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The safety and sustainability of prestressed concrete bridges can be improved with accurate 

prestress loss prediction. Considerable loss of the prestress force may imply damages hidden in the 

bridge. In this study, a prestress force identification method was implemented for concrete beams. 

Based on the Euler–Bernoulli beam theory, the procedure estimates the prestress force by using one 

or a set of static displacements measured along the member axis. The implementation of this 

procedure requires information regarding the flexural rigidity of the beam. The deflected shape of a 

post–tensioned concrete beam, subjected to an additional vertical load, was measured in a short 

term in several laboratory experiments. The accuracy of the deflection measurements provided 

favorable prestress force estimates. In particular, the “compression–softening” theory was validated 

for uncracked post–tensioned concrete beams. 

 

Keywords: Concrete beam; force prediction; inverse problem; prestress loss; second-order theory; 

static test. 
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1. Introduction 

Nondestructive testing (NDT) methods are generally used for determining the condition of concrete 

elements for preventive maintenance, repair, or replacement of a bridge. An accurate evaluation of 

the in situ prestress axial force is required to monitor prestress losses in concrete bridge beams. 

Therefore, the operating state of bridge decks must be controlled using NDT methods to support 

safety assessments during the service life of the decks. Substantial losses of prestress forces may 

indicate damage phenomena; however, prestress forces (and losses) can be directly, simply, and 

accurately estimated if the internal tendons of concrete beams are instrumented using a load cell 

during construction.
1,2

 Although instrumentation of external tendons is easy during their service life, 

NDT methods are generally required for this process. 

Axial force identification in externally loaded beams has been studied using nondestructive 

static and dynamic methods.
3-10

 In particular, for vibration-based estimations of axial loads, an 

accurate flexural mode shape must be selected for the identification process.
4,8

 Such methods are 

particularly sensitive to experimental and model errors. Moreover, selecting the optimal frequency a 

priori to estimate the axial load is challenging, and different natural frequencies yield varying 

degrees of accuracy in axial force estimations. 

The effect of the prestress force on the dynamic behavior of prestressed members has been 

discussed, including in a literature review by Noble et al.
11,12

 Several studies, including those by 

Miyamoto et al.,
13

 Law and Lu,
14

 and Lu and Law,
15

 have assumed that the prestress force in the 

strand is equivalent to an external axial load assigned to each beam end. Consequently, the natural 

vibration frequency of the post-tensioned structure tends to decrease with an increase in the 

prestress force; this is termed the compression-softening effect. This effect occurs in externally 

axially loaded Euler–Bernoulli beams prone to buckling failure.
3,9,10

 The opposite phenomenon 

concerning axial tension is termed the tension-stiffening effect because it occurs in tension 

members within the elastic range.
3,7

 By contrast, Hamed and Frostig
16

 suggested that the natural 

frequency of a prestressed beam is unaffected by the prestress force. The researchers claimed that 
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the original line of action of the prestress force is modified during vibration of the member, thereby 

preserving the eccentricity of the force with respect to the beam axis. Accordingly, a prestress force 

does not cause Euler buckling; therefore, the external axial compressive force retains its original 

line of action, varying only the eccentricity of the force with respect to the beam axis during 

vibrational displacement. 

To identify the existing prestress force in concrete beams, Abraham et al.,
17

 Kim et al.,
18,19

 

Bu and Wang,
20

 Xu and Sun,
21

 and Shi et al.
22

 have presented vibration methods based on the 

modal frequencies and dynamic responses of structures. Law et al.
23

 and Li et al.
24

 have performed 

numerical simulations using the dynamic responses of structures to moving vehicular loads. 

