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Atherosclerosis is a hardening and narrowing of arteries causing a reduction of blood flow.
It is a leading cause of death in industrialized countries as it causes heart attacks, strokes,
and peripheral vascular disease. Pathogenesis of the atherosclerotic lesion (atheroma)
relies on the accumulation of cholesterol-containing low-density lipoproteins (LDL) and on
changes of artery endothelium that becomes adhesive for monocytes and lymphocytes.
Immunomediated inflammatory response stimulated by lipoprotein oxidation, cytokine
secretion and release of pro-inflammatory mediators, worsens the pathological context by
amplifying tissue damage to the arterial lining and increasing flow-limiting stenosis.
Formation of thrombi upon rupture of the endothelium and the fibrous cup may also
occur, triggering thrombosis often threatening the patient’s life. Purinergic signaling, i.e.,
cell responses induced by stimulation of P2 and P1 membrane receptors for the
extracellular nucleotides (ATP, ADP, UTP, and UDP) and nucleosides (adenosine), has
been implicated in modulating the immunological response in atherosclerotic
cardiovascular disease. In this review we will describe advancements in the
understanding of purinergic modulation of the two main immune cells involved in
atherogenesis, i.e., monocytes/macrophages and T lymphocytes, highlighting
modulation of pro- and anti-atherosclerotic mediated responses of purinergic signaling
in these cells and providing new insights to point out their potential clinical significance.

Keywords: T lymphocytes, extracellular ATP and adenosine, CD39 and CD73, P1 and P2 receptors, atherosclerosis,
macrophage, necrotic core, oxLDL
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INTRODUCTION

Atherosclerosis is a chronic inflammatory disease of the arteries,
characterized by the development of characteristic lesions named
atheromatous plaques (1, 2). It represents the most diffuse
pathological state of peripheral and coronary artery disease, as
well as of cerebrovascular disorders (3). Factors participating in
the atherosclerotic process have been identified, among them:
genetic predisposition, hyperlipidemia, metabolic dysregulation
(obesity, diabetes), hypertension and smoking (4). A role for
microorganisms has also been hypothesized, at least for the
initial stages of atherosclerosis (Figure 1, topic 1) (5–8). The
first steps of atherogenesis are characterized by endothelium
activation and changes in lipid permeability. Expression of
VCAM-1, ICAM-1, P-Selectin and different cytokine receptors
allows endothelial adhesion of immune cells (monocytes,
lymphocytes, neutrophils) (9). Permeation of cholesterol-
containing low-density lipoproteins (LDL) in the inner lining
of the artery wall and their oxidation (oxLDL) by reactive oxygen
species (ROS) favor leukocyte activation and amplification of the
pro-inflammatory background (Figure 1, topic 2) (1). Upon
expression of scavenger receptors, engulfment of oxLDL and
migration to the intima, circulating monocytes become
macrophages (foam cells) that dying in the plaque release
engulfed lipids (Figure 1, topics 3, 4). Necrotic immune cells,
debris, extracellular lipids and cholesterol crystals are not cleared
efficiently and accumulate within the plaque-forming the so-
called “necrotic core” (Figure 1, topics 5, 8–9) (2).

