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Abstract 

This paper presents an investigation into the reliability of an experimental procedure for 

the axial load identification of tie-rods with unknown boundary conditions, that uses one 

vibration frequency and five amplitudes of the corresponding mode shape. The method 

adopted does not require the knowledge of the effective length of the tie-rod under 

examination, but only the flexural rigidity and the mass per unit length. In particular, the 

influence of measurement errors as well as of inaccurate estimates of geometric and elastic 

properties on the accuracy of the axial force identification is investigated. The effect of the 

added mass of the sensors is also analyzed. The proposed algorithm is verified by means of 

many numerical tests on ancient tie-rods having large scatter values of geometric and elastic 

properties. Good estimates of the axial forces are obtained. Moreover, it is shown that the 

reliability of the tensile force identification, using one flexural mode shape, relies on the 

magnitude of the measurement errors rather than on accurate guess of Young modulus. 
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1 Introduction 

In masonry buildings, metallic tie-rods are mainly used to inhibit the out-of-plane collapse 

of masonry walls (Sorrentino et al. 2017) or to resist the horizontal thrusts exerted by arches 

and vaults (Como 2013). In particular, the initial pretension of tie-rods can significantly 

reduce the force applied to the abutments by arches subjected to mere vertical loads (Giuriani 

et al. 2009). Vice versa, the tie-rod prestress scarcely influences the seismic capacity of an 

arch-pier system (Calderini and Lagomarsino, 2015, Calderini et al. 2015, Bolis et al. 2017). 

Nonetheless, the evaluation of the prestressing force of a tie-rod is of fundamental 

importance, especially when a restoration project is aimed at verifying or substituting single 

elements subjected to possible heavy decay (Bruschi et al. 2004, Gentile et al. 2017). To this 

end, static and dynamic methods have been proposed for the experimental evaluation of the 

axial load acting in tie-rods of arches and vaults, where the reference model was assumed to 

be a simply supported beam with rotational end constraints (Sorace 1996, Briccoli Bati and 

Tonietti 2001, Lagomarsino and Calderini 2005, Tullini and Laudiero 2008, Tullini, 

Rebecchi, and Laudiero 2012, Li et al. 2013, Gentilini, Marzano, and Mazzotti 2013, 

Campagnari et al. 2017). The introduction of elastic rotational end constraints is aimed at 

reproducing the restraining effect that the masonry offers to the part of the tie-rod embedded 

in the wall. More refined models made use of finite element based optimisation algorithms in 

which the unknown variables included the length of the tie-rod, concentrated masses and an 

elastic Winkler foundation simulating the interaction between the tie-rod and the masonry 

wall (Amabili et al. 2010, Garziera, Amabili, and Collini 2011, Ottoni and Blasi 2016, 

Collini. Garziera, and Riabova 2017). Unfortunately, in these approaches, nonuniqueness of 

estimated parameters may arise. As matter of fact, tie-rod extremities are embedded in 

masonry walls making doubtful the beam length and the location of the end constraints. To 

overcome this problem, Rebecchi (2011), Tullini (2013), Li et al. (2013), Rebecchi, Tullini, 

and Laudiero (2013) and Maes et al. (2013) proposed various methods to estimate the axial 
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force of tie-rods with unknown boundary conditions, where a tie-rod substructure of assigned 

length is adopted. These methods allow to overcome the difficulty of estimating the effective 

length free to vibrate, the boundary constraints, and the masses of the junction systems made 

to tighten the tie-rods, typical of ancient tie-rods. In fact, in situ tests may be performed on a 

tie-rod substructure located between the tightening systems. In particular, with laboratory test 

results as reference data, Rebecchi, Tullini, and Laudiero (2013) and Maes et al. (2013) 

estimated the axial force of a tie-rod with known geometric and elastic properties making use 

of one single vibration frequency and of five amplitudes of the corresponding mode shape. 

