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SUMMARY

In computational mechanics, the quadrature of discontinuous and singular functions is often required. To
avoid specialized quadrature procedures, discontinuous and singular fields can be regularized. However,
regularization changes the algebraic structure of the solving equations, and this can lead to high errors. We
show how to acquire accurate and consistent results when regularization is carried out. A three-dimensional
analysis of a tensile butt joint is performed through a regularized extended finite element method. The
accuracy obtained via Gaussian quadrature is compared with that obtained by means of CUBPACK adaptive
quadrature FORTRAN tool. The use of regularized functions with non-compact and compact support is
investigated through an error evaluation procedure based on the use of their Fourier transform. The proposed
procedure leads to the remarkable conclusion that regularized delta functions with non-compact support
exhibit superior performance. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Quadrature of discontinuous and singular integrands is a challenging issue in computational
mechanics. However, it cannot be handled by means of standard quadrature procedures, unless
sharp discontinuities are regularized. Because regularization of sharp discontinuities might gener-
ate excessive errors, we show under which conditions it can be effective. For this purpose, Gaussian
quadrature and adaptive quadrature are applied to a regularized variant of the extended finite ele-
ment method (XFEM). A novel error evaluation procedure based on the Fourier transform of the
regularized functions is used to compare non-compact and compact support regularized functions.
The proposed procedure leads to the worth noting conclusion that regularized delta functions with
non-compact support should be used to have robust and effective results.

Singular and highly localized fields occur in several computational mechanics fields, such as in
applications of the vortex method [1], the immersed boundary method [2, 3], the phase-field method
[4, 5], in advection-diffusion problems [6, 7], electronic structure calculations [8], and in the model-
ing of plastic hinges in beam elements [9]. In the context of the finite element modeling, quadrature
of terms containing discontinuous and singular functions is performed by subdividing the elements
crossed by discontinuities in quadrature sub-domains [10, 11] or, alternatively, by making use of
adaptive quadrature [8, 12]. Subdivision into quadrature sub-domains can be cumbersome in the
multidimensional case. Quadrature in the multidimensional case was studied by [13] among the
first. They proposed an algorithm for the recursive subdivision of one cube into n-cubes until the
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2 E. BENVENUTI ET AL.

error over each subdivision is smaller than a prescribed tolerance. Recently, improving the scheme
[13], an adaptive procedure was proposed [8], where a tensor product rule with eight nodes in all
directions is used to estimate the local integration error. If the error is larger than a prescribed tol-
erance, then the element is subdivided into cells and the adaptive integration is performed over
each cell recursively. A Gaussian-like quadrature rule was constructed in two-dimensions on the
basis of a point-elimination algorithm for the final quadrature scheme to have the minimal num-
ber of Gauss points [14]. Alternatively, a technique based on the replacement of the Heaviside
function with equivalent polynomial functions such that their integral gives the exact values of the
discontinuous/non-differentiable function integrated on subcells was proposed [15]. As the poly-
nomial is defined in the whole element domain, Gaussian quadrature can be employed, and no
quadrature sub-domains are required. In three-dimensions, an adaptive tree-based adaptive approach
to a variant of the discontinuous Galerkin method that is characterized by discontinuous enrichments
of the polynomial basis has been developed in [12].

The standard mathematical approach to regularization consists in replacing singular and dis-
continuous functions with a regularized delta function and a regularized Heaviside function,
respectively, whose support is governed by a length parameter �. The only requisite is that, for
vanishing �, the original singular and discontinuous functions are recovered. As known, regulariza-
tion introduces approximations in the computation. The interpolation properties of the discrete form
of delta function were studied by Beyer and Leveque [3] in the framework of Peskin’s immersed
boundary method [2]. They showed that the numerical error related to the replacement of a sin-
gular integrand with a regularized one depends on the number of continuous moment conditions
that are satisfied [3]. Tornberg and coworkers [16, 17] gave fundamental contributions to the study
of the discretization error associated with regularization. They analyzed the case of regularizations
with narrow support. For instance, they showed that, when the regularization is well resolved on
the quadrature grid, the total error can be split into the sum of the analytical and the quadrature
error. Fast algorithms for the solution of integral equations with singular and localized kernels were
proposed in references [18, 19].