Macrophages are central in atherosclerosis as they participate
in all stages of atheroma formation (10–12). Circulating
monocytes are captured by the activated endothelium and
undergo differentiation into macrophages and changing their
phenotype according to stages of the atherosclerotic process.
They perform different tasks ranging from perception of danger
signals, engulfment of lipids and dead cells, secretion of
inflammatory (ROS, activating cytokines) but also pro-
resolving molecules (12). Atheromas are mainly populated by
pro-inflammatory M1 macrophages but also by DC able to
perform antigen presentation to T lymphocytes (13, 14).
Interestingly, while M1 macrophages promote atherogenesis,
M2 are atheroprotective (15). Macrophages are activated by
the Th1 cytokine IFN-g to produce ROI and NO (Figure 1).
IFN-g is fundamental for the pathogenesis of atherosclerosis and
endowed with the ability to cause atheroma even in the absence
Abbreviations: AC, adenylate cyclase; ADO, adenosine; ADP, adenosine
diphosphate; ATP, adenosine diphosphate; CKD, chronic kidney disease;
DAMPs, damage-associated molecular patterns; DC, dendritic cells; GM-CFS,
granulocyte-macrophage colony-stimulating factor; ICAM-1, intercellular
adhesion molecule 1; IFN, interferon; IL, interleukin; LDL, low-density
lipoproteins; LPS, lipopolysaccharides; MCP-1, monocyte chemoattractant
protein-1; MMP9, Matrix Metallopeptidase 9; NLRP3, NACHT, LRR and PYD
domains-containing protein 3; NO, nitric oxide; NTPDase, ectonucleoside
triphosphate diphosphohydrolase; oxLDL, oxidized low-density lipoprotein;
PAMPs, pathogen-associated molecular pattern; ROI, reactive oxygen
intermediates; ROS, reactive oxygen species; SLE, systemic lupus erythematosus;
SMC, smooth muscle cells; TGF-b, transforming growth factor b; TLR, toll-like
receptors; TNF-a, tumor necrosis factor a; UDP, uridine diphosphate; UTP,
uridine triphosphate; VCAM-1, vascular cell adhesion protein 1.
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of immune cells (16, 17). Adaptive immunity takes part in the
pathogenesis of atherosclerosis (18, 19). Although monocytes
migrating through the intima are more abundant than T
lymphocytes, these latter cells are crucial for the formation of
the lesion as they produce activation signals for macrophages
thus amplifying their contribution to atheroma formation (20).
Differentiation of naïve CD4+ lymphocytes to effector and
memory T cell subsets take place during atherogenesis (21).
Antigen presentation by lesional macrophages and DC enables T
cells to recognize antigens promoting the pro-inflammatory
response underlying atherosclerosis (Figure 1, topic 10).
Among them: LDL, oxLDL, beta 2 microglobulins, HSP60, and
apo B-100 (22, 23). T cell polarization into Th1 and Th17
populations induce production of TNF-a, IL-17a and IFN-g
pro-inflammatory cytokines (16, 24, 25); however, Treg anti-
inflammatory IL-10 and TGF-b cytokines have also been
detected in the atheromatous lesions (23). Therefore, T cells
secrete pro- and anti-inflammatory cytokines that direct
evolution and stability of the plaque (19, 26).

Fibroblasts proliferate and secrete collagen, proteoglycans
and elastin that accumulate in the intima (Figure 1, topic 11)
(27). Immune cells promote not only atheroma formation but
also its evolution with complications, damage, and sometimes
disruption (23, 28). Thrombotic complications may also occur as
a consequence of endothelial damage, rupture of the fibrous cap
and exposure of prothrombotic material which triggers platelet
activation and lead to blood coagulation. Plaque fracture is a very
dangerous event threatening patients’ life. It is highly dependent
on the plaque composition as it is more frequent in atheromas
rich in macrophages and poor of fibroblasts and consequently in
collagen fibers (29). However, plaque destabilization and rupture
is still an unpredictable event and strategies to stabilize the lesion
represent a challenging problem.

In the present review, we will illustrate the importance of
purinergic signaling in modulating pro- and anti-atherogenic
responses, particularly in T cells and macrophages. We will also
highlight the potential of purinergic receptor agonists and
antagonists for new therapeutic strategies to treat atherosclerosis.
216