Capozucca
25

 investigated prestress loss in members subjected to damage due to reinforcement 

corrosion, whereas Limongelli et al.
26

 studied the detection of early warning signs of deterioration 

in a concrete beam due to prestress loss. A beam’s natural frequencies are used as parameters in 

NDT methods; specifically, because the prestress force does not substantially affect these 

frequencies, loss estimation is not particularly accurate. Therefore, natural frequency cannot be 

considered a suitable indicator for detecting prestress loss, as demonstrated previously.
27

 

In this study, the static NDT method proposed by Bonopera et al.
10

 was employed for 

prestress load identification in prismatic concrete beams. The reference model comprised a simply 

supported Euler–Bernoulli beam prestressed using a straight unbonded tendon, where the prestress 

load was assumed to be an external axial load applied eccentrically to the beam ends, based on the 

compression-softening theory. In a related study, Reis et al.
28

 studied an approach based on the 

natural period of vibration to consider second-order effects in concrete frames. Furthermore, some 

static NDT methods, based on the second-order theory, have been developed to detect the axial load 

in steel members.
5,6,9

 In the present feasibility study, the vertical displacement obtained from a 

three-point bending test conducted on the aforementioned post-tensioned beam was approximated 

by multiplying the first-order deflection by the magnification factor of the second-order effects,
29,30

 

in accordance with predictions based on the compression-softening theory. First, deflected-shape 
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measurements along the beam length, obtained from 27 three-point bending tests, were examined to 

assess the accuracy of the beam mechanical model assumptions. Small displacements were imposed 

to prevent crack formation in the concrete beam. Subsequently, the NDT method proposed by 

Bonopera et al.
10

 based on the aforementioned magnification factor approach was employed to 

identify the prestress force. In particular, the prestress force was estimated using one or a set of the 

deflected-shape measurements. This method requires information regarding the flexural rigidity of 

the beam. The NDT method uses only static parameters; thus, in contrast to dynamic procedures, 

this method does not require selecting experimental data for use in algorithms. The detected 

prestress force verified the feasibility of the procedure in the presence of moderate measurement 

errors. The NDT method used in this study can be applied to concrete beams subjected to prestress 

force to satisfy the decompression serviceability limit state. Finally, the constraint stiffness of the 

beam ends must be evaluated for prestressed concrete members with unknown boundary conditions. 

 

2. NDT method proposed by Bonopera et al.
10

 

2.1. Analytical model 

Figure 1 illustrates the formulation of the NDT method proposed by Bonopera et al.,
10

 which 

focuses on a simply supported prestressed member of length L. The end constraints of a prismatic 

concrete beam are often known, as are those of the prestressed beam of a bridge deck. The length of 

these simply supported elements can be measured in situ or obtained from corresponding project 

drawings. The beam is first subjected to an eccentric prestress force N (with eccentricity e) with 

respect to the centroid of the cross section (Fig. 1(a)) and subsequently to a vertical load F at the 

midspan (Fig. 1(b)). The prestress force N is assumed to be externally applied. The elastic modulus 

E of concrete and the cross-sectional second moment of area I are assumed to be known parameters. 

The initial deflection curve v
(0)

 (Fig. 1(a)) after the application of the eccentric prestress 

force N can be expressed as follows:
29,30

 

 














 −−= )2cos(
2

1
cos1)(

)0(
n

L

x
nexv  (1) 



 5 

where n = NL
2
/EI is the nondimensional axial force. Subsequently, a point load F is applied to the 

initial deflection curve v
(0)

. The corresponding bending moments in the left and right portions of the 

beam (Fig. 1(b)) are respectively expressed as follows: 

 M = F x/2 + N (v
(1)

 – e) for 0 ≤ x ≤ L/2, (2a) 

 M = F (L – x)/2 + N (v
(1)

 – e)
 
for L/2 ≤ x ≤ L. (2b) 

Incorporating Eqs. (2a) and (2b) into the expression for the beam axis curvature M = –EI 

d
2
v

(1)
/dx

2
 yields the solution v

(1)
 = v

(0)
 + 

( )

tot

a
v , where 

( )

tot

a
v  is the deflection curve of the beam under 

the concentric axial load N and vertical load F (Fig. 1(c)),
29,30,6

 which can be expressed as follows: 
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where ψ = FL
3
/EI is the load parameter with a length dimension. Deflections measured in the 

experiments performed in this study were compared with the analytical solution, 
( )

tot

a
v  = v

(1)
 – v

(0)
, 

generated using Eqs. (3a) and (3b). As n approaches 0, the limit of Eqs. (3a) and (3b) yields the 

first-order displacement 
( )

I

a
v  (neglecting the effect of the external prestress force), which can be 

expressed as follows: 
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2.2. Identifying the prestress force through one displacement measurement 

The total vertical displacement in Eqs. (3a) and (3b) is well approximated by multiplying the first-

order deflections obtained in Eqs. (4a) and (4b) by the magnification factor of the second-order 

effects, 1/(1 – N/NcrE),
29,30

 which can be expressed as follows: 

 
( )

( ) I
tot

crE

( )
( )

1

a
x v x

v x
N N

=
−

, (5) 

where NcrE = π
2
EI/L

2
 is the first Euler buckling load for the simply supported beam. Thus, the 

magnification factor of the second-order effects coincides with the ratio 
( )

I ( )a
v x /

( )

tot ( )x
v x . 