The level set method [20] is a highly successful computational technique for tracking the spa-
tial evolution of three-dimensional surfaces. An attractive feature is that interfaces are implicitly
described by this method and do not need to be parameterized. The use of the level set method [20]
leads to a straightforward extension of the regularized Heaviside and delta functions to the multi-
dimensional case. Unfortunately, regularization procedures based on the extension of the level set
signed distance function to the multi-dimensional case may lead to errors that do not decrease for
decreasing mesh size, when compact support regularization is adopted. The problem with extend-
ing the regularization to higher dimensions using the closest distance to the interface is that the
aforementioned moment conditions are no longer valid for any position of the discontinuity. More
recently, it has been shown [21] that the approximation of a one-dimensional delta function extended
to higher dimensions by a distance function can be made accurate with non-compact support reg-
ularized functions. The price to pay is that the support is wider. If the regularized function has a
non-compact support, then it is infinitely differentiable and the regularity of the regularized function
will no longer affect the numerical error.

In this paper, we investigate the three-dimensional finite element modeling of problems where
singular strain fields arise because of the presence of discontinuities in the displacement field. We
compare the accuracy and the robustness of the results, when compact and non-compact support
regularizations are performed. We formulate the problem in the framework of the XFEM [10, 11,
22–24]. XFEM is a powerful technique for modeling engineering problems characterized by dis-
continuous and singular functions. It is based on incorporating functions reproducing features of
the solution, such as discontinuities or singularities. Our approach is based on the regularized vari-
ant of the XFEM, first proposed by the authors in [25]. It is suitable for modeling thin and thick
cohesive interfaces and strain localization without the need of sub-quadrature subdivision [26–28].
Regularized XFEM is also an effective alternative to nonlocal and cohesive crack-models [29–31].
Its mechanical consistency has been thoroughly discussed in [27, 28]. One of the advantages of
adopting this regularized XFEM is that blending [32, 33] is not required. Whereas kinematics is
regularized analogously to other approaches based on the regularization of the Heaviside and delta
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ACCURACY OF THREE-DIMENSIONAL ANALYSIS OF REGULARIZED SINGULARITIES 3

functions [7–9, 34, 35], the strain fields, the constitutive modeling, and the adopted variational
formulation are different.

The original contribution of this paper concerns the novel use of the Fourier transform for the
evaluation a priori of the robustness of the regularization procedure. After an introduction to the reg-
ularization of singular functions in the level set context in Section 2, the accuracy of the procedure
based on the replacement of the singular delta function with a regularized delta function is discussed
and formulated by means of the moment conditions [3] in Section 3. The moment conditions are
formulated in terms of the Fourier transforms of the regularized delta functions in Section 4.2. In
particular, the class of regularized delta functions considered in the present paper are more general
than those studied by [21]. The advantages in using the Fourier transform are several. First, the rela-
tionship between the regularization support width of the regularized delta function and the expected
accuracy is put into evidence by the use of the similarity rule of the Fourier transforms as addressed
in Section 4.3. Furthermore, the choice of the regularized delta function follows by simply look-
ing at the support width and the type of decaying behavior of the corresponding Fourier transform.
The procedure highlights that the use of regularized delta functions with compact support can lead
to loss of convergence. As a computational model, the regularized XFEM approach addressed in
Section 5 is adopted. In Section 6, the structural analysis of a tensile butt joint where the joint is
slanted with respect to the loading direction is studied. In particular, the bell function, with com-
pact support, and the Laplacian function, with non-compact support, have been adopted. The aim
is to assess the accuracy of the stress evaluation of the structural example (Section 6.2). A critical
comparison follows in Section6.3.

2. REGULARIZATION IN THE LEVEL SET CONTEXT

In this section, we first introduce a certain class of regularized delta functions in the level set context.
Then, we formulate the moment conditions governing the error related to the replacement of a
singular integrand with a regularized one.

2.1. Regularized delta functions

Let the volume V be divided into V1 and V2 by the interface S . At any point x 2 S , the interface
is characterized by the normal vector n.x/. The position of S is implicitly defined by means of the
signed distance function d.x/ with respect to S [20], defined as d.x; S/ D dist.x; S/ if x 2 V1, and
d.x; S/ D �dist.x; S/ if x 2 V2.