217

218

219

220

221

222

223

224

225

226

227
PATHOGENESIS OF ATHEROSCLEROSIS

Although abnormal lipid accumulation in the artery wall during
atheroma formation is considered the main hallmark of the
disease (30), there is still debate on triggering factors and
stressors taking part in the initial stages of the disease. While
there is a consensus on the participation of innate and adaptive
immunity in chronic inflammation underlying atherogenesis,
less is known on signals activating immune cells. Danger signals,
i.e., pathogen-associated molecular patterns (PAMPs) derived
from viruses and bacteria, as well as danger-associated molecular
patterns (DAMPs), which are intracellular or endogenous
molecules, have been linked to atherosclerosis (31). Among
PAMPs, bacterial lipopolysaccharide (LPS), cytomegalovirus
(CMV) and human immunodeficiency virus (HIV); while
among DAMPs indicated to take part in atherogenesis:
228
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FIGURE 1 | Putative role of purinergic signaling in driving macrophages and T cell activation in atheroma development. DAMPs (LDL, oxLDL, extracellular ATP) and
PAMPs (viruses, microbes, LPS) trigger the production of cytokines and oxygen species by monocytes (1). This induces release of ATP from the endothelial cells and
expression of the leukocyte adhesion molecules (vascular cell adhesion molecule 1, VCAM-1; intercellular adhesion molecule 1, ICAM-1) (2) thus prompting adhesion
and extravasation of monocytes and lymphocytes (3). Macrophage derived ROS oxidate LDL to oxLDL (4) and stimulate IL-1b and IL-18 production (5). Extracellular
ATP is also converted to ADO by CD39 and CD73, which are expressed by the intima cells (6). ADO exerts a down-modulation of the immune response therefore
has a protective effect. On the contrary, ATP acts as a proinflammatory molecule inducing the cleavage of CD62L by ADAM17 and T cell polarization to a Th1
phenotype (7). Upon engulfment of oxLDL, macrophages become foam cells (8). The atheroma “necrotic core” (right part of the figure) forms by accumulation of
dying foam cells, lipids, cholesterol crystals and immune cells (9). Pro-inflammatory IFN-g and TNF-a are released upon antigen presentation to T lymphocytes by DC
(10), and in turn promote IL-8 and VEGF secretion, with consequent fibroblasts and SMC migration and proliferation (11).
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minimally modified LDL, oxidized LDL, oxidized phospholipids,
advanced glycation end-products, high-mobility group box 1 and
heat shock proteins. Interestingly, fatty acids can induce sterile
vascular inflammation (Figure 1, topic 1) (32).

Cytokines play a fundamental role in atherosclerosis and
associated comorbidities (e.g. psoriasis, SLE, CKD) (33–37).
Pro- and anti-atherogenic cytokines have been shown. To the
first group belong molecules with pro-inflammatory activities,
such as interferons (IFNs) (a, b, g), interleukin-(IL)1b, IL-6, IL-
17a, granulocyte-macrophage colony-stimulating factor (GM-
CSF), monocyte chemoattractant protein-1 (MCP-1), tumor
necrosis factor (TNF)-a while among anti-atherogenic
cytokines, transforming growth factor (TGF)-b, IL-10, and IL-
35. The preeminent effect of pro-atherogenic cytokines ranges
from induction of the synthesis of other cytokines, amplifying
the pro-inflammatory activities of immune cells, to upregulation
of endothelial adhesion molecules, thus favoring attachment and
diapedesis of monocytes and lymphocytes (38).
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PURINERGIC RECEPTORS

Nucleotides and nucleosides are not just accumulated and used
within the cell but they are also secreted and synthesized
424
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extracellularly where they serve as intercellular messengers. ATP,
ADP, UTP, UDP and adenosine, just to cite some, present at high
concentrations within the cell where they exert multiple roles, bind
extracellularly to evolutionary conserved P2 (activated by
nucleotides) and P1 (activated by adenosine) plasma membrane
receptors (Figure 2). Signal transduction of these receptors
modulates cell and tissue pathways involved in tissue
metabolism, gastrointestinal and hepatic function, circulation,
nervous tissue response and immune defense (39–41).
Interestingly, dysregulation of the purinergic signaling network
has been implicated in the pathogenesis of allergic and
neurological diseases, tissue fibrosis and cancer (42–46).
Extracellular nucleotides participate in normal circulation
physiology, but also in the onset of pathologic states that
deve lop into the blood vesse ls , such as in blood
hypercoagulability, thrombosis, atherosclerosis (40, 47, 48).

P2 Receptors
P2X Receptors
They are grouped into two subfamilies, namely: P2X and P2Y
(49) (Figure 2). P2X receptors comprise seven subtypes (P2X1-
P2X7). They are highly conserved, trimeric, ATP-gated ion
channels, selective for monovalent and divalent cations Na+,
K+, Ca2+, Mg2+. Upon binding of the ligand, some of them
desensitize (50, 51). Interestingly, the existence of lipid rafts and
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FIGURE 2 | Main molecular components of the purinergic signaling network. Nucleotides (ATP, ADP, UTP, UDP, etc.) and nucleosides (ADO) can be released or
transported extracellularly as a consequence of shear stress membrane damage, hypoxia, apoptosis, necrosis and infections. Once liberated, they bind and activate
purinergic P2 (P2Y and P2X) or P1 (A1, A2A, A2B, A3) receptors. ADO is generated from the enzymatic conversion of ATP/ADP to AMP by the ectonucleoside
triphosphate diphosphohydrolase CD39 and with the hydrolysis of AMP to ADO by the ecto-5′-nucleotidase CD73. ADO activates P1 receptors.
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the level of cell membrane cholesterol can modulate the
sensitivity of P2X receptors to ATP (52, 53). For the many
responses they mediate in the circulatory apparatus, P2X
receptors have been chosen as therapeutic targets for the
cardiovascular system (54, 55).