A three-point bending test with an assigned prestress force N can be conducted to measure 

the vertical displacement 
( )

tot ( )x
v x . Consequently, the ratio 

( )

I ( )a
v x /

( )

tot ( )x
v x  and the definition of the 

magnification factor can be used to calculate the prestress (or compressive) force Na in Euler–

Bernoulli beam columns using the following equation:
9
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By incorporating the nondimensional axial force na = Na L
2
/EI into Eq. (6), the following 

expression is obtained: 
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. (7) 

When the point load F is applied at the midspan of the beam, Eq. (4a) yields the first-order 

displacement at a quarter of the span, 
( )

I

a
v (L/4) = 11ψ/768, and the first-order midspan 

displacement, 
( )

I

a
v (L/2) = ψ / 48 . Thus, Eq. (7) can be rewritten as follows: 

 2 2

( ) ( )

tot tot

11
1 or 1

768 ( / 4) 48 ( / 2)
a ax x

n n
v L v L

ψ ψπ π
   

= − = −   
   

. (8a, b) 

In summary, load identification must be conducted through the following stages: 
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(1) Measure the displacement at the quarter cross section 
( )

tot ( / 4)x
v L  following the application of 

load F or measure the corresponding displacement at the midspan 
( )

tot ( / 2)x
v L , 

(2) Solve Eq. (8a) or (8b) for the unknown constant na using the displacement 
( )

tot ( / 4)x
v L  or 

( )

tot ( / 2)x
v L  and the expression for ψ, and 

(3) Determine the analytical value of the prestress force, Na = na EI/L
2
. 

 

Equations (8a) and (8b) do not require the initial prestress force value, and thus the need to 

install equipment in the internal tendon is obviated. 

 

2.3. Identifying the prestress force through a set of displacement measurements 

If a set of displacements 
( )

tot ( )x

iv x  for i = 1, …, m is measured along the beam length, the prestress 

force value Na that minimizes the standard deviation between the experimental displacement 

( )

tot ( )x

iv x  and first-order displacement 
( )

I ( )a

iv x  can be identified; in other words, it is possible to 

obtain Na such that 
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This problem can be solved by setting the derivative of Eq. (9) with respect to Na as 0 to 

obtain the following expression: 
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In this additional test configuration, the load identification process must be conducted 

through the following stages: 
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(1) Measure a set of displacements 
( )

tot ( )x

iv x  along the beam length after applying load F, 

(2) Determine the first Euler buckling load NcrE = π
2
EI/L

2
, and 

(3) Solve Eq. (10) to obtain the prestress force Na by computing the set of first-order displacements 

( )

I ( )a

iv x  using Eqs. (4a) and (4b). 

 

The additional load F can be located at various cross sections; therefore, the first-order 

displacement 
( )

I ( )a

iv x  and experimental displacements 
( )

tot ( )x

iv x  must be evaluated in relation to any 

cross section along the beam length. Various boundary conditions can be applied by assuming the 

appropriate Euler buckling load NcrE in Eq. (6) or (10) after experimentally determining the beam 

end stiffness. Concrete bridge beams under real conditions, where end stiffness cannot be easily 

evaluated, will be investigated in future studies. 

