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Abstract 

The rheological properties of a 50 wt.% wood flour filled polypropylene have been measured at 

195°C using an instrumented slit die attached to a single screw extruder. Wall slip and non-

Newtonian effects have been corrected through the Mooney and Rabinowitsch procedures, thus 

equations for viscosity and wall slip have been obtained. Interestingly, the pressure drop profiles 

calculated using these equations are not perfectly consistent with the experimental pressure 

measurements, in that the theoretical curves overestimate the experimental data. An explanation 

has been sought by assuming that slip velocity increases in the last portion of the slit die, i.e. close 

to the exit, where pressure drops down considerably. A pressure dependent slip model has been 

then proposed, its specific equations numerically solved and the results fitted to the experimental 

pressure data. The fitting is better than the one coming from the model that comprises slip 

depending on shear stress only, thus, for the fluid that has been studied, the assumption of 

pressure dependent slip appears to be justified. 

 

Keywords: Wood polymer composite, wall slip, in-line rheometry, modeling, pressure dependence 

 

1. Introduction 

Natural fiber filled polymers combine environmental friendliness with typical advantages of plastics 

materials (e.g. formability, lightness, etc.) and this is the reason for the relatively large body of 

dedicated research available in the present-day scientific literature (Gurunathan et al. 2015; 

Pickering et al. 2016). Although some natural fibers can increase the mechanical properties, much 

in the same way as more traditional reinforcements such as glass fibers, still their main appeal is 

cost reduction. From this point of view, filling with high concentrations of natural fibers is most 

convenient. On the other hand, this can increase compound viscosity remarkably, thus processing 

becomes a challenging task and natural fiber degradation due to excessive localized viscous 

heating is a constantly present pitfall. 

Processing can become easier thanks to wall slip, which is a characteristic of polymeric 

suspensions such as this one (Li and Wolcott 2005). More precisely, in the case of suspensions, it 
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is well known (Vinogradov and Ivanova 1967; Barnes 1995; Kalyon 2005; Pieper 2015) that flow 

induced hydrodynamic forces push suspended particles away from solid walls, thus creating a 

solute depleted and less viscous layer in close contact with the boundary. This has the effect of 

lubricating the suspension flow at the wall, leading to what is termed apparent slip. However, 

whether apparent or real, suspensions slip can be studied and characterized with the same means 

as usual wall slip. Moreover, external lubricants are often added to highly filled compounds in order 

to ease passage through processing machineries even further and contribute to apparent wall slip. 

In spite of being an advantage for processing, slip may lead to measurement errors when it occurs 

in a viscometer and is not taken into account properly. In the case of pressure driven flow 

viscometry, the Mooney procedure (Mooney 1931) was developed as a correction of the well-

known Rabinowitsch procedure. For capillary viscometry, it consists in running measurements 

through capillaries of different radii and estimating the slip corrected apparent shear rate by 

extrapolating curves of apparent shear rate as a function of the inverse radius, plotted at constant 

wall shear stress, down to inverse radius tending to zero. 

The Mooney procedure does not work always: it is necessary that the constant shear stress curves 

be straight lines and that their intercept with the apparent shear rate axis be positive. Most notable 

cases where the Mooney procedure fails are in the case of concentrated suspensions of ceramic 

powders and polymeric fluids of elastomeric nature (Jastrzebski 1967; Mourniac et al. 1992). Here 

the Mooney lines are often curved upwards and have negative extrapolated intercepts with the 

apparent shear rate axis. 

The reasons for the failure of the Mooney procedure might be related to some of its underlying 

assumptions. In particular, the flow is assumed to be fully developed, i.e. the velocity components 

must be independent of the axial coordinate, which in turn implies that pressure needs to vary 

linearly with axial distance and that the wall shear stress has to be constant throughout the whole 

channel length. As a consequence, the slip velocity must also be uniform along the channel, thus it 

may depend on the shear component of local stress but not on pressure (or more precisely wall 

normal stress): as pressure varies with the axial coordinate, it would induce non-full development. 

Pressure dependent wall slip has been widely investigated in a number of papers. Early evidences 

that slip increases with decreasing pressure date back to Vinogradov and Ivanova (1967). A simple 

but effective pressure dependent slip model has been introduced by Hill et al. (1990) and used in a 

number of papers (e.g. Person and Denn 1997 among others). A systematic experimental study at 

the capillary rheometer of pressure dependent slip of polyolefins, together with a very thorough 

mathematical model, is due to Hatzikiriakos and Dealy (1992), while a theoretical study of pressure 

dependent wall slip of Newtonian fluids without neglecting inertia is due to Rao and Rajagopal 

(1999). Tang and Kalyon (2008) and Tang (2012) have solved some pressure dependent slip flows 

of non-Newtonian compressible suspensions and compared them with experimental results 

obtained using polydimethylsiloxane as a test fluid. More recently, Kalogirou et al. (2011), 
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Damianou et al. (2013) and Housiadas (2013) have solved theoretically and numerically some 

flows of incompressible Newtonian and non-Newtonian fluids with pressure dependent slip. 

In this paper we will consider a natural fiber filled polymer melt. Its rheological properties will be 

evaluated using an in-line slit viscometer. Pressure will be measured at three specific locations 

along the instrumented slit die and the pressure gradient will be derived accordingly. It will be 

shown that the pressure drop diagram is non-linear and the resulting non-fully developed flow can 

be explained on the basis of pressure dependent wall slip. A pressure dependent wall slip 

constitutive law will then be introduced and its results compared with the experimental 

measurements. 