The seventh subtype is an exception between P2X for its
permeability transition and for not desensitizing in the presence
of ATP (56). Its potential interest in atherogenesis is very high.
Involvement of P2X7 in energy metabolism has been shown in
mice; accordingly, deletion of the receptor induces lipid
accumulation, fat mass distribution increase and gain of weight
(57). The receptor is also endowed with the ability to induce
transcription and secretion of inflammatory cytokines such as
IL-1b, IL-18 (Figure 1, topic 5) and IL-6 which are central in
atherosclerosis (58–60). Hence, Toll-like receptors (TLR) and P2
purinergic receptors induce activation of inflammasomes (61).
Their activation by extracellular ATP causes IL-1b and IL-18
release (62). Interestingly, engulfment of lipids by macrophages
increases the sensitivity of TLR to their ligands and activates
NLRP3 (also known as NOD-, LRR- and pyrin domain-
containing 3, NALP3) inflammasome (63, 64). NLRP3 is
activated by two signals: the first being microorganisms or
inflammatory cytokines endowed of the ability to activate
transcription factor NF-kB, upregulate NLRP3 proteins and
expression of the inactive form of the cytokines; while the
second step is mediated by different stimuli among which
extracellular ATP through activation of the P2X7 receptor (65).
An important confirmation on the importance of P2X7 in
atherogenesis comes from the animal model, where the
absence of this subtype inhibits inflammasome activation and
improves atherosclerosis (66).

P2Y Receptors
P2Y receptors include eight subtypes named: P2Y1, P2Y2, P2Y4,
P2Y6, P2Y11, P2Y12, P2Y13 and P2Y14 (67). They have a
membrane topology with seven-transmembrane domains and
couple intracellularly to Gq/G11 or Gi/0 proteins (67) (Figure 2).
They differ in agonist specificity. P2Y1, P2Y12 and P2Y13

subtypes are preferentially activated by ADP (68), whereas
P2Y6 by UDP. P2Y2 is activated by UTP or ATP, while P2Y4

and P2Y11 are selective for UTP and ATP, respectively (69).
P2Y14 is activated by UDP-glucose (69). P2Y receptors modulate
several physiological responses.

Endotheliocytes release ATP in response to blood flow
changes, hypoxia, or damaging agents (40, 70, 71). Moreover,
ATP and other nucleotides are released from all dying cells and
act as DAMPs activating and recruiting immune cells (58)
(Figures 1 and 2). Interestingly, oxLDL favor nucleotide
release from endothelial cells (72). Triggering of the P2Y2

receptor by ATP secreted by endothelial cells upon stimulation
with oxLDL induces expression of receptors for advanced
glycation end-products and adhesion molecules (73).
Furthermore, the release of ROS and ATP/UDP from
endothelial cells upon exposure to oxidized low-density
lipoprotein (oxLDL), induce autocrine P2Y1-mediated
upregulation of ICAM-1 and VCAM-1 with subsequent
stimulation of leukocyte adhesion (74) (Figure 1, topic 2).
Frontiers in Immunology | www.frontiersin.org 5
As an example, platelet aggregation is dependent on
adenosine ADP/P2Y12-mediated amplification of thrombin
effects. During platelet aggregation, the ADP receptor P2Y12

plays a pivotal procoagulant role as shown by the benefits gained
by its inhibition with the receptor blocker Clopidogrel in patients
with cardiovascular disease such as in acute coronary syndrome,
recent stroke and arterial disease (75, 76). In abdominal aortic
aneurysm, a condition characterized by dilatation of the
abdominal aorta which involves antigen-driven T cells in the
site of inflammation (77), Clopidogrel reduces the content of
cytotoxic CD8+ T cells in the aortic wall and has an ameliorative
role in the disease (78). Indeed, P2Y receptors would be central in
inducing endothelium activation and atherogenic modifications
at least in the double negative knockout (P2Y1