 

3. Description of post-tensioned concrete beam specimen and test layout 

A post-tensioned concrete beam with a 250-mm × 400-mm rectangular cross section was used. The 

beam was reinforced longitudinally with two top bars and two bottom bars and transversely with 44 

stirrups each at a distance of 150 mm. The strand had a small eccentricity of 50 mm with respect to 

the cross section centroid and comprised seven tendons, thereby composing a seven-wire strand 

(diameter = 15.2 mm) inserted into seven distinct plastic ducts and embedded in the concrete cross 

section. The plastic ducts were not injected. The ultimate yield strength of the tendons was 1860 

MPa. A support was positioned at each beam end to create pinned-end restraints (Fig. 2(c) and (d)), 

resulting in a clear span L of 6.62 m (Fig. 3). For the rectangular concrete cross section Iexact, the 

cross-sectional second moment of the area and slenderness ratio were 1.3333 × 10
9
 mm

4
 and 57, 

respectively. When the beam was positioned on the supports, all geometric dimensions were 

verified using measurement systems with 0.01-mm tolerance (laser rangefinder and caliper). The 

elastic modulus of the concrete was experimentally evaluated through compression tests after 28 

days of curing and on each day of NDT method simulation in the laboratory. 
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The post-tensioned concrete beam was inserted into a test frame using a test rig (Fig. 4(a)). 

At one beam end, a hydraulic oil jack with a 4000-kN force capacity was used to apply the prestress 

force by pulling the strand outward. A 1000-kN load cell with 2-mV/V accuracy was positioned at 

the other end to measure the applied prestress force (Fig. 2(a)). Prestress forces of approximately 

618, 722, and 820 kN were applied; for each prestress force, an additional vertical load F was 

applied using a hydraulic actuator at the midspan of the beam with an initial value of approximately 

20.0 kN, which was gradually increased to approximately 22.5 and then approximately 25.0 kN 

(Fig. 2(b)). The final test condition was repeated three times, yielding a total of 27 tests. The 

concrete beam did not develop any cracks during the tests. 

On the basis of the test layout, nine linear variable differential transformer (LVDT) sensors 

were positioned along the beam length corresponding to the cross sections at i = 0, …, 8, as 

illustrated in Figs. 4(b) and 5. Steel plates were used to locate each LVDT sensor corresponding to 

the beam axis (Fig. 4(b)). A reference LVDT sensor, labeled “R.P.” in Fig. 5, was positioned at both 

beam ends, at i = 0 and 8 (Fig. 2(c) and (d)). These two LVDT sensors served as references for the 

displacement measurement system to form a reference line for measurements between the end 

supports. Moreover, all LVDTs were connected to a data logger located on a desk close to the test 

rig. 

All test measurements were recorded once per second for approximately 200 s using a data 

acquisition unit. The average measurements of the prestress forces Nx,aver and vertical loads Faver 

were considered for each test combination. 

 

4. Experimental and numerical simulations of the NDT method proposed by Bonopera et al.
10

 

4.1. Evaluation of the time-dependent elastic modulus of concrete 

Regarding the post-tensioned beam, a set of 150 mm × 300 mm concrete cylinders were cast to 

measure the time-dependent elastic modulus of the used concrete through compression tests. The 

beam and all cylindrical specimens were maintained under the same curing environmental 

conditions specifically, outdoor laboratory spaces. The elastic modulus E of each single cylinder 
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was estimated using Eq. (11) in accordance with ASTM Standard C 469/C 469M–14. Equation (11) 

is expressed as follows:
31

 

 2 1

2 0.00005
E

σ σ
ε

−=
−

, (11) 

where σ1 and σ2 are the stress levels corresponding to the longitudinal strain of 0.00005 and 40% of 

the ultimate longitudinal compressive stress, respectively, and ε2 is the longitudinal strain produced 

by σ2. These three values were determined based on graphs depicting longitudinal compressive 

stress versus longitudinal strain for the single cylinders. One compressometer equipped with two 

LVDT sensors was used as the strain measurement system. The universal testing machine was set at 

a loading rate of approximately 1 mm/min. 

The measured elastic modulus E of the concrete at 28 days and that during the execution of 

the NDT method in the laboratory are listed in Table 1. The average elastic modulus value Eaver was 

calculated on specific days as desired by testing two cylinders. By contrast, three specimens were 

tested during 28 days of curing. The average elastic modulus Eaver exhibited progressive increments 

of 14.1%, 23.1%, and 26.9% with respect to the value obtained after 28 days. The mean 

characteristic strength fck was 66.27 MPa for all compression tests detailed in Table 1. 