Nevertheless, in the case of hand-made ancient tie-rods, non homogeneities and non-uniform 

cross-sections may be present. Moreover, an experimental study on ancient tie-rods 

performed by Calderini et al. (2016) showed that a mean Young modulus E comparable to 

that of modern steel (209 GPa) may occur, but with a remarkable standard deviation of 76 

GPa and a coefficient of variation about 36%. In any case, it is worth noting that the Young 

modulus can be evaluated by means of proper methods, like the experimental measurement of 

the longitudinal wave velocity (Boller, Chang, and Fujino 2009). 

The procedure proposed in Tullini and Laudiero (2008) and Rebecchi, Tullini, and 

Laudiero (2013) was confirmed by several researches. For instance, Rainieri and Fabbrocino 

(2015) developed an automated operational modal analysis algorithm for vibration-based 

monitoring and tensile load estimation. Gentile et al. (2017) evaluated the axial force in 75 

tie-rods of the Milan Cathedral. Cescatti et al. (2017) performed several numerical and 

experimental tests observing that relevant errors may occur for high values of the axial force 

only. This outcome is related to the difficulty of measuring small vibrations when increasing 

values of the axial force make the beam stiffer and stiffer (Tullini 2013, Rebecchi, Tullini, 

and Laudiero 2013). At the same time, the impact hammer force cannot be indefinitely 

increased if yielding has to be avoided. 
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Rainieri and Aenlle (2016) investigated the accuracy of the procedure for the tensile load 

estimation proposed in Rebecchi, Tullini, and Laudiero (2013). In particular, twenty-seven 

finite element models of tie-rods with various boundary conditions and various length and 

axial force values were investigated. The inaccuracy in the evaluation of the bending stiffness 

was considered by assuming a 14% underestimation of Young modulus (180 GPa instead of 

210 GPa). The error in the evaluation of the material density was assumed to be equal to 0.6% 

(7800 kg/m
3
 instead of 7850 kg/m

3
). The influence of the input data errors on the axial load 

estimate turned out to be less than 14%. Moreover, making use of the reference values of the 

geometric and elastic properties, the influence of errors affecting the modal parameter 

estimation was investigated. An estimate error of ±1% affecting the fundamental frequency of 

the twenty-seven finite element models was considered first. In this case, the influence of 

measurement errors on axial load estimates was less than 4%. No analyses were made in the 

presence of errors affecting both input data and modal parameter estimates. Finally, it is worth 

noting that the procedures proposed in Rebecchi (2011), Tullini, Rebecchi, and Laudiero 

(2012), Tullini (2013) were also able to estimate compressive forces (Bonopera et al., 2018a, 

2018b). Luong (2018) performed experimental modal testing on individual members of a 

historic Wiegmann–Polonceau truss to estimate the axial force. Nonetheless, a preliminary 

global analysis of the structure is required to identify potential local modes shapes at closely-

spaced frequencies. 

In the present paper, an investigation of the accuracy of the procedure for the tensile load 

estimation proposed in Tullini and Laudiero (2008), and Rebecchi, Tullini, and Laudiero 

(2013) is presented. In particular, the simplified procedure locating the mode shape 

amplitudes at the extremities, at the quarter sections and at midspan of the reference model 

was adopted. In this case, an explicit transcendental equation holds, depending on the axial 

force. In particular, the influence of measurement errors as well as of inaccurate estimates of 

the elastic properties on the accuracy of the axial force identification was considered by 
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means of many numerical tests. For the vibration frequencies and the mode shape amplitudes, 

measurement errors of ±1% were considered. For the Young modulus, an error of 15% with 

respect to the reference value Eref = 206 GPa was assumed. Therefore, error analyses were 

performed assuming Emin = 0.85 ·  206 = 175 GPa and Emax = 1.15 ·  206 = 237 GPa. 

Comparisons were made with available experimental tests. 

