the short-term total displacements vtot,4 were measured on the loaded prototype 

(Figs. 8(a) and 8(b)). 

The buckling load of the right column was estimated using Euler’s formula, NcrE,x2 = π
2
 

EIexact/lC
2
 = 386 N (Fig. 9(a)), where the effective length lC = 1.09 LC was obtained using Eq. (5.16) 

of Eurocode 2
18

 for isolated unbraced members with constant cross section in regular frames, as 

reported in Eq. (4) in Section 2.2. The slenderness of the right column was equal to 231. The 

relative flexibilities k0 and k4 of the rotational restraints at column ends 0 and 4 are expressed as 

follows for the fixed and top node, respectively: 

 0 40,
6

exact B

C exact

EI L
k k

L EI

   
= = ⋅   

   
. (5) 

The horizontal force F4,x2 applied at the top of the column under investigation yielded a 

variation ∆Nx of the experimental compressive loads Nx due to the vertical load Q only. The 

resulting compressive forces Nx − ∆Nx were recorded by two strain gauges closely fixed to the base 

of the column axis, as produced in the experiments of the method proposed by Tullini.
9
 Therefore, 

the percentage errors could be derived as follows: ∆ = [Na − (Nx − ∆Nx)]/(Nx − ∆Nx). Table 4 

presents all measured and identified parameters of the method. Poor estimates of Na were yielded 
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when nonsignificant second-order effects were induced, or more specifically, when Nx − ∆Nx < 99 

N. Conversely, in the final seven test combinations (Table 4), the load estimations yielded favorable 

results because the compressive loads Na were identified with errors ∆ < 10% (in absolute value). In 

particular, the minimum compressive load Nx − ∆Nx = 99 N, corresponding to the range of the 

reliable load identifications obtained (Table 4), was 25.6% of NcrE,x2 = 386 N. Consequently, the 

first-order displacements were magnified by a factor greater than 1/( 1 – (Nx − ∆Nx)/NcrE,x2) = 1/(1 – 

99/386 ) = 1/(1 – 0.256) = 1.34 (Eq. (2)). Notably, for columns with singly symmetrical cross 

sections, such as structural elements in storage pallet racks, the applied loads must act along the 

symmetrical axis only. 

 

3.2.2. Analytical verification of the buckling load 

The FE model of the space frame prototype was used to calculate the vertical buckling load QcrE,a2 = 

1360 N of the first mode shape, depicted in Fig. 9(b). The buckling load NcrE,a2 = 288 N was 

subsequently obtained using the corresponding axial force in the right column under observation in 

the FE model by assigning the loading arrangement QcrE,a2 and F4,x2 and without providing any 

geometric imperfections. Specifically, the FE model uses four FEs for each member, where Euler–

Bernoulli beams with exact shape functions that describe the second-order effects are adopted,
17

 as 

in the previous verifications of the method proposed by Tullini.
9
 

The adopted experimental value NcrE,x2 = 386 N was 34% greater than the analytical NcrE,a2 

value. The application of a non negligible transverse load F4,x2 at one top node only reduced the 

buckling load NcrE,a2 of the right column. Nonetheless, an error of 34% in the estimate of NcrE with 

respect to the analytical buckling load of NcrE,a2 = 288 N did not deteriorate the compressive load 

estimations Na (Table 4), thereby confirming the robustness of the NDT method. 

Figure 10(a) illustrates a plot of the experimental load Q versus displacement vtot,4 until the 

buckling behavior of the prototype was attained. Similarly, Fig. 10(b) illustrates a plot of the 
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compressive right column load Nx − ∆Nx versus displacement vtot,4. Finally, the parameters measured 

in the experiments were added to the plot. 

 

4. Conclusions 

Two NDT methods for the assessment of compressive column loads in steel space frames are 

described in this paper. Both procedures use short-term transverse displacements measured along 

the column under investigation after an additional lateral load has been applied with respect to a 

symmetrical axis. Load identifications are possible in the method proposed by Tullini,
9
 even if the 

columns have uncertain lengths and boundary conditions; the accuracy of the load estimates 

increases when higher second-order effects are induced by larger transverse loads. Specifically, 

compressive loads that provide a magnification factor greater than 1.45 are required for gaining 

load estimation errors lower than 10%. Load identifications in the magnification factor method are 

based on a simplified formula,
16,17

 and they also require significant second-order effects in the 

members. In this method, a load identification error lower than 10% can be obtained with a 

magnification factor greater than 1.34. Moreover, for columns with a singly symmetric cross 

section, providing a system for additional loading to bend the member only along its symmetrical 

axis is necessary. To preserve the elements in the elastic range, for both methods, a preliminary 

calculation of the required transverse load must be performed based on the geometrical and 

mechanical properties of the frame or storage pallet rack under investigation. 
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Table 1. Method proposed by Tullini.
9
 Measured parameters for Tests 1 and 2. 