-/-/ApoE-/-) mice.
In these animals, the P2Y1 subtype contributes to TNF-a-
induced ICAM-1 and VCAM-1 exposure with consequent
leucocyte recruitment in inflamed femoral arteries (79).
Moreover, reduction of the aortic sinus lesions associated to a
decrease in macrophages infiltration and to a diminished
VCAM-1 expression in endothelial cells of P2Y1-/-ApoE-/-

compared to ApoE-/- mice suggests that atherosclerotic lesions
are due to endothelial or smooth muscle cells expression of P2Y1

receptors (80). Interestingly, bacterial lipopolysaccharide (LPS)
upregulates lectin-like oxLDL receptor in endothelial cells (81),
which in turn induces a P2Y1- and P2Y1-mediated upregulation
of ICAM-1 and VCAM-. This prompts leucocyte adhesion to
endothelial cells (74). Similarly, the P2Y2 subtype promotes
atherosclerosis in mice by inducing the expression of the same
adhesion molecules. Matrix metalloproteinase-2 proteolytic
activity was reduced in atheroma of P2Y2

-/- ApoE-/- mice (82).
Another potentially very interesting for the pathogenesis of
atherosclerosis is the P2Y6 subtype. Hence, P2Y6 is upregulated
during vascular inflammation induced by TNF-a or LPS
stimulation in mice, and its inhibition or ablation reduces the
vascular inflammatory response (83). These findings suggest that
P2Y receptors could be targeted for therapeutic purposes
in atherosclerosis.

P1 Receptors
P1 receptors are activated by adenosine (ADO) that can be
transported outside the cell by specific membrane transporters or
generated extracellularly by ATP and ADP hydrolysis (see next
paragraph) (Figure 1). ADO concentration in the extracellular
fluids ranges from 100 to 500 nM in homeostatic conditions
while it augments to low micromolar for the presence of
inflammation or during hypoxia and ischemia (84, 85).

ADO or ADORA receptors consist of four subtypes: A1

(ADORA1), A2A (ADORA2A), A2B (ADORA2B) and A3

(ADORA3). They are seven-transmembrane G-protein-coupled
receptors that associate with G-proteins. Depending on receptor
subtype, ADO activates (A2A, A2B) or inhibits (A1, A3) adenylate
cyclase (AC) (86). ADORA receptors also differ in ligand affinity,
being A1, A2A and A3 subtypes activated by low (10–50 nM)
ADO concentrations while on the contrary, A2B needs around 1
mM ADO for activation (87).

P1 receptors induce multiple responses (42, 85, 88).
Extracellular ADO is very important to dampen acute
Month 2021 | Volume 11 | Article 617804

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

Ferrari et al. Extracellular Purines, Macrophages and T Lymphocytes in Atherosclerosis
inflammation thus preventing tissue injury. ADO-mediated
immunosuppressive mechanisms are mainly based on
inhibition of pro-inflammatory cytokine secretion, production
of suppressive cytokines and induction of regulatory immune
cells. Endothelial cells use adenosinergic signaling to regulate the
leakiness through the endothelial monolayer of the brain
capillaries, for the passive exchange of solutes and proteins (89,
90); however, the use of P1 agonists, particularly of the A2A

subtype has to be carefully evaluated for the side effects deriving
from the T cell migration through the blood-brain barrier (91).
Interestingly, A2A receptor signaling has also been indicated as a
target for limiting aneurysm formation (92); A3 antagonism
reduces hypercholesterolemia in ApoE-/- mice (93). Therefore,
ADO and its receptors represent promising pharmacological
targets to treat atherosclerosis.

Ectonucleotidases
Extracellular nucleotide concentration in homeostatic conditions
is low or close to zero. This is due to the hydrolyzing activity of
different plasma membrane ectonucleotidases transforming ATP
to ADP and then to ADO (Figure 2). Besides avoiding of
accumulation of nucleotides in the extracellular milieu, these
enzymes degrade P2 receptor agonists (i.e., nucleotides) lowering
their concentration thus reducing the efficiency of stimulation.
Conversely, their activity augments the amount of ADO thus
increasing the probability of activating P1 receptors (42). Shifting
from P2 to P1 activation has quite often the consequence of
changing purinergic-mediated responses from pro- to anti-
inflammatory, thus preserving tissue integrity (94).