2 Axial load identification proposed by Rebecchi, Tullini, and Laudiero (2013) 

A tie-rod reinforcing an arch-pier system is considered (Fig. 1a). The reference model is 

constituted by a prismatic beam of length L, located at any position between the relevant 

junction systems, and constrained by two sets of end elastic springs whose frequency-

dependent parameters are collected by the 2×2 stiffness matrices K0 and K1 (Fig. 1b). The 

beam element is subjected to an axial force resultant N (tensile forces are assigned positive 

sign). Young’s modulus E, mass per unit length m and cross-section second area moment J 

are assumed to be known constants. 

The procedure proposed in Rebecchi, Tullini, and Laudiero (2013) can be simplified if one 

vibration frequency f and the corresponding mode shape amplitudes vi = v(xi), for i = 0, …, 4, 

are recorded at the five instrumented sections: x0 = 0, x1 = L/4, x2 = L/2, x3 = 3L/4 and x4 = L. 

In this case, if the mid-section does not coincide with a node of the assumed mode shape, i.e. 

if v2 ≠ 0, the unknown parameter n = NL
2
/EJ can be obtained by solving the following 

transcendental equation: 
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It is worth noting that Eq. (1) does not require the knowledge of the boundary conditions. For 

simply supported beams, implying v0 = v4 = 0, Eq. (1) reduces to Eq. (16) reported in Tullini 

and Laudiero (2008). In summary, the axial force estimation is obtained according to the 

following steps: 

- estimate one fundamental frequency f and the corresponding mode shape amplitudes v0, v1, 

v2, v3, v4 by means of experimental modal analysis; 

- compute λ by using Eq. (2c); 

- solve the transcendental equation (1) for the unknown constant n by using the ratios 

(v1+v3)/v2, (v0+v4)/2v2 and the definitions for q1 and q2 in Eqs. (2a, b) where the value of λ is 

required; 

- find the (analytical) axial force Na = n EJ/L
2
. 

3 Experimental tests 

In Rebecchi (2011), Rebecchi, Tullini, and Laudiero (2013), a set of experimental tests was 

developed (Figs. 2 and 3) to validate the analytical procedure illustrated in the previous 

section. 

For a steel rod with a diameter of 20 mm, both Young’s modulus (Eref = 206 GPa) and 

density (ρref = 7850 kg/m
3
) were experimentally evaluated. In order to simulate end 

constraints of variable stiffness, the central span under examination, 3.00 m long, was 

prolonged with two outer spans with lengths 0L  = 1.16 m and 1L = 1.10 m. Because of the 

difficulty in evaluating the effective rotational stiffness introduced by the experimental 

equipment, two springs of unknown stiffness ks, kd were idealized at the extremities of the 

three-span beam. Aimed at observing different interactions with the outer spans, a mass m  

was fixed at the mid-section of the span with length 1L ( Figs. 2 and 3). In particular, it was 

assumed m  = 0 kg for tests No. 1 and 2, m  = 20 kg for test No. 3 and 4, and m  = 10 kg for 

tests No. 5 and 6. In tests No. 1, 3, 5, sensors spaced of L/4 = 0.75 m were used, whereas in 
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tests No. 2, 4, 6, the outer accelerometers were placed at distances L0 = L1 = 0.30 m from the 

ends to obtain a reference model with length L = 2.4 m. Details of test rig and experimental 

setup can be found in Tullini and Laudiero (2008), Rebecchi (2011), Rebecchi, Tullini, and 

Laudiero (2013).  

For each value of the imposed axial load Nx, the experimental tests were performed three 

times, hitting each of the instrumented sections of the central span. Consequently, 15 tests 

were collected for each value of Nx in the configurations No. 2, 4, 6. With reference to the 

first mode shape of test No. 2, Table 1 shows the coefficient of variation (CoV) of the 

experimental parameters for each value of Nx. Unavoidable differences in repeated tests yield 

a CoV for experimental values of Nx as well. The CoV of the frequency f never exceeds the 

value of 0.24%, with a corresponding CoV of λ less than 0.12%. The CoV of the ratio 

(v0+v4)/2v2 is less than 0.31% even though the CoV of the ratio v0/v2 rises up to 0.64%. The 

maximum value of the CoV of ratio (v1+v3)/2v2 is equal to 0.22%. The CoV of the analytical 

estimates Na of the axial loads is less than 1.4% for Nx > 10 kN.  