 

2. Experimental materials and methods 

The fluid considered in this investigation is a molten wood polymer composite (WPC). Specifically, 

it is a polypropylene melt filled with 50 wt.% white fir wood flour. It has been purchased from 

PlasticWOOD S.r.l., Mazzantica di Oppeano (VR), Italy, as a commercial compound (PP 50 SCD), 

its mechanical and thermal characterization can be found in (Mazzanti and Mollica 2016). 

A slit die in-line rheometer attached to a single screw extruder (P.R.T. SERVICE & INNOVATION 

s.r.l., Sant'Agostino (FE), Italy) has been used to perform the rheological measurements. This 

instrument is described in (Mazzanti and Mollica 2015), where also measurement uncertainties are 

evaluated and reported. The main characteristics of the in-line rheometer will be outlined here 

briefly. 

The slit die has a length of 105 mm and a width of  50 mm, it is made of AISI 4317 steel, case 

hardened and tempered to HRC 61. Three flush mounted pressure transducers (GEFRAN M32 

type mercury–filled transducers, ± 0.25% full scale accuracy) allow pressure drop measurements 

along the die. The first pressure transducer (200 bar full scale) is placed 40 mm after the slit 

entrance in order to reduce the influence of entrance effects. The remaining two transducers are 

located 25 mm apart, hence at 65 mm and 90 mm from the entrance (100 bar and 50 bar full scale, 

respectively), thus making the overall measurement length equal to 50 mm. The pressure 

measurements are used to calculate the pressure gradient along the die. 

Slit die temperature is controlled through three thermostat operated resistance heaters. A more 

direct measure of the fluid temperature is also realized thanks to thermocouples (J-type, ± 0.1 °C 

accuracy) embedded within the pressure transducers. The slit gap is adjustable (see Kalyon and 

Gokturk 1994 and Kalyon et al. 2006a) and this allows to perform the Mooney correction 

procedure. In this study, slit gaps of 1.95, 2.45, 3.31, 4.04 mm have been used. 

The WPC pellets have been dried at 80°C for 24 hours before being flood fed into the extruder to 

perform the rheological measurements. A uniform temperature distribution of 195°C has been set 

along the extruder barrel and the slit die. 
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The mass flow rate has been measured by dividing the throughput weight (weighed with a 

precision scale) by the time needed to extrude it. The volumetric flow rate has been determined by 

dividing the mass flow rate by the known density of the fluid at the testing temperature (1025 

kg/m3).  

 

3. Experimental results 

The average temperature readings at the three transducer locations are pictured in Fig. 1 for the 

four slit dies. Even if a flat temperature profile of 195°C has been superimposed, only the 

temperature at the first transducer is almost equal to the set temperature, while the one at the 

middle transducer is slightly higher and the last one is lower. Most probably, the low temperature 

reading at the end is due to the proximity of the exit, while the heating in the middle of the die is 

compatible with flow induced viscous dissipation. Notice, in fact, that non-uniformity increases with 

decreasing the slit die gap. Difficulties in keeping a uniform temperature profile are a well-known 

problem of the present approach (Padmanabhan and Bhattacharya 1994). However, temperature 

discrepancies are within 2.5 °C from the target temperature, thus the experimental measurements 

that follow can be considered reliable. 

 

Fig. 1: Average temperature profiles for the flow in the various slit dies. Highest non-uniformity is for the thinnest slit 

 

Concerning viscosity evaluation, let        indicate the pressure gradient,   the volumetric flow 

rate and let   and   be the slit width and gap, respectively. The absolute value of the wall shear 

stress    can be defined as: 

     
 

 
        ,          (1) 
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while the apparent wall shear rate  ̇    , i.e. the shear rate the fluid would have if it were 

Newtonian, is: 

  ̇    
  

   
 .           (2) 

The shear stress vs. apparent shear rate curves for the four different slit gaps are shown in Fig. 2. 

The four curves do not coincide: going from left to right they are placed from the thickest to the 

thinnest die. This is a clear indication of wall slip, thus the Mooney procedure can be attempted to 

correct for slip. 

 

 

Fig. 2: Wall shear stress vs. apparent shear rate for the four slit gaps. Besides being non coincident, the curves place 

themselves left to right  from thickest to thinnest 

 

The resulting Mooney plot is displayed in Fig. 3. As can be seen, the constant shear stress data 

points are not perfectly aligned along straight lines, but forcing a linear fit one obtains a positive 

intercept with the ordinate axis. In a case like this one it is customary to assume the Mooney 

procedure to be valid. The slip velocity    and the apparent shear rate clear of the contribution of 

wall slip, here indicated with  ̇            , can be obtained using the following equation:   

  ̇    
    

 
  ̇            .         (3) 

This apparent shear rate has to be further processed with the Rabinowitsch correction to take into 

account non-Newtonian effects, so that the true shear rate  ̇ can be finally obtained. The shear 

viscosity   is then given by the usual definition: 

    
  

 ̇
 .           (4) 
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Fig. 3: Mooney plot for five values of constant wall shear stress. Linear fit is approximate but the intercept with the shear 

rate axis is positive for all values of shear stress. 