Different ectonucleotidase families have been described:
ectonucleotide pyrophosphatase/phosphodiesterase (NPP), alkaline
phosphatases, ectonucleoside triphosphate diphosphohydrolases
(NTPDases, among which CD39 or NTPDase1) and ecto-5’-
nucleotidase (CD73). CD39 catalyzes the conversion of ATP or
ADP to AMP, while CD73 hydrolyzes AMP to ADO (95–97)
(Figure 2). Ectonucleotidases play a central role in immune
regulation, thus preventing the development of conditions
favoring autoimmune diseases (94). Moreover, the generation
of ADO by ectonucleotidases reduces tissue damage and
ameliorates tissue physiology in hypoxia-related disease states
(98, 99). CD39 has been associated with resistance to thrombus
formation in injured mice arteries (100) while in CD73-/- mice,
absence of the enzyme does not directly affect thrombosis, but
indirectly lowers it by increasing CD39 expression, particularly
on monocytes (101, 102). CD39 likely exerts multiple and
sometimes apparently contrasting effects in atherosclerosis.
The absence of this gene in hyperlipidemic mice decreases
atheroma formation and it was hypothesized that this effect
resulted from multiple contributions, i.e.: decreased platelet
activation, increased plasma HDL concentration and
augmented cholesterol efflux (103). Expression of CD39 is
crucial in neointimal formation after vascular injury in mice as
its absence impairs the migration of vascular smooth muscle
cells (104).
682
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P2 Mediated Effects
Macrophages and DC express both P2X and P2Y receptor
subtypes that are involved in modulating responses ranging
from cytokine secretion, giant cell formation, production of
oxygen radicals and antigen presentation.

Immunohistochemistry demonstrates that P2Y6 is upregulated
in the atherosclerotic aortic segment of ApoE-/- mice after 4-week
of cholesterol-enriched diet, with the accumulation of P2Y6

expressing macrophages into the plaque. Interestingly, Suramin
or PPADS treatments were able to reduce the plaque size, without
modification of the number of macrophages and smooth muscle
cells (105). P2Y6 receptor mRNA increases in aortic portions with
atherosclerosis, while expression of the mRNA for other P2Y
subtypes (P2Y1, P2Y2, P2Y4) remain unchanged (105). However,
the participation of the P2Y6 receptor to atherosclerosis in mice
seems to be dependent on the experimental model used. A
reduction in atherosclerotic plaque formation in the aortic arch
was observed in high fat-fed LDLR knockout mice lacking the
P2Y6 receptor in bone marrow-derived cells, but not in other
mouse models (106). P2X7 is highly expressed in immune cells,
particularly in macrophages where it is involved in IL-1b and IL-
18 processing and release (59, 107–110). Macrophages are the
main source of IL-1b, which is responsible for inflammation
linked to atherosclerosis. It can thus be hypothesized that
stimulation of P2X7 by extracellular ATP released within the
atheroma induces the release of this pro-inflammatory cytokine
(111–113). The efficacy of the A740003, a P2X7 specific
antagonist, in decreasing vessel inflammation further supports
its role in atherosclerosis and gives a new chance for the local
pharmacological targeting of atherosclerosis (113).

IFN-g is also a central mediator in atherosclerosis (114). IFN-g
potentiates IL-1b release from primary human monocyte-derived
DC. Indeed, IFN-g also upregulates expression of the P2X7
subtype, which in turn prompts IL-1b secretion (115, 116). IL-
18 and its functional receptor have been detected in human
endothelial cells, SMC and macrophages, and are implicated in
atherogenesis (117). Since P2X7 expressed by human
macrophages is also involved in ATP stimulated IL-18 release it
again represents a suitable candidate for pharmacological targeting
of atherosclerosis (108).

The centrality of NLRP3 inflammasome in atherosclerosis has
also been well ascertained (118). Different approaches have been
successfully attempted to inhibit the protein complex both in
vitro and in vivo. This latter has shown a positive effect on
experimentally induced atherosclerosis (119–121). Extracellular
ATP is among stimuli that potently activate NLRP3, therefore, it
is very promising for therapeutic purposes the observation that
deficiency of a single purinergic receptor, namely the P2X7
subtype, is sufficient to block NLRP3 inflammasome and
ameliorate the clinical picture of atherosclerosis in mice (122).
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MODULATION OF T LYMPHOCYTES
BY PURINERGIC SIGNALING DURING
ATHEROGENESIS

P2 Mediated Effects
P2Y and P2X receptor activation lead the inflammatory processes
of the vessels favoring interactions between leukocytes, platelets
and vessel wall. The P2Y12 subtype has attracted interest for its pro-
thrombotic and pro-inflammatory role both in Apolipoprotein
E-deficient mice and in humans (123). Contribution of the ADP
receptor in modulating atherogenesis in the mouse model would be
at least in part due to the induction of platelet a-granule release
that would increase recruitment of inflammatory cells (124).