   Test 1 (three-displacements)  Test 2 (five-displacements) 

Q/4 F Nx v0 v1 v2 v3 v4  v0 v1 v2 v3 v4 

(N) (N) (N) (mm) (mm) (mm) (mm) (mm)  (mm) (mm) (mm) (mm) (mm) 

141 29.4 98 0 1.48 3.01 1.82 0  0 1.52 3.10 1.95 0.18 

 58.8 119 0 3.85 5.80 2.45 0  0 3.88 5.86 2.54 0.12 

 68.6 134 0 4.54 7.29 3.52 0  0 4.55 7.30 3.54 0.03 

165 29.4 112 0 1.57 3.26 2.09 0  0 1.60 3.32 2.19 0.13 

 58.8 141 0 3.11 6.49 4.15 0  0 3.17 6.60 4.32 0.23 

 68.6 154 0 4.06 8.23 5.34 0  0 4.10 8.31 5.47 0.17 

178 29.4 133 0 1.51 3.31 2.20 0  0 1.54 3.36 2.28 0.11 

 58.8 168 0 3.12 6.69 4.42 0  0 3.16 6.78 4.55 0.18 

 68.6 175 0 3.77 8.11 5.40 0  0 3.80 8.17 5.49 0.12 

202 29.4 155 0 1.63 3.39 2.18 0  0 1.65 3.42 2.23 0.07 

 58.8 186 0 3.24 6.98 4.65 0  0 3.26 7.02 4.71 0.08 

 68.6 198 0 3.99 8.28 5.40 0  0 4.02 8.34 5.49 0.12 
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Table 2. Method proposed by Tullini.
9
 Identified parameters and estimated Na values for Tests 1 

and 2. 

    Test 1 (three-displacements)  Test 2 (five-displacements) 

Q/4 F Nx  ψ n Na Δ  ψ/v2 
(v0+v4)/v2 (v1+v3)/v2 n Na Δ 

(N) (N) (N)  (mm)  (N) (%)      (N) (%) 

141 29.4 98  430 2.7 126 28.6  138.8 0.06 1.12 3.0 138 40.8 

 58.8 119  861 2.3 109 -8.4  146.8 0.02 1.10 2.3 109 -8.4 

 68.6 134  1004 3.1 144 7.5  137.5 0.00 1.11 3.0 140 4.5 

165 29.4 112  430 3.0 137 22.3  129.6 0.04 1.14 2.8 128 14.3 

 58.8 141  861 3.2 147 4.3  130.4 0.03 1.13 3.1 142 0.7 

 68.6 154  1004 3.6 167 8.4  120.8 0.02 1.15 3.5 163 5.8 

178 29.4 133  430 3.6 166 24.8  128.1 0.03 1.14 3.4 157 18.0 

 58.8 168  861 3.3 156 -7.1  126.9 0.03 1.14 3.5 162 -3.6 

 68.6 175  1004 4.2 193 10.3  122.9 0.01 1.14 4.2 193 10.3 

202 29.4 155  430 4.0 186 20.0  125.8 0.02 1.13 3.8 178 14.8 

 58.8 186  861 4.3 200 7.5  122.6 0.01 1.14 4.3 200 7.5 

 68.6 198  1004 4.5 207 4.5  120.4 0.01 1.14 4.5 207 4.5 
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Table 3. Method proposed by Tullini.
9
 Displacements computed by the FE model of the prototype 

using EIexact for five assumed Nx values and transverse load of F = 68.6 N. 

 Q/4 F Nx v0 v1 v2 v3 v4 

 (N) (N) (N) (mm) (mm) (mm) (mm) (mm) 

FE model 40 68.6 40 0 3.41 7.31 4.88 0 

FE model 80 68.6 80 0 3.51 7.54 5.03 0 

FE model 120 68.6 120 0 3.62 7.77 5.20 0 

FE model 160 68.6 160 0 3.73 8.03 5.38 0 

FE model 200 68.6 200 0 3.85 8.29 5.58 0 
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Table 4. Magnification factor method. Estimated Na values. All measured and identified parameters. 