 

 

Fig. 4: Viscosity vs. true shear rate. The points align in a log-log plot, thus a good fitting is provided by the power law of 

Eq. (5) 

 

In Fig. 4 the plot of viscosity as a function of true shear rate is pictured together with its power law 

model fitting: 

    ̅  ̇ ̅   .           (5) 
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The slip velocity as a function of wall shear stress is shown in Fig. 5 and it also can be fitted with a 

power law: 

    ̅   
 ̅ .            (6) 

The parameters used to fit Eqs. (5) and (6) are reported in Tab. 1. Fitting of both curves is quite 

satisfactory, especially concerning viscosity. 

Fig. 5: Slip velocity as a function of wall shear stress and curve fitting using Eq. (6). Fitting is reasonable but not 

completely satisfactory 

 

Tab. 1: Material parameters for viscosity and slip law resulting from the Mooney-Rabinowitsch procedure 

Viscosity power law Eq. (5) Slip law Eq. (6) 

 ̅   (       ̅)  ̅  ̅   (  ⁄      ̅)  ̅ 

23.7 0.364 1.61 10-15 2.55 

 

Now, the model that has been obtained (Eqs. 5 and 6 with the parameter values of Tab. 1) can be 

used to reproduce the experimental plots of pressure as a function of axial location: it can be done 

by solving for Poiseuille flow in the slit imposing the same experimentally measured flow rate  , or 

the average fluid velocity: 

     
 

  
 .           (7) 

These plots can be compared to the experimental pressure measurements directly. A few 

examples are shown in Fig. 6: the model curves are indeed rather close to the experimental data 

but all of them overestimate the pressure measurements by a certain amount. 
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Fig. 6: Experimental pressure measurements (dots) and model predictions (continuous lines) coming from Eqs.(5) and 

(6) with the parameter values of  Tab. 1  (i.e. using the Mooney-Rabinowitsch procedure). Overestimation is quite evident 

 

In order to show this feature better, we have reported in Tab. 2 all of the experimental pressure 

values measured at the three transducer locations (in white background), together with the 

theoretical values estimated at the same locations on the basis of the model coming from the 

Mooney-Rabinowitsch procedure (in yellow background). In order to quantify the comparison, the 

values of the absolute and normalized errors are also reported in Tab. 2. They are defined as: 

                                                        
       

   
    ,   (8) 

where the quantity     stands for an experimental pressure measurement at the first, second or 

third axial location, while     is the corresponding model estimate. Red background color is used 

to highlight model points that overestimate experimental values, while blue background color 

means underestimation. It can be seen that all but three values are overestimated. The model 

overestimating the experimental values is a qualitative error: from the quantitative point of view, in 

fact, the equations coming from the Mooney-Rabinowitsch procedure behaves fairly well, but the 

presence of a qualitative error indicates that something in the physics of the problem is not 

adequately captured. This is especially true at low pressure values. 
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Tab. 2: Experimental pressure values compared with pressure values obtained with the model coming from the Mooney-

Rabinowitsch procedure 

  
Experimental data Mooney-Rabinowitsch Absolute error Normalized error 

H 
(mm) 

U 
(mm/s) 

p1 
(bar) 

p2 
(bar) 

p3 
(bar) 

p1 
(bar) 

p2 
(bar) 

p3 
(bar) 

p1 
(bar) 

p2 
(bar) 

p3 
(bar) 

p1 
(%) 

p2 
(%) 

p3 
(%) 