As reported in Rebecchi (2011), Rebecchi, Tullini, and Laudiero (2013), the first mode 

shape of tests No. 3 and 4 exhibits a significant scattering in modal data. For test No. 4, this 

behaviour is confirmed by the CoV values shown in Table 2, where a CoV of the ratio 

(v1+v3)/2v2 of about 1% gives rise to a CoV of 10% for Na that rises up to 25% for a CoV of 

the ratio (v1+v3)/2v2 of about 3%. 

4 Numerical simulations and error analyses 

With reference to the tests reported in the previous section, the influence of measurement 

errors as well as of inaccurate estimates of the elastic properties on the accuracy of the axial 

force identification was considered. The effect of the added mass of the sensors was also 

analyzed. To this end, a finite element model of the continuous beam representing the 

experimental setup of Figs. 2 and 3 was developed by using the commercial Finite Element 

Software Midas/Gen (2018), where the classic geometric stiffness matrix was adopted 



 8 

(Bazant and Cedolin 1991). The middle span was meshed with 64 finite elements, whereas for 

each additional span 22 finite elements were adopted. The end stiffnesses ks, kd were set equal 

to zero. The assigned values of the axial load were assumed to be 5, 10, 15, 20, 30, 40, 50 kN 

and are denoted by Nx in the following. The analytical estimates Na of the axial loads were 

determined by solving Eq. (1) for each set of the numerical data [λ, (v0+v4)/2v2, (v1+v3)/2v2]. 

Comparisons were made with the experimental results reported in Rebecchi (2011), Rebecchi, 

Tullini, and Laudiero (2013). 

For vibration frequencies and mode shape amplitudes, measurement errors of ±1% were 

adopted to perturb the numerical values of each modal deflection and the corresponding 

frequency. In particular, the set of numerical data [f, v0, …, v4] were multiplied by [1.01,  …, 

1.01], [1.01,  …, 0.99], …, [0.99,  …, 0.99]. Consequently, the three sensors used in test 

configurations No. 1, 3, 5 (Fig. 2) gave rise to 16 different combinations of simulated 

experimental values for 7 distinct values of the axial force Nx. Analogously, the five sensors 

employed in tests No. 2, 4, 6 (Fig. 3) lead to 64 × 7 different combinations of numerical 

values. As suggested in Rebecchi (2011), Rebecchi, Tullini, and Laudiero (2013), the second 

mode shape was used in tests No. 2 and 4, whereas the first mode shape was used in the other 

tests. In fact, for m ≤ 10 kg, the first mode shape of the whole system is mainly governed by 

flexural deformations of the central span, see Fig. 12b in Rebecchi, Tullini, and Laudiero 

(2013). Vice versa, for m = 20 kg, the analogous mode shape is the second one, see Fig. 12c 

in Rebecchi, Tullini, and Laudiero (2013), whereas the first mode shape is mainly ruled by the 

translational motion of the additional mass. Thus, small displacements in the central beam 

arise and the first peak amplitude may be one hundredth of the second one. This behaviour 

arises in the presence of high values of the axial force. 

For each value assumed for the axial force Nx, the worst analytical estimate for Na was 

searched and retained. As discussed in the previous section, measurement errors of ±1% 

resulted to be a severe assumption. In fact, the CoV of the three experimental data [λ, 
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(v0+v4)/2v2, (v1+v3)/2v2] to be used in Eq. (1) is less than half of the CoV of the single 

measurement error. 