In the NDT method,
10

 as described in the previous section, the elastic modulus E of the 

simply supported beam is a known parameter. However, concrete members in civil structures 

generally have scattered values along their axes. A numerical three-point bending test was 

performed to determine the effect of the elastic modulus on the prestress force estimation. 

Reference was made to Eq. (8b) and the Eref value of 37,093 MPa, which was calculated from the 

average elastic modulus Eaver obtained through compression tests conducted after 426, 427, and 433 

days of curing (Table 1). Table 2 presents the load parameter ψ and second-order midspan 

deflections v4 of the post-tensioned beam evaluated for four prestress forces Nx using Eqs. (3a) and 

(3b). The maximum prestress force that did not induce crack formation was 1050 kN. Figure 6 

shows that the estimated prestress force Na was sensitive to small variations in the elastic modulus 
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Eref. The difference in Na was greater than the corresponding variation imposed on Eref. For Nx = 

1050 kN, the estimated Na increased by 9.7% and decreased by 11.5% when Eref increased and 

decreased by 1%, respectively. These results demonstrate that conducting compression tests on 

drilled concrete cores from an existing beam in accordance with ASTM Standards C 469/C 469M–

14
31

 and C 42/C 42M–13
31

 is the only procedure ensuring high accuracy when estimating the elastic 

modulus through the NDT method.
10

 An objective of further research is to define the drilling 

position of a set of concrete cores to determine the most reliable elastic modulus along the axis of 

concrete bridge beams. 

 

4.2. Deflected-shape measurements 

The displacements vi for i = 1, …, 7 in the post-tensioned concrete beam served as parameters for 

the algorithms of the NDT method
10

 (Eqs. (8) and (10)). Specifically, the displacements vi located 

in accordance with the test layout shown in Fig. 5 were recorded after the additional load F had 

been applied. Thus, the initial deflection reference shape was assumed to be the one with the 

assigned prestress force N0 (Fig. 1(a)); this condition represented the operation stage for an existing 

bridge deck. Each prestress force Nx prevented the concrete beam from developing cracks under the 

vertical load F. During testing, the average prestress force Nx,aver of 820 kN was 78.1% of the 

maximum prestress force Nx; this satisfied the decompression serviceability limit state of 1050 kN. 

Table 3 compares the measured displacements vi with the corresponding analytical values 

( )

tot ( )a
v x  obtained using Eqs. (3a) and (3b). Figure 7 displays the deflection shape for three prestress 

forces Nx,aver for Faver = 25.1 kN. The cross-sectional second moment of the area Iexact and elastic 

modulus Eaver for each day of execution of the NDT method
10

 were assumed for computation (Table 

1). A decrease in the displacements vi with an increase in the prestress force Nx was caused by an 

increment in the flexural rigidity due to an increase in the elastic modulus Eaver (Table 1). Table 3 

illustrates several measurements, namely the initial prestress forces N0, prestress forces Nx when the 

loads F were applied, and vertical loads F. In several dynamic tests, the natural frequencies (and 

flexural rigidities) increased with the magnitude of the prestress force,
32,33,19

 thereby contradicting 
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the compression-softening theory. Nonetheless, the displacements and natural frequencies were 

sensitive to the variation in the elastic modulus of concrete over time. 

In all 27 test combinations, favorable repeatability was achieved, with a relative error lower 

than 5.0% for all displacement measurements. The measured displacement v5 for the combination of 

Nx = 620 kN and F = 20.2 and 22.6 kN was not considered because of loss of verticality in the 

LVDT sensor (Table 3). The measured displacement v1 exhibited a systematic error with a mean 

value of 0.28 mm because of an LVDT sensor malfunction. The symmetric displacement v7 had an 

absolute mean error of 0.02 mm. 

Excluding the measured displacement v1, the absolute mean error between the analytical and 

experimental displacements was 0.03 mm, corresponding to a relative error of −0.5%, which 

validated the effectiveness of using an LVDT sensor measurement system. Figure 8 displays values 

of the factor 
( )

tot1 /a

iv v−  for the cross sections at i = 2, 4, and 6. A maximum error of −8.5% was 

recorded for nine tests when Nx,aver = 615 kN was applied. Displacements 
( )

tot ( )a
v x  were similarly 

obtained using Eqs. (3a) and (3b). The errors were considerably lower at higher prestress forces. 