1.95 

3.95 34.46 20.88 7.70 36.30 22.34 8.38 1.84 1.46 0.67 5.32 6.97 8.74 

6.20 42.32 25.44 9.01 43.01 26.47 9.93 0.68 1.02 0.92 1.62 4.02 10.20 

11.22 52.60 31.88 11.59 53.79 33.10 12.41 1.18 1.22 0.83 2.25 3.81 7.13 

13.83 57.48 34.56 12.42 58.18 35.81 13.43 0.71 1.24 1.01 1.23 3.59 8.15 

20.45 65.64 39.58 14.33 67.41 41.48 15.56 1.77 1.91 1.22 2.70 4.82 8.52 

29.97 73.64 44.50 16.32 77.82 47.89 17.96 4.18 3.39 1.63 5.68 7.63 10.01 

35.14 77.24 46.74 17.19 82.62 50.84 19.07 5.37 4.10 1.88 6.96 8.78 10.92 

2.45 

3.06 23.35 14.06 4.62 25.06 15.42 5.78 1.71 1.36 1.17 7.32 9.68 25.31 

7.26 34.67 21.07 7.38 34.65 21.32 8.00 -0.02 0.25 0.62 -0.05 1.21 8.41 

10.54 39.20 24.03 8.72 39.86 24.53 9.20 0.66 0.50 0.48 1.67 2.07 5.53 

13.30 42.19 25.64 9.12 43.49 26.76 10.04 1.30 1.12 0.92 3.09 4.38 10.07 

15.80 45.94 27.94 10.02 46.39 28.55 10.70 0.45 0.61 0.68 0.98 2.17 6.79 

22.57 51.30 31.38 11.54 53.01 32.62 12.23 1.71 1.24 0.69 3.33 3.96 5.97 

33.63 59.34 36.19 13.32 61.55 37.87 14.20 2.20 1.68 0.88 3.71 4.65 6.62 

3.31 

3.98 17.10 10.45 3.52 19.14 11.78 4.42 2.03 1.32 0.90 11.88 12.64 25.47 

8.34 23.83 14.61 5.15 25.21 15.52 5.82 1.38 0.91 0.67 5.80 6.22 12.97 

14.16 29.86 18.29 6.62 30.71 18.90 7.09 0.85 0.61 0.46 2.85 3.31 7.00 

18.30 33.00 20.31 7.49 33.80 20.80 7.80 0.79 0.49 0.31 2.41 2.40 4.17 

23.66 36.70 22.56 8.38 37.19 22.89 8.58 0.49 0.32 0.20 1.35 1.43 2.45 

29.65 38.39 23.46 8.40 40.45 24.89 9.34 2.06 1.43 0.94 5.36 6.10 11.18 

39.86 43.40 26.71 9.90 45.17 27.79 10.42 1.76 1.08 0.52 4.06 4.06 5.30 

4.04 

3.76 13.49 7.93 2.50 14.61 8.99 3.37 1.12 1.06 0.87 8.27 13.38 35.03 

6.06 17.06 10.16 3.46 17.45 10.74 4.03 0.39 0.57 0.57 2.28 5.66 16.35 

9.04 20.60 12.39 4.43 20.26 12.47 4.67 -0.35 0.08 0.25 -1.69 0.61 5.57 

18.85 26.56 16.07 5.91 26.62 16.38 6.14 0.05 0.31 0.24 0.19 1.91 3.98 

24.31 28.89 17.48 6.42 29.25 18.00 6.75 0.36 0.52 0.33 1.26 2.95 5.21 

31.76 31.82 19.31 7.12 32.30 19.88 7.45 0.48 0.57 0.34 1.51 2.95 4.73 

41.09 35.67 21.70 8.14 35.55 21.88 8.20 -0.12 0.17 0.06 -0.34 0.79 0.79 

 

A possible reason for this behavior can be understood by looking at Fig. 7, which illustrates one 

representative experimental pressure profile together with its fitting based on the Mooney-

Rabinowitsch procedure. The experimental points are aligned along a straight line, which would not 

cross the zero pressure axis at the channel exit (i.e. at 105 mm) but slightly behind. The pressure 

profile obtained from the model is parallel to the experimental one, meaning that the shear stress is 

in fact the same for both. On the other hand, the model pressure profile must meet zero pressure 

exactly at the die exit, since this is the pressure boundary condition. From an experimental point of 

view, pressure can indeed be different from zero at the die exit. In fact, this is a method for 
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estimating normal stress differences in pressure driven flows (Han 1974; Walters 1975). On the 

other hand, notice that in the present case the extrapolated pressure value would be negative, 

which is possible but unlikely. In any case, it is well known that the effects of the normal stress 

differences are relatively minor for suspensions (Aral and Kalyon 1997), thus it is plausible that 

pressure is indeed very close to zero at the die exit. 

 

 

Fig. 7: Despite alignment of the experimental points, the extrapolated intercept with the zero pressure axis falls short of 

the channel exit. This is an indication of non-linearity of the pressure vs. axial location plot, which in turn points out to 

non-fully developed flow in the exit region. On the other hand, the pressure profile coming from the model constructed 

through the Mooney-Rabinowitsch procedure is linear and meets the zero pressure axis exactly at the channel exit.  

 

If we assume that pressure is indeed zero at the exit, then the experimental pressure drop must 

lose linearity in the vicinity of the exit (see the dotted line of Fig. 7), bringing about a slight upward 

curvature of the pressure profile. Hence, in this region the flow will not be fully developed. The 

easiest explanation for this behavior is to assume a wall slip velocity increase in the vicinity of the 

die exit due to the local pressure decrease, in agreement with Vinogradov and Ivanova (1967). 

Slip, in fact, is definitely occurring, as it has been implied by the differences in the curves of Fig. 2. 

If slip velocity increases while keeping the flow rate constant, the effect on the flow is a decrease in 

the absolute value of the velocity gradient at the wall, i.e. the wall shear rate. This in turn 

determines a decrease in the wall shear stress and thus a less steep pressure profile slope. 

Notice that non-full development could also be due to pressure dependent viscosity. In this case, 

though, non-linearity of the pressure profile should be seen along the whole channel length (see for 

instance the results of Kalogirou et al. 2011), not only at the channel end, whereas the 
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experimental pressure measurements of this study lie almost perfectly on a straight line 

everywhere but in the exit region. 

 

4. Modeling 

As discussed previously, a better fit of the experimental data would be obtainable if wall slip 

depended on wall normal stress in addition to shear stress. In this section a model of wall normal 

stress dependent slip will be introduced and solved for the flow in a rectangular slit. As the slit gap 

  is much smaller than both the slit length   and width  , the lubrication approximation can be 

used. It is convenient to identify   with the length between the first transducer and the die exit, thus 

we will consider        . 

The flow domain is a rectangular area: the axial slit coordinate will be      , while in the 

transverse direction the flow is assumed symmetric, thus the transverse coordinate will be 

      ⁄ . Moreover, the flow field is assumed two dimensional, with velocity components 

   (   ) along the axial direction of the die and    (   ) in the transverse direction. No flow is 

assumed in the direction of the slit width, i.e. secondary flows will be neglected. This hypothesis 

normally holds provided that the slit width is much greater than the gap. The fluid is also assumed 

to be incompressible. 