4.1 Influence of Young modulus 

For the Young modulus, an error of 15% with respect to the reference value Eref = 206 GPa 

was assumed. Then, error analyses were performed assuming Emin = 0.85 ·  206 = 175 GPa and 

Emax = 1.15 ·  206 = 237 GPa. The mass of the sensors was neglected in the error analyses of 

this section. Figs. 4 and 5 show the ratio between the worst estimated values Na and the 

assumed values Nx of the axial forces for tests No. 1, 3, 5 and No. 2, 4, 6, respectively. As 

expected, estimated values of tests No. 1, 3, 5 are better than those of tests No. 2, 4, 6. 

Nonetheless, all test configurations yield good axial force estimates for Nx > 20 kN 

irrespective of the adopted Young modulus. Thus, analytical estimates Na are mainly affected 

by measurement errors. It is worth noting that the experimental tests performed in Rebecchi 

(2011), Rebecchi, Tullini, and Laudiero (2013) provided for excellent axial force estimations 

for all values of Nx (symbols + in Figs. 4 and 5), even though no high precision experimental 

apparatus was used. Therefore, the reliability of the tensile force identification in ancient tie-

rods relies on the correct estimation of measurement errors involved in the experimental 

modal analysis rather than on accurate guess of Young modulus. To highlight this aspect, 

Young modulus Eref and measurement errors of ±1.0% and ±0.5% were adopted. The worst 

ratio Na/Nx obtained is reported in Fig. 6 showing that the errors in the analytical estimates 

adopting measurement errors of ±0.5% became about a half of those with errors ±1.0%. 

4.2 Influence of sensor mass 

Each sensor employed in the experimental tests has a weight of 40 g, including the metallic 

wrappers used to fasten the accelerometers to the beam. Thus, for tests No. 2, 4, 6 the total 

weight of the sensors was equal to 0,2 kg, whereas the weight of central span of the beam is 
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7.4 kg, corresponding to a weight ratio of 2.7%. If the total mass of the sensors is distributed 

along the beam, a modified beam density ρmod = 8062 kg/m
3
 is obtained. 

To describe the influence of the sensor mass on the axial load estimation, the 

accelerometers were initially modeled in the finite element model as concentrated masses 

located at the instrumented sections. Nonetheless, no significant differences were obtained 

using a uniform beam with modified beam density ρmod. Fig. 6 shows the ratio between the 

worst estimated values Na and the assumed values Nx of the axial forces for tests No. 2, 4, 6, 

adopting modified density ρmod and Young modulus Eref with measurement errors of ±1.0% 

and ±0.5%. Moreover, Fig. 6 shows data from experimental tests evaluated using ρmod. For 

tests No. 2 and 6, the average percent error between the mean value for Na and the assigned 

forces Nx resulted to be less than 0.6% for Nx > 5 kN whereas, for tests no. 4, the average 

percent error was less than 0.6% for Nx > 15 kN. Conversely, for all tests, the average percent 

error turned out to be about 2.5% when ρref was adopted (Rebecchi, Tullini, and Laudiero 

(2013). 

4.3 Influence of sensor position  

With reference to test no. 1, in the numerical model the error in the sensor position was 

represented by displacing sensors 1 and 3 of 3 mm giving a ratio 0.03/(3.00/4) = 0.4%. No 

appreciable variation in the axial load estimate occurred if both sensors were shifted in the 

same direction. Vice versa, the average percent error of the mean values Na and the assigned 

forces Nx almost reached the value of 1.2% for Nx > 10 kN if sensors were shifted in the 

opposite directions. However, error in sensor position may be included in the measurement 

error on mode shape amplitude. 

5 Practical aspects 

In the field of experimental modal analysis, uncertainty bounds for the modal parameter 

estimates can be obtained by means of advanced identification techniques such as the 
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stochastic subspace identification method (Peeters and De Roeck 2001, Reynders and De 

Roeck 2008, Reynders et al. 2008, 2016). Alternatively, repeated experimental tests can be 

used to evaluate the CoV of the parameters to be used in Eq. (1). 