NcrE,x2 F4,x2 vI,4 Q/4 Nx−ΔNx vtot,4 Na Δ 

(N) (N) (mm) (N) (N) (mm) (N) (%) 

386 14.7 8.00 32 56 9.10 47 -16.7 

386 14.7 8.00 80 99 10.45 90 -8.6 

386 14.7 8.00 92 108 11.43 116 7.3 

386 14.7 8.00 104 115 12.04 130 12.6 

386 14.7 8.00 116 127 12.50 139 9.4 

386 14.7 8.00 128 137 12.81 145 5.8 

386 14.7 8.00 140 155 13.11 150 -2.9 

386 14.7 8.00 152 161 13.65 160 -0.8 
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Fig. 5. Method proposed by Tullini.
9
 Comparison of estimated Na and measured Nx values for 

Test 1 (blue points) and Test 2 (red points) when F = (a) 29.4 N, (b) 58.8 N, and (c) 68.6 N. 

Dashed lines with symbol × and solid lines with symbol • refer to the sensitivity analyses for 

Tests 1 and 2, respectively. 

Fig. 6. Magnification factor method. Unloaded (left) and loaded (right) space frame prototypes. 

Layout verification tests, with the instrumented section being located at point 4. Units: mm. 

Fig. 7. Magnification factor method and unloaded space frame prototype. (a) View of 

experimental testing. (b) Lateral load F4,x2 applied by the endless screw and measured using a 

load cell. (c) Arrangement of dial indicator at the top node. 

Fig. 8. Magnification factor method and loaded space frame prototype. (a) View of 

experimental testing. (b) Lateral load F4,x2 applied by an endless screw and measured using a 

load cell. 

Fig. 9. Magnification factor method. (a) Reference model of the right column assumed to be an 

isolated unbraced member. (b) First numerical buckling shape of the space frame prototype. 
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Fig. 10. (a) Plot of vertical load Q versus displacement vtot,4. (b) Plot of compressive right 

column load Nx − ∆Nx versus displacement vtot,4. Symbols ○ represent parameters measured in 

the experimental tests.  
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(a) (b) 

Fig. 1. (a) Prismatic column of a generic regular steel frame and (b) reference model with locations 

of instrumented sections. 

 

(a)  (b)  (c)  

Fig. 2. Space frame prototype. (a) Scheme. (b) Steel table for experimental tests. (c) Fixed restraint 

and two strain gauges positioned close to the base of the column. 
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Fig. 3. Method proposed by Tullini.
9
 Layout verification tests with locations of instrumented 

sections. Units: mm. 

 

(a)    (b)    (c)  

Fig. 4. Method proposed by Tullini.
9
 (a) Bending tests with three and five measurements performed 

concurrently. (b) Vertical load with symmetrical layout. (c) Deflection of right column and 

arrangement of dial indicators. 
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Fig. 5. Method proposed by Tullini.
9
 Comparison of estimated Na and measured Nx values for Test 1 

(blue points) and Test 2 (red points) when F = (a) 29.4 N, (b) 58.8 N, and (c) 68.6 N. Dashed lines 

with symbol × and solid lines with symbol • refer to the sensitivity analyses for Tests 1 and 2, 

respectively. 

 

 

Fig. 6. Magnification factor method. Unloaded (left) and loaded (right) space frame prototypes. 

Layout verification tests, with the instrumented section being located at point 4. Units: mm. 
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(a)    (b)    (c)  

Fig. 7. Magnification factor method and unloaded space frame prototype. (a) View of experimental 

testing. (b) Lateral load F4,x2 applied by the endless screw and measured using a load cell. (c) 

Arrangement of dial indicator at the top node. 

 

(a)    (b)  

Fig. 8. Magnification factor method and loaded space frame prototype. (a) View of experimental 

testing. (b) Lateral load F4,x2 applied by an endless screw and measured using a load cell. 
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(a)     (b) 

Fig. 9. Magnification factor method. (a) Reference model of the right column assumed to be an 

isolated unbraced member. (b) First numerical buckling shape of the space frame prototype. 
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Fig. 10. (a) Plot of vertical load Q versus displacement vtot,4. (b) Plot of compressive right column 

load Nx − ∆Nx versus displacement vtot,4. Symbols ○ represent parameters measured in the 

experimental tests. 

 