According to the lubrication approximation, only the momentum equation in the axial direction 

needs to be considered: 

 
  

  
 
    

  
.           (9) 

Here    ( ) is the hydrostatic pressure and the notation     for the shear stress in the fluid is 

used also to highlight the dependency of shear stress on both   and  . Eq. (9) can be integrated 

once in   using the symmetry condition, i.e.    |      , the result is 

     
  

  
     

  

 
          (10) 

where 

     ( )   
  

  

 

 
           (11) 

is the absolute value of the wall shear stress. In order to find the axial velocity, the material 

constitutive equation has to be specified. Fluids containing high amounts of filler usually exhibit an 

yield stress due to significant particle – particle interactions, while the molten polymeric matrix 

shows shear thinning effects. If these two phenomena occur together, a suitable mathematical 

model is the Herschel-Bulkley model: it is a generalized Newtonian fluid capable of modeling both 

shear thinning and yield. It does neglect viscoelasticity, but usually this is not considered to be an 

important limitation in the case of tube flow. The flow rule can be written as: 
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where    is the yield stress of the fluid and sgn(x) stands for the signum function, i.e. the function 

that extracts the sign of its argument. Now, in order to obtain the axial velocity, Eq. (12) is 

integrated once in   using the second of Eqs. (10) and the boundary condition 

    |    ⁄
   ( )          (13) 

with   ( ) being the wall slip velocity. The result is: 
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This can be integrated once more in   between   and   ⁄  to yield the volumetric flow rate: 

     ∫  (   )  
 
 ⁄

 
 ,         (15) 

which, by conservation of mass and incompressibility, has to be constant. Thus, indicating with   

the average velocity, we have: 
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This result is also present in Tab II of Kalyon (2005). The other constitutive equation that must be 

specified is the one for the slip velocity. This should be of the form      (     ), with    

indicating the wall normal stress:  

      
     

 
 .          (17) 

In this equation,      ( ̇) and      ( ̇) indicate the first and second normal stress differences. 

There are experimental difficulties in measuring the normal stress differences (Aral and Kalyon 

1997), especially at relatively high values of shear rate (Hatzikiriakos and Dealy 1992). On the 

other hand, there is experimental evidence (Hristov and Vlachopoulos 2007) that the quantity 

      measured through rotational rheometry is of the order 104 Pa (i.e. 0.1 bar) for a 20% wood 

flour filled high density polyethylene, and is a decreasing function of wood flour percentage. 

Moreover, during extrusion we noticed very little die swell, indicating low elastic properties of the 

suspension. Thus, for simplicity and as a first approximation, we propose to approximate the wall 

normal stress with pressure, i.e. 

     .            (18) 

The specific form for the  slip velocity equation that we propose is: 

    {
    

                                                           

     
    (     )

                           
.      (19) 

This indicates that for relatively high values of pressure the flow is fully developed, since a non-

zero slip velocity would depend only on the shear stress (first of Eqs. 19). The flow loses full 

development only after pressure decreases below a certain threshold that is determined through a 

parameter   that resembles the friction coefficient. Since such a threshold is reached for low 
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pressure values, this will likely occur close to the exit: here the slip velocity becomes pressure 

dependent and increases with decreasing pressure. Thus it seems reasonable that the 

experimental observations described in the previous sections would be reproduced.  

The model proposed by Hill et al. (1990) and used also by Person and Denn (1997) 

      
     

  ,          (20) 

would give more difficulties in modeling the flow of the molten WPC of the present article: Eq. (20), 

in fact, basically predicts no slip at high pressure. As pressure decreases, the slip velocity does 

increase, but in a continuous and gradual way. As a result, it would not be possible to describe a 

flow that has both slip and full development at relatively high pressure values, such as the present 

one. The model proposed by the Kalyon and co-workers (see for instance Tang and Kalyon 2008), 

i.e. 

      (
  

 
)
 
  

 [            ( (     ))]      (21) 

is similar to the model of Eq. (20), as reported by Tang (2012), thus it would behave similarly.  

On the other hand, the model by Hatzikiriakos and Dealy (1992) 

     ( ) [        
   

  
  

  
]   

         (22) 

would most probably work: albeit, strictly speaking, the flow predicted using Eq. (22) is always non-

fully developed, at high wall normal stress values (and constant temperature) the quantity in 

square brackets at the right hand side of Eq. (22) would tend to a constant, thus slip velocity would 

depend only on wall shear stress and would therefore be uniform for constant shear stress. 

In this paper we have preferred to use Eq. (19) rather than Eq. (22) based on simplicity: the latter 

contains a total of seven material constants while the former only four parameters, namely  ,  ,   

and  . Hatzikiriakos and Dealy’s model is very complete since thermal and polymer microstructural 

features are taken into account, while they are not in in our model. However, it must be pointed out 

that Eq. (22) has been derived for the case of molten polymers, while the fluid that is presently 

studied is a suspension. 