Thus, the compression-softening theory remains valid even when small flexural displacements are 

involved and crack formation is precluded. The first Euler buckling load of the post-tensioned 

beam, namely NcrE = π
2
Eref Iexact/L

2
, was 11,138 kN. Thus, the maximum prestress force Nx,aver of 

820 kN was only 7.4% of NcrE. Consequently, the first-order displacements were magnified by a 

factor of 1/(1 − 0.074) = 1.08. The prestress force Nx of 1050 kN corresponding to the maximum 

decompression serviceability limit state induced a magnification factor of 1.10. These conditions 

require accurate displacement measurements because the second-order effects are generally 

neglected when magnification factors lower than 1.10 are induced. 

 

4.3. Prestress force identification 

The values of the average prestress nondimensional forces na,aver are listed in Table 4 and were 

obtained using the experimental values of ψ = FL
3
/Eaver Iexact and v2 (Test 1) in Eq. (8a), as well as 
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the same parameter ψ and v4 (Test 2) in Eq. (8b) for each thrice-repeated test combination. The 

daily elastic modulus Eaver (Table 1) was used as a parameter in the load identification process. 

Table 5 illustrates the prestress forces Na,aver obtained using Eq. (10), particularly the mean values 

calculated for each test combination. The deflection sets of v3-v4-v5 (Test 3), v2-v3-v4-v5-v6 (Test 4), 

and v1-v2-v3-v4-v5-v6-v7 (Test 5) recorded for each combination were computed as parameters for 

displacements 
( )

tot ( )x

iv x . The first Euler buckling load, NcrE = π
2
Eaver Iexact/L

2
, was calculated for each 

day during the simulation of the NDT method. The corresponding first-order displacements 
( )

I ( )a

iv x  

were instead calculated using Eqs. (4a) and (4b). Moreover, the daily elastic modulus Eaver (Table 1) 

was used in the load estimation process. 

Tables 4 and 5 illustrate the percentage errors Δaver = (Na,aver − Nx,aver)/Nx,aver. Of all 27 test 

combinations, Test 5, which had a set of seven deflections (Fig. 5), yielded the most accurate load 

estimates Na,aver. In general, poor load estimates Na,aver were obtained when Nx,aver = 618 kN was 

applied. By contrast, the test combinations with prestress forces that induced second-order effects 

greater than 6.5% provided excellent load estimates Na,aver for Tests 2 and 5. Notably, all prestress 

force estimation errors were lower than 5.5%. 

Sensitivity analyses were performed for load estimations based on Eqs. (8a) and (8b), 

corresponding to Tests 1 and 2, respectively. The values v2 and v4 obtained using Eqs. (3a) and (3b) 

and parameter ψ were modified to reproduce potential experimental errors. The values v2, v4, and ψ 

were alternatively multiplied by 0.99 and 1.01 to generate 14 combinations of simulated values for 

nine distinct assumed prestress forces Nx. The average value of the applied vertical loads in the 

process was assumed to be Faver = 22.7 kN. Figure 9(a) and (b) illustrate a comparison between the 

worst estimated Na and assumed values Nx conducted using displacements v2 and v4, both of which 

yielded a constant error of approximately ±107 kN. Furthermore, a comparison between the 

measured Nx,aver and estimated values Na,aver based on the experiments (Table 4) is also depicted in 

Fig. 9(a) and (b). Favorable correspondence between the analytical Nx and experimental load 

estimates Na was observed when the midspan deflection v4 was considered. 
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5. Conclusions 

This paper describes a feasibility study of applying the NDT method proposed by Bonopera et al.
10