During atheroma formation, platelets induce a phenotype
change and INF-g secretion in human CD4+ T lymphocytes; but
administration of the P2Y12 receptor blocker Prasugrel to human
volunteers completely inhibits platelet-mediated pro-inflammatory
changes induced in Th cells. Therefore, anticoagulant therapy with
Prasugrel may provide therapeutic benefits both from direct
platelet inhibition and also by downregulating the immune
response (125). Clopidogrel, another P2Y12 inhibitor decreases
expression of the purinergic receptor by leukocytes, ameliorates
atheroma conditions and stabilizes aortic sinus plaques increasing
the number of atheroprotective regulatory CD4+CD25+ T (Treg)
cells in ApoE-/- mice (126, 127). Although atherosclerosis is
characterized by migration of different immune cells through the
vessel wall, at least in the mouse model, lymphocytes are already
present within the normal/noninflamed aorta before the onset of
atheroma; while macrophages and DC that perform T cell antigen
presentation are recruited into the artery wall. This migration is
partially dependent on L-selectin (CD62L) both in normal and
atherosclerosis-prone ApoE−/− mouse aorta (128). Shedding of
CD62L occurs during lymphocyte activation and rolling;
interestingly, activation of the P2X7 receptor triggers the
shedding of CD62L in leukocytes (Figure 1, topic 7) (129, 130).

P1 Mediated Effects
It is long known that ADO has anti-inflammatory properties
(58). Curiously, the potent anti-inflammatory drug methotrexate
is responsible for ADO release that activating A2 receptors
expressed by immune cells, reduces their presence in the
inflamed tissue (131). Since ADO acts as a down-modulator of
the immune response, it exerts atheroprotective functions by
reducing the secretion of pro-inflammatory cytokines, thus
lowering immune-mediated tissue damage (58). The role of
CD8+ T lymphocytes in atherosclerosis has been the object of
intense debate. However, a recent report has shed light on this
issue and on the involvement of CD39 ectonucleotidase in
conferring a regulatory and atheroprotective phenotype to
CD8+ cells. This is associated with a reduction in cytokine
production through increased CD39 expression in both mouse
and human atherosclerotic lesions (132).
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Atherosclerosis is a leading cause of death in developed countries
and it has been the target of multidisciplinary therapeutic
approaches to reduce the relevant burden of life loss and
health spending. Data coming from extensive epidemiological,
clinical and experimental studies show that lifestyle habits are
crucial to prevent atherosclerosis. Several strategies have been
tested to treat the disease, among them: cholesterol-lowering
agents, blood pressure reducing drugs, anti-inflammatory agents
(corticosteroids, monoclonal antibodies to cytokines) and anti-
P-selectin antibodies (133). Indeed, no definitive answers on the
efficacy of these clinical approaches have been obtained.
Therefore, novel therapeutic solutions are highly required (2,
33, 133).

ADO, for example, behaves as a down-modulator of immune
cell activation as shown in many in vitro studies as well as in
animal models and clinical trials. Besides anti-inflammatory
properties and inhibition of cholesterol accumulation into the
vessels, ADO also shows anti-thrombotic effects, thus having an
atheroprotective potential sufficient to prompt clinical trials
particularly involving the A2A receptor (134–137).

Macrophages and lymphocytes are central in the evolution of
atherosclerosis for their ability to produce signals feeding the
underlying pro-inflammatory background of the disease (19,
26, 38).

IL-1b has a pivotal role in atherosclerosis, and purinergic
signaling is the main triggering way for its release. Interestingly,
Losartan, an angiotensin II receptor blocker used to treat
hypertension, inhibits LPS/ATP-induced IL-1b secretion by
suppressing NLRP3 inflammasome (119). The NALP3/P2X7
tandem has a well-ascertained role in inflammation. An
important result obtained in the animal model consists in the
observation that the absence of the P2X7 subtype impairs
lesional inflammasome activity and ameliorates the disease,
pointing to the centrality of this receptor as a trigger of NLRP3
induced inflammation (122). Due to the importance of NLRP3 in
atherosclerosis, different ways have been proposed for its
inactivation (120, 121, 138). Interestingly, the P2X7 antagonist
A740003 also shows an effect in decreasing IL-1b secretion and
MMP9 activity in ex-vivo cultures of atheromatic cells,
independently from NLRP3 (113). Therefore, further studies
are needed to shed light on the activation of this latter P2X7
dependent proinflammatory pathway.