Now, collecting together the three equations (11), (16) and (19), we obtain the following system: 
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for the three unknowns  ,    and    . For any given value of  , it can be solved by specifying only 

one boundary condition, and this will be 

  |     .           (24) 
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Eqs. (23) with the boundary condition (24) have been solved numerically. The solution scheme 

consists in discretizing the first equation of system (23) with the midpoint method to find pressure 

at the subsequent integration point. The second and third equations can then be used to calculate 

   and    at the midpoints. In order to avoid numerical instabilities, it is more convenient not to use 

the boundary condition (24) directly, but to use a shooting method, guessing the pressure at the slit 

entrance 

  |                 (25) 

in such a way that pressure be 0 at the channel exit. A sufficiently accurate solution has been 

found with an axial length step of 10-1 mm over a slit length of 65 mm. 

Once the axial velocity is known, the transverse velocity  (   ) can be obtained from the continuity 

equation: 

 
  

  
 
  

  
             (26) 

by differentiating it once with respect to y 

 
   

   
  

   

    
  

  ̇

  
          (27) 

and integrating it twice subject to the following boundary conditions 

  |     |    ⁄
                           (28) 

 

5. Model results and discussion 

The material parameters that best fit the experimental pressure measurements are reported in 

Tab. 3. A good fitting has been obtained without using the yield stress as a parameter. This may 

indicate that even if the fluid had an yield point, this would be very small, possibly difficult to 

measure experimentally and of little significance for describing the flow under examination. 

 

Tab. 3: Fitting parameters of the pressure dependent slip model described by Eqs. (12) and (19) 

Herschel-Bulkley Eq. (12) Slip law Eq. (19) 

    (       )       (  )     (  ⁄      )         (  ⁄      )   

23.4 0.407 0 3.70 10-15 2.51 5.54 10-15 0.0819 

 

Tab. 3 also shows that the slip law exponent is almost equal to the reciprocal of the viscosity power 

law exponent, in agreement with De Gennes’ theory (Brochard Wyart and De Gennes 1992) and 

also reported by Ebrahimi et al. (2015). Indeed, this would be almost true also with the two 

exponents of the model coming from the Mooney-Rabinowitsch procedure (see Tab. 1), but in the 

case of the exponents of Tab. 3 the agreement is much better. 

In Fig. 8 the pressure vs. axial position plots are pictured for some representative cases and 

compared with the correspondent experimental pressure measurements. The model pressure 

profiles approximate the experimental data very well, denoting that the model captures the 
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essential physical phenomenon. Pressure falls linearly over the vast majority of the slit length and 

deviates from linearity only in the very last portion of the slit die, as expected. 

 

Fig. 8: Experimental pressure profiles compared with profiles coming from the pressure dependent slip model. The four 

plots are identified by the slit gap: (a)   = 1.95 mm, (b)   = 2.45 mm, (c)   = 3.31 mm, (d)   = 4.04 mm 

 

The complete comparison between experimental and model data is reported in Tab. 4, which is 

analogous to Tab. 2. Again, experimental data are in white background, while the estimates using 

the model of the previous section are in green background. Tab. 4 reports also the absolute and 

relative errors with the same color notation as Tab. 2: red for overestimation, blue for 

underestimation. As can be seen, data fitting is globally more accurate than the model obtained 

from the Mooney-Rabinowitsch procedure (Tab. 2) and there is no qualitative error: overestimation 

and underestimation occur in fairly equal amount. 

In Fig. 9 and 10 the slip velocity and wall shear stress profiles are shown for the same cases that 

are pictured in Fig 8. Slip velocity and wall shear stress are uniform in most of the channel, i.e. 

where the pressure profile is linear and the flow is fully developed. In the very last portion, where 

pressure loses linearity, slip velocity increases while wall shear stress decays. The behavior is 

basically identical to the one described by Hatzikiriakos and Dealy (1992) for their case of flow in 

long capillaries. From the quantitative point of view, the increase in slip velocity is quite 

remarkable, especially at high flow rates where slip may increase almost by 50%. 
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Tab. 4: Experimental pressure measurements compared with values coming from the pressure dependent slip model 

  
Experimental data Pressure dependent slip Absolute error Normalized error 

H 
(mm) 

U 
(mm/s) 

p1 
(bar) 

p2 
(bar) 

p3 
(bar) 

p1 
(bar) 

p2 
(bar) 

p3 
(bar) 

p1 
(bar) 

p2 
(bar) 

p3 
(bar) 

p1 
(%) 

p2 
(%) 

p3 
(%) 