The three-span beam shown in Figs. 2 and 3 may also be representative of real tie-rods. In 

fact, intermediate supports were possibly used to sustain long tie-rods, as in the case of the 

tie-rods of Parma Cathedral (Garziera, Amabili, and Collini 2011), and the concentrated mass 

m  simulates the presence of heavy lamps hanging from the tie-rod (Gentile et al., 2017). In 

all these cases, experimental tests can be performed on a proper tie-rod substructure of 

assigned length, but the flexural mode shape to be used in the identification process has to be 

properly selected. To this respect, see section 5.2 in Rebecchi, Tullini, and Laudiero (2013), 

where several suggestions were outlined. For instance, mode shapes with amplitudes v0, v1, v2, 

v3, v4 with the same sign, showing the maximum amplitude v2, have to be preferred in the 

identification process. Vice versa, local mode shapes close to a straight line have to be 

systematically eliminated. 

For a beam with severe cross section variations, a finite element model can be helpful for 

the determination of the optimal uniform beam approximating the frequencies of the irregular 

beam.  

It is worth noting that tie-rod vibrations can also be measured using non-contact vibration 

techniques (Gioffré et al. 2017). Non-contact measurement systems received considerable 

interest in the last decades (Pieraccini et al. 2000, 2007, 2014, Gentile 2010). In fact, non-

contact measurements are very attractive in case of tie-rods hardly accessible. 

Conclusions 

An investigation into the reliability of an experimental procedure for the axial load 

identification of tie-rods, using one flexural mode shape, was presented. Flexural rigidity and 

mass per unit length were assumed to be known constants. Then, the influence of inaccurate 

estimates of geometric and elastic properties as well as of measurement errors on the accuracy 
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of the axial force identification was investigated. Many numerical tests on tie-rods having 

large scatter values of elastic properties were performed. Good estimates of the axial forces 

were obtained, and the reliability of the tensile force identification was shown to rely on the 

correct estimation of measurement errors rather than on accurate guess of Young modulus.  

In summary, the recommended scheme for in situ experiments is the following: 

- use the five sensors test when it is difficult to estimate the effective length free to vibrate, 

the boundary constraints, and the masses of the junction systems; vice versa, the three 

sensors test leads to more accurate results; 

- estimate Young modulus by measuring the longitudinal wave velocity (Boller, Chang, and 

Fujino 2009); 

- repeat tests for a proper evaluation of the coefficient of variation of the modal data to be 

used in the identification process. In fact, excellent estimates of the axial forces are obtained 

when the experimental ratios (v0+v4)/2v2, (v1+v3)/2v2 have a coefficient of variation less than 

0.5%; 

- use a modified beam density ρmod by distributing the total mass of the sensors along the 

beam length; 

- make sure the sensor location error be less than 0.5% of L/4. 
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Figure Captions 

Figure 1. Arch-pier system reinforced with a tie-rod having two junction systems (a) and 

reference model with location of the instrumented sections (b). 

Figure 2. Experimental setup for tests No. 1, 3, 5. 

Figure 3. Experimental setup for tests No. 2, 4, 6. 

Figure 4. Tests No. 1, 3, 5. Ratio between the worst estimated values (Na) and the assumed 

values (Nx) of the axial forces for tie-rods with Young modulus Emin (dashed line), Emax (dash 

dot line) and Eref (continuous line). Symbols + refer to data from experimental tests. 

Figure 5. Tests No. 2, 4, 6. Ratio between the worst estimated values (Na) and the assumed 

values (Nx) of the axial forces for tie-rods with Young modulus Emin (dashed line), Emax (dash 

dot line) and Eref (continuous line). Symbols + refer to data from experimental tests. 