The P2Y2 receptor subtype has also been endowed with pro-
inflammatory properties in the ApoE-/- mouse model, and pro-
thrombotic capacities in human coronary artery endothelial cells.
It would therefore be worthy to pharmacologically target this
receptor in the attempt of reducing inflammation and
thrombosis in atherosclerosis (139). Involvement of the P2Y6

receptor in the inflammatory background underlying
atherosclerosis has been shown both in mice and humans (105,
140). This subtype is expressed in murine atherosclerotic plaques
and is involved in NO production and IL-6 secretion in murine
macrophages (105). The P2Y6 receptor subtype plays a role in
immune cell activation and recruitment to the arterial wall, most
likely by inducing MCP-1 and CCR2 overexpression,
Month 2021 | Volume 11 | Article 617804
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accompanied by modulation of the CCL2-mediated signaling
(106, 141, 142). Accordingly, leukocyte migration and lesion size
induced by the P2Y6 agonist UDP are decreased in P2Y6R

−/−

mice. Accordingly, mice deficient in both P2Y6 and low-density
lipoprotein, LDL, receptor show lower atherosclerotic lesion sizes
and lipid accumulation in the aorta. Recent studies on P2Y6 pro-
inflammatory effects had shed light on vascular inflammation in
the presence of bacterial LPS. The P2Y6 receptor antagonist MRS
2578 shows a positive effect in down modulating a nuclear factor
kB reporter and expression of pro-inflammatory genes in human
microvascular endothelial cells in vitro (83). Moreover,
inflammation and uptake of cholesterol by macrophages are
lower in atheroma of P2Y6

-/- mice, candidating the subtype as a
therapeutic target for atherosclerosis (66, 106, 140, 143).

P2Y12 receptor represents a further very promising molecule
for the treatment of the disease as its inhibitor Ticagrelor reduces
cardiovascular events in patients with acute coronary syndrome
and decreases inflammatory endothelial activation and vascular
dysfunction in ApoE-/- mice (144, 145). Moreover the efficacy of
Prasugrel, another P2Y12 receptor blocker, in abolishing pro-
thrombotic and pro-inflammatory responses of platelets and
CD4+ T cells in humans, may also provide an indirect positive
effect on the inflammatory response underlying the genesis of
atheroma and also in cardiovascular diseases involving T cells
(125). Concerning CD8+ T lymphocytes, although their
identification in the atherosclerotic lesions has already been
reported a few decades ago, however, both atheroprotective and
pro-atherogenic roles have been proposed, depending on the
animal or research model used (146). Different CD8+

subpopulations would have a particular role in atherosclerosis.
Two putatively protecting phenotypes have been identified and
would be MHC class I-restricted CD8+ lymphocytes and
regulatory CD8+CD25+ T cells (146); moreover, a role has been
attributed to CD39 ectonucleotidase in reducing IFN-g and TNF-
a production by CD8+ in atherosclerotic lesions in mice (132).
Another important point is that inhibition of the A2A receptor
reduces the formation of foam cells, making this receptor
putatively interesting to inhibit lipid accumulation within the
intima (134, 135). Another issue to be further explored is the
Frontiers in Immunology | www.frontiersin.org 8
involvement of TLR receptors in atherosclerosis, being TLR9 a
first candidate for future studies (138, 147). It would also be
worthy to check whether the expression of TLR is modulated by
nucleotides during atherosclerosis. Experiments performed in
hypercholesterolemic mice showed that oxidized phospholipids
are proatherogenic; therefore, it would be interesting to check
whether extracellular ATP may amplify this response (148).

The attenuation of the inflammatory background of
atherosclerosis would be a desirable first step to treat the
disease; rapidly expanding knowledge on the effects mediated
by extracellular nucleotides and nucleosides on immune and
non-immune cells participating in atherosclerosis will hopefully
give a new chance of introducing new therapeutic compounds to
treat inflammation and therefore atherosclerosis (93, 149).
Another challenge consists of finding new ways for the in situ
delivery of anti-atherosclerotic drugs, to block atheroma
progression and possibly revert it. Nano- and micro-particles
could likely be a new and possibly efficient way to administer
drugs directly to the atherosclerotic lesions (150).
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