1.95 

3.95 34.46 20.88 7.70 33.62 20.48 7.35 -0.85 -0.40 -0.36 -2.46 -1.92 -4.63 

6.20 42.32 25.44 9.01 40.27 24.54 8.80 -2.05 -0.91 -0.21 -4.84 -3.56 -2.28 

11.22 52.60 31.88 11.59 51.12 31.14 11.17 -1.48 -0.74 -0.42 -2.82 -2.32 -3.61 

13.83 57.48 34.56 12.42 55.59 33.87 12.14 -1.88 -0.70 -0.27 -3.28 -2.02 -2.19 

20.45 65.64 39.58 14.33 65.05 39.63 14.21 -0.59 0.05 -0.13 -0.90 0.13 -0.89 

29.97 73.64 44.50 16.32 75.83 46.20 16.56 2.19 1.70 0.24 2.98 3.82 1.45 

35.14 77.24 46.74 17.19 80.84 49.24 17.65 3.59 2.51 0.46 4.65 5.36 2.70 

2.45 

3.06 23.35 14.06 4.62 23.20 14.11 5.02 -0.15 0.05 0.41 -0.65 0.36 8.85 

7.26 34.67 21.07 7.38 32.82 19.96 7.10 -1.84 -1.10 -0.27 -5.32 -5.24 -3.68 

10.54 39.20 24.03 8.72 38.14 23.20 8.25 -1.06 -0.83 -0.46 -2.70 -3.46 -5.30 

13.30 42.19 25.64 9.12 41.88 25.47 9.06 -0.31 -0.17 -0.06 -0.72 -0.66 -0.62 

15.80 45.94 27.94 10.02 44.88 27.29 9.71 -1.06 -0.64 -0.31 -2.30 -2.30 -3.14 

22.57 51.30 31.38 11.54 51.79 31.50 11.20 0.49 0.12 -0.34 0.96 0.38 -2.95 

33.63 59.34 36.19 13.32 60.79 36.97 13.15 1.45 0.78 -0.17 2.44 2.16 -1.29 

3.31 

3.98 17.10 10.45 3.52 17.96 10.90 3.85 0.86 0.45 0.33 5.02 4.26 9.27 

8.34 23.83 14.61 5.15 24.18 14.67 5.18 0.35 0.07 0.02 1.48 0.46 0.48 

14.16 29.86 18.29 6.62 29.93 18.16 6.40 0.06 -0.14 -0.22 0.21 -0.76 -3.37 

18.30 33.00 20.31 7.49 33.18 20.13 7.10 0.18 -0.18 -0.39 0.55 -0.88 -5.21 

23.66 36.70 22.56 8.38 36.79 22.32 7.87 0.10 -0.24 -0.51 0.27 -1.07 -6.09 

29.65 38.39 23.46 8.40 40.29 24.44 8.61 1.90 0.98 0.22 4.95 4.18 2.60 

39.86 43.40 26.71 9.90 45.39 27.54 9.70 1.99 0.82 -0.20 4.58 3.09 -1.99 

4.04 

3.76 13.49 7.93 2.50 13.74 8.32 2.93 0.24 0.39 0.43 1.79 4.93 17.31 

6.06 17.06 10.16 3.46 16.65 10.08 3.55 -0.41 -0.08 0.09 -2.42 -0.78 2.54 

9.04 20.60 12.39 4.43 19.57 11.85 4.17 -1.04 -0.54 -0.26 -5.04 -4.35 -5.84 

18.85 26.56 16.07 5.91 26.30 15.93 5.60 -0.26 -0.14 -0.31 -0.98 -0.87 -5.17 

24.31 28.89 17.48 6.42 29.14 17.65 6.20 0.25 0.16 -0.21 0.88 0.94 -3.29 

31.76 31.82 19.31 7.12 32.45 19.65 6.91 0.63 0.34 -0.21 1.98 1.78 -2.95 

41.09 35.67 21.70 8.14 36.00 21.80 7.66 0.33 0.10 -0.48 0.94 0.45 -5.86 

 

It is interesting to notice that the slit location where the flow loses full development is indeed quite 

close to the exit, but often well behind the position of the last pressure transducer. This means that 

the flow is really non-fully developed in spite of pressure measurements appearing linear, in 

agreement with the observations of Pieper et al. (2015) for the case of a non-colloidal suspension. 

As a consequence, it is not feasible from an experimental point of view to tell the beginning of non-

full development from the non-linearity of the pressure profiles.  
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Fig. 9: Wall slip velocity profiles as predicted using the pressure dependent slip model. The four plots are identified by 

the slit gap: (a)   = 1.95 mm, (b)   = 2.45 mm, (c)   = 3.31 mm, (d)   = 4.04 mm 

 

 

Fig. 10: Wall shear stress profiles as predicted using the pressure dependent slip model. The four plots are identified by 

the slit gap: (a)   = 1.95 mm, (b)   = 2.45 mm, (c)   = 3.31 mm, (d)   = 4.04 mm 
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Also, at equal shear stress the flow loses full development earlier for thicker slits. This is easy to 

explain by looking at Eq. (10): if wall shear stress and die length are constant, like in this case, 

pressure will be lower for wider gaps, thus the threshold for pressure dependent slip activation 

would be reached earlier. 

However, this investigation has shown that pressure effects are important in a very short region 

close to the channel exit. This explains the reason why the viscosity parameters estimated through 

the Mooney-Rabinowitsch procedure are not too different from the ones obtained with the model 

introduced in the present article, as can be seen by comparing the corresponding data of Tab. 1 

and Tab. 3. This is reasonable also because, in the determination of shear stress from 

experimental data, what matters is pressure gradient and not the absolute values of pressure: 

pressure can be measured modulo an additive constant without altering the shear stress 

evaluation. In the case of the slip law, on the other hand, the differences between the two models 

are more significant. It can be speculated that the slip velocities estimated on the basis of the 

Mooney-Rabinowitsch procedure are an average obtained by mediating over axial length. From 

Fig. 9 it can be seen that such an average value would be different from the slip velocity profile 

obtained by Eq. (19), especially at high flow rates and wide slit gaps.  