Figure 6. Tests No. 2, 4, 6. Ratio between the worst estimated values (Na) and the assumed 

values (Nx) of the axial forces for tie-rods with modified density ρmod = 8062 kg/m
3
 and with 

Eref affected by measurement errors of ±1.0% (continuous line) and ±0.5% (continuous line 

with symbols). Symbols + refer to data from experimental tests evaluated using ρmod. 
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Table Captions 

Table 1. Test No. 2 ( m  = 0 kg). Imposed axial load Nx and coefficients of variation (CoV) of 

the experimental parameters and of analytical estimate Na for the first mode shape. 

Table 2. Test No. 4 ( m  = 20 kg). Imposed axial load Nx and coefficients of variation  (CoV) 

of the experimental parameters and of analytical estimate Na for the first mode shape. 
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Figure 2. Experimental setup for tests No. 1, 3, 5. 
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Figure 3. Experimental setup for tests No. 2, 4, 6. 
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Figure 4. Tests No. 1, 3, 5. Ratio between the worst estimated values (Na) and the assumed values (Nx) of the 

axial forces for tie-rods with Young modulus Emin (dashed line), Emax (dash dot line) and Eref (continuous line). 

Symbols + refer to data from experimental tests. 
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Figure 5. Tests No. 2, 4, 6. Ratio between the worst estimated values (Na) and the assumed values (Nx) of the 

axial forces for tie-rods with Young modulus Emin (dashed line), Emax (dash dot line) and Eref (continuous line). 

Symbols + refer to data from experimental tests. 
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Figure 6. Tests No. 2, 4, 6. Ratio between the worst estimated values (Na) and the assumed values (Nx) of the 

axial forces for tie-rods with modified density ρmod = 8062 kg/m
3
 and with Eref affected by measurement errors of 

±1.0% (continuous line) and ±0.5% (continuous line with symbols). Symbols + refer to data from experimental 

tests evaluated using ρmod. 
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Table 1. Test No. 2 ( m  = 0 kg). Imposed axial load Nx and coefficients of variation (CoV) of the experimental 

parameters and of analytical estimate Na for the first mode shape. 

Nx CoV [%] 

[kN] Nx f  v0/v2 v1/v2 v3/v2 v4/v2 λ (v1+v3)/2v2 (v0+v4)/2v2 Na 

4.50 1.14 0.00 0.48 0.23 0.09 0.26 0.00 0.14 0.31 2.6 

10.9 0.43 0.19 0.64 0.28 0.14 0.23 0.10 0.16 0.31 1.4 

15.1 0.26 0.24 0.36 0.27 0.12 0.21 0.12 0.10 0.17 1.1 

20.1 0.16 0.17 0.33 0.49 0.09 0.14 0.09 0.22 0.13 1.1 

24.7 0.24 0.20 0.37 0.11 0.14 0.22 0.10 0.06 0.17 0.7 

30.4 0.20 0.09 0.25 0.08 0.09 0.27 0.05 0.04 0.18 0.2 

34.9 0.21 0.15 0.17 0.10 0.08 0.08 0.08 0.03 0.09 0.3 

40.2 0.12 0.16 0.19 0.08 0.10 0.14 0.08 0.06 0.11 0.5 
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Table 2. Test No. 4 ( m  = 20 kg). Imposed axial load Nx and coefficients of variation (CoV) of the experimental 

parameters and of analytical estimate Na for the first mode shape. 

Nx CoV [%] 

[kN] Nx f  λ (v1+v3)/2v2 (v0+v4)/2v2 Na 

4.90 0.26 0.00 0.00 0.20 0.42 3.2 

11.1 0.34 0.00 0.00 0.37 0.42 3.8 

16.2 0.03 0.00 0.00 0.18 0.52 1.5 

21.1 0.09 0.00 0.00 0.45 0.46 4.0 

25.6 0.29 0.00 0.00 1.24 4.04 10.4 

30.6 0.06 0.00 0.00 0.28 0.28 2.4 

36.2 0.10 0.00 0.00 1.10 0.99 9.2 

41.0 0.10 0.00 0.00 3.16 1.48 25.0 

 