 

to prestressed concrete beams. The method can detect the prestress force in a concrete member with 

a straight unbonded tendon based on static deflections. Displacements of a post-tensioned concrete 

beam subjected to a three-point bending test were measured in the short term through several 

laboratory experiments. The LVDT displacement measuring system achieved high accuracy, 

yielding reliable load estimates. The compression-softening theory was valid for post-tensioned 

concrete beams preserved by crack formation and when the magnification factor of the second-

order effects was lower than 1.10. Subsequently, the experimental results demonstrated that 

midspan displacement should be employed in the load estimation process. If numerous 

displacements are considered and the induced second-order effects are greater than 6.5%, the 

accuracy of load estimation is substantially improved. Accurate information regarding the flexural 

rigidity of the prestressed concrete beam under investigation is necessary; in particular, the elastic 

modulus must be evaluated through compression tests on the drilled concrete cores. No direct 

measure of the tendon tensile force in the internal tendon is required.
1,2

 Furthermore, no distinction 

between short- and long-term losses is required because the NDT method
10

 can instantaneously 

identify the existing prestress force. Future studies could conduct experimental investigations 

involving three-point bending tests with vehicle loading on concrete bridge decks
34,35

 and utilize the 

high potential of fiber Bragg grating differential settlement measurement sensors.
36-39
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Table 1. Measured elastic modulus obtained through compression tests. 

Day of 

concrete 

curing 

Cylinder 
E 

(MPa) 

Eaver 

(MPa) 

Variation 

(%) 

28th A 28734 

28th B 32124 

28th C 30823 

30560 – 

426th 1 34732 

426th 2 35008 
34870 +14.1 

427th 3 39602 

427th 4 35634 
37618 +23.1 

433rd 5 39407 

433rd 6 38174 
38791 +26.9 
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Table 2. Analytical values of ψ and displacements v4 evaluated using Eref for four assumed values of the 

prestress force Nx. 

Nx F ψ v4 

(kN) (kN) (mm) (mm) 

700 25.0 146.65 3.26 

845 25.0 146.65 3.30 

950 25.0 146.65 3.34 

1050 25.0 146.65 3.37 
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Table 3. Comparison between analytical and measured displacements for each test execution day, 

corresponding to the layout depicted in Fig. 5. 

Eaver N0 Nx F  v1 v2 v3 v4 v5 v6 v7 Day of 

concrete 

curing 
(MPa) (kN) (kN) (kN)  (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

Analytical 1.03 1.92 2.55 2.79 2.55 1.92 1.03 
426th 34870 619 620 20.2 

LVDT 1.45 1.95 2.62 2.84 - 1.93 1.02 

Analytical 1.15 2.15 2.85 3.12 2.85 2.15 1.15 
426th 34870 619 620 22.6 

LVDT 1.59 2.20 2.95 3.20 - 2.17 1.15 

Analytical 1.27 2.38 3.16 3.45 3.16 2.38 1.27 
426th 34870 615 617 25.0 

LVDT 1.42 2.32 3.12 3.43 3.03 2.27 1.22 

Analytical 0.95 1.78 2.37 2.59 2.37 1.78 0.95 
427th 37618 723 724 20.1 

LVDT 1.19 1.78 2.39 2.59 2.33 1.73 0.94 

Analytical 1.07 2.00 2.66 2.91 2.66 2.00 1.07 
427th 37618 720 721 22.6 

LVDT 1.31 2.00 2.67 2.92 2.60 1.94 1.05 

Analytical 1.19 2.22 2.95 3.23 2.95 2.22 1.19 
427th 37618 720 721 25.1 

LVDT 1.46 2.22 2.97 3.23 2.90 2.16 1.17 

Analytical 0.93 1.75 2.32 2.54 2.32 1.75 0.93 
433rd 38791 820 820 20.2 

LVDT 1.20 1.75 2.33 2.54 2.29 1.71 0.92 

Analytical 1.06 1.98 2.63 2.88 2.63 1.98 1.06 
433rd 38791 820 820 22.9 

LVDT 1.33 1.98 2.65 2.88 2.60 1.94 1.04 

Analytical 1.16 2.17 2.88 3.15 2.88 2.17 1.16 
433rd 38791 820 820 25.1 

LVDT 1.42 2.17 2.91 3.17 2.86 2.14 1.15 
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Table 4. Prestress force estimates based on Eqs. (8a) and (8b), and measured and estimated parameters for 

each test day obtained using displacements v2 and v4. 