From this point of view, notice from the Mooney plots of Fig. 3 that at each shear stress level the 

points that fall out of alignment mostly are indeed the ones for the smallest   ⁄  i.e. the points that 

are relative to the 4.04 mm slit gap. In particular, these points appear to lie slightly below a 

hypothetical line traced on the basis of the points relative to the other three gaps. This is due to the 

fact that at wider gaps the relatively lower pressure leads to a higher average slip velocity, which 

indeed corresponds to a steeper Mooney plot. This issue is explained in Fig. 11 and the main 

consequence is that usage of too wide slit gaps in the Mooney procedure is generally inappropriate 

for the materials studied in this paper. 

The good fitting of the experimental data that has been obtained by the pressure dependent slip 

model may be viewed as a convincing argument about pressure dependent slip actually taking 

place. However, it must be pointed out that in the exit region of the slit die also temperature is 

lower (see Fig. 1), and this may somehow alter this result. On the other hand, experimental 

evidence shows that slip decreases with decreasing temperature (Hatzikiriakos and Dealy 1992) 

and moreover the local melt temperature reading could be greatly influenced by the surrounding 

steel die temperature. This is obviously lower due to the presence of the free surface at the exit, 

which is only 15 mm away. It is then possible that the fluid temperature is actually higher, possibly 

closer to the set temperature, in spite of the thermocouple reading. Thus, taking into account also 

that the temperature decrease that was measured is very small, of the order of 2.5 °C, it seems 

reasonable that the slip increase in the exit region be ascribed entirely to the pressure decrease. 
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Fig. 11: Inaccuracy of the first point of the Mooney plot in the 80 kPa shear stress line. A Mooney line traced through the 

first two points is steeper than the one passing through the last three points. 

 

Another possible source of inaccuracy of the results of this paper may originate from the different 

mixing conditions of the suspension traveling through the extruder. In fact, changing the die gap 

size has a direct effect on the counter-pressure inside the single screw extruder, which feeds the 

in-line rheometer. This in turn has an influence on the mixing capabilities of the extruder, in the 

sense that lower counter-pressure generally leads to less effective mixing. Mixing differences are 

known to generate variations in the rheological properties (see Kalyon et al. 2006b), therefore this 

is an important issue. On the other hand, in the present case the suspension is a commercial 

compound that has been pre-mixed by the compound supplier using a co-rotating twin screw 

extruder, therefore we are confident that mixing differences among the various flowing conditions, 

albeit present, might be negligible. 

 

6. Conclusions 

In this paper we have studied the rheological properties of a wood flour filled (50% wt.) 

polypropylene melt using a slit die rheometer attached to a single screw extruder. This instrument 

is particularly suited for this fluid because rheological characterization with the parallel plate 

rheometer in oscillatory mode may be ineffective due to difficulties in assuming the Cox-Merz rule 

to be valid for concentrated suspensions. Moreover, in the case of suspensions, there are 

problems related to the size of the suspended particles with respect to the rheometer gap size 

(Barnes 2000). Also capillary viscometry may not be a viable option due to the high viscosity 

induced by the large filler concentration and possible filtering effects (Yilmazer et al. 1989). 



  

20 
 

Four different slit gaps have been used in order to perform the Mooney procedure with sufficient 

confidence. Despite the Mooney procedure displays plots which are linear only in an approximate 

sense, a positive intercept with the apparent shear rate axis can be obtained, thus viscosity and 

wall slip velocity can be evaluated and modeled. On the other hand, if experimental pressure 

measurements are fitted with model predictions based on the previously evaluated viscosity and 

slip law, it can be seen that, despite being quite accurate from a quantitative point of view, the 

model data overestimate the experiments, especially at relatively low pressure values. 

In order to explain this effect, another slip model possessing pressure dependence has been 

introduced. This has a total of seven parameters, i.e. three more than the one coming from the 

Mooney-Rabinowitsch procedure. One of the parameters, though, is the yield stress, which was 

eventually set to zero, making the number of additional parameters equal to two. Also, the 

exponent of the slip power law has been found to be basically equal to the reciprocal of the 

exponent of the Herschel-Bulkley constitutive equation for viscosity, in agreement with de Gennes’ 

theory, thus reducing the number of parameters further. 

The pressure dependent slip model approximates the experimental results better than the power 

law coming from the Mooney-Rabinowitsch procedure. On the other hand, since pressure effects 

can be seen only very close to the exit, the model from the Mooney-Rabinowitsch procedure and 

the one with pressure dependent wall slip do not differ too much, especially in the expression for 

viscosity.  

The main result that has been obtained in the present work is that low pressure promotes wall slip 

of natural fiber filled polymeric fluids. This may have important implications for rheometry: strictly 

speaking the usual Mooney correction procedure is inapplicable, especially with relatively wide 

gaps, in which pressure effects are more relevant. Considering also that with wider gaps issues of 

secondary flows might become increasingly important, it is clear that the gap sizes which can be 

used for the Mooney procedure have an upper bound. Gap size is also bounded from below, since 

high suspension viscosity prevents from using gaps that are too narrow. In addition to this, a 

temperature increase, aiming at decreasing viscosity, is limited due to natural fiber thermal 

degradation. Putting everything together, it can be concluded that a precise rheological 

characterization of such fluids, in terms of viscosity and wall slip velocity, is a very challenging task. 

On the other hand, from the point of view of processing, pressure dependent slip plays a favorable 

role: the fluid motion tending to plug flow close to the die exit induces a smoother transition 

between the flow inside the slit and the motion of the solidifying extruded profile that leaves the 

extruder die, possibly leading to reduced flow exit instabilities. 
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