      Test 1 - v2     Test 2 - v4  

      
deflection at a 

quarter 
    

deflection at the 

midspan 
 

Eaver Nx,aver Faver  na,aver Na,aver Δaver   na,aver Na,aver Δaver Day of 

concrete 

curing 
(MPa) (kN) (kN)   (kN) (%)    (kN) (%) 

617 20.2  0.37 392 -36.5   0.38 399 -35.3 

618 22.7  0.46 490 -20.7   0.45 478 -22.7 426th 34870 

618 25.1  0.42 450 -27.2   0.49 516 -16.5 

722 20.1  0.59 671 -7.1   0.62 715 -1.0 

722 22.7  0.62 709 -1.8   0.67 762 5.5 427th 37618 

722 25.1  0.57 649 -10.1   0.61 699 -3.2 

820 20.2  0.65 762 -7.1   0.70 822 0.2 

820 22.8  0.64 761 -7.2   0.67 797 -2.8 433rd 38791 

820 25.1  0.63 740 -9.8   0.70 825 0.6 
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Table 5. Prestress force estimates based on Eq. (10), and measured and estimated parameters for each test 

day obtained using the sets v3-v4-v5, v2-v3-v4-v5-v6, and v1-v2-v3-v4-v5-v6-v7. 

      Test 3    Test 4    Test 5  

      v3-v4-v5    
v2-v3-v4-v5-

v6 
   

v1-v2-v3-v4-v5-v6-

v7 
 

      
three-

deflections 
   

five-

deflections 
   

seven- 

deflections 
 

Eaver NcrE Nx,aver Faver  Na,aver Δaver   Na,aver Δaver   Na,aver Δaver Day of 

concrete 

curing (MPa) (kN) (kN) (kN)  (kN) (%)   (kN) (%)   (kN) (%) 

617 20.2  400 -35.2   368 -40.4   453 -26.6 

618 22.7  480 -22.3   447 -27.7   524 -15.2 426th 34870 10471 

618 25.1  485 -21.5   443 -28.3   512 -17.2 

722 20.1  644 -10.8   609 -15.7   706 -2.2 

722 22.7  696 -3.6   659 -8.7   745 3.2 427th 37618 11296 

722 25.1  646 -10.5   611 -15.4   687 -4.8 

820 20.2  743 -9.4   708 -13.7   811 -1.1 

820 22.8  749 -8.7   723 -11.8   811 -1.1 433rd 38791 11648 

820 25.1  767 -6.5   733 -10.6   809 -1.3 
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Fig. 1. Reference model of the prestressed concrete beam. (a) Deflection curve v
(0)

 after the application of 

the eccentric prestress force N, (b) deflection curve v
(1)

 after the application of the vertical load F to 

deflection curve v
(0)

, and (c) deflection curve 
( )

tot

a
v  after the application of the vertical load F. The dashed 

lines correspond to the initial deflection curves. 

 

    

(a) (b) (c) (d) 

Fig. 2. (a) Load cell at one beam end. (b) Hydraulic actuator at the midspan of the beam. (c) Reference 

LVDT sensor at hinge support. (d) Reference LVDT sensor at roller support. 
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Fig. 3. Scheme of the post–tensioned concrete beam specimen. 

 

  
(a) (b) 

Fig. 4. (a) Test rig for the NDT method. (b) LVDT sensors along the beam length. 

 

 

Fig. 5. Test layout with locations of the instrumented sections of the LVDT sensors (values in meters). 
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Fig. 6. Numerical three–point bending test. Estimated prestress forces Na versus elastic modulus E for the 

four assumed values Nx illustrated in Table 2. 
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Fig. 7. Experimental three–point bending test. Deflection shape for three prestress forces Nx,aver for the Faver 

= 25.1 kN. 

 

 

 

 

 

 

 

 

 



 29 

-0.09

-0.06

-0.03

0.00

0.03

1 - vtot
(a)/ vi

0 9 18 27
Test number

Nx = 618 kN Nx = 722 kN Nx = 820 kN

v2

v4

v6

 

Fig. 8. Error 1 – 
( )

tot

a
v /vi versus test number for all test combinations and displacements v2, v4, and v6 

depicted in Fig. 5. 
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Fig. 9. Prestress force estimates based on (a) Eq. (8a) - Test 1 and (b) Eq. (8b) - Test 2. Symbols + refer to 

the comparison between estimated Na and measured values Nx for all 27 test combinations. Symbols × refer 

to the estimated values Na,aver. The dashed lines with symbol × refer to the sensitivity analyses. 

 