Our purpose is to numerically integrate terms containing singular functions such as

Iı D
Z
V

ı.d.x/; S/ f .x/ dV: (1)

To avoid specialized quadrature procedures, we want to replace the delta function ı by a regularized
version ı�

ı�.d/ D
1

`�
'�.d/; lim�!0ı�.t/ D ı.t/; (2)

where `� is a normalization length, which depends on the type of the regularized delta function, and
lim indicates weak convergence [36]. In particular, '� is a smooth delta function depending on a
length � such that Z 1

�1

ı�.t/ dt D
1

`�

Z 1
�1

'�.t/ dt D 1: (3)

Examples of regularized delta functions with compact support are the hat function

'H� .d/ D

²
1 � jd j

�
if jd j 6 �;

0 otherwise;
(4)
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4 E. BENVENUTI ET AL.

and the bell functions

'B� .d/ D

´ �
1 � d2

�2

�n
if jd j 6 �;

0 otherwise;
(5)

with n D 2; 4. Examples of regularized delta functions with non-compact support are the Laplacian
regularized delta function

'L� .d/ D e
�jd j
� ; (6)

and the Gauss function

'G� .d/ D e
�d

2

�2 : (7)

Other expressions of the regularized delta function are eligible as well [34, 37].

3. ACCURACY AND MOMENT CONDITIONS

According to [3], we consider a one-dimensional domain where a regular grid of evaluation points
xj D j h, with j 2 Z;Z being the set of the integer numbers. The integral of the smooth function
f multiplied by the delta function ı is approximated asZ 1

�1

ı.x � x�/ f .x/ dx � h
X
j2Z

f .xj /ı�.xj � x
�/; (8)

where ı� is a regularized delta function. As f .x/ is differentiable by hypothesis, f .xj / can be
developed in a Taylor series about the point x� as follows

f .xj / D f .x
�/C

1X
rD1

1

rŠ
f r.x�/.xj � x

�/r ; (9)

where f r represents the r-order derivative of f . Hence, the error corresponding to the approxima-
tion (8) can be expressed as

E D
Z 1
�1

f .x/ı.x � x�/ dx � h
X
j2Z

f .xj /ı�.xj � x
�/ D

D f .x�/ � h f .x�/
X
j2Z

ı�.xj � x
�/ �

1X
rD1

1

rŠ
f r.x�/ h

X
j2Z

.xj � x
�/rı�.xj � x

�/:

(10)

The first and second terms in (10) cancel out if the mass or normalization condition

h
X
j2Z

ı�.xj � x
�/ D 1 (11)

is satisfied. If the mass condition (11) holds, then the interpolation error E (10) will be of the order
O.h/ for vanishing h. For the regularized delta function which vanishes for jxj > Mx , whereMx is
a certain decaying distance, the third term in (10) is O.hr/ for vanishing h [3].

We can thus summarize the above results by stating that if the moment conditions

h
X
j2Z

.xj � x
�/rı�.xj � x

�/ D

8<
:
1 for r D 0

0 for r D 1; 2; : : : ; q � 1
(12)
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are fulfilled, then the error (10) is

E D
Z 1
�1

f .x/ı.x � x�/ dx � h
X
j2Z

f .xj / ı�.xj � x
�/ D O.hq/; (13)

for vanishing h.

4. ACCURACY AND FOURIER TRANSFORMS

The relationship between the evaluation of the accuracy of the integration of a singular function
and the use of the Fourier transform is investigated. In Section 4.1, we recall some basic properties
of the Fourier transform, which will be useful for the subsequent developments. Following [38]
and [21], in Section 4.2, the moment conditions formulated in Section 3 are rewritten in terms
of the Fourier transform of the regularized delta function. In this way, the relationship between
the width of the regularized delta function support and the expected accuracy becomes evident.
Moreover, the computation of the moment conditions, which is not always feasible, is not required.
As shown in Section 4.3 and Section 4.4, the choice of the regularizing delta function follows by
simply looking at the support width and the type of decaying behavior of the corresponding Fourier
transform. The truncation error associated with the use of regularized delta functions with non-
compact support is investigated in Section 4.5 [38] proved that the moment conditions (12) hold
also in the multidimensional case if the level set definition (2) of the regularized delta function
is assumed.

4.1. Some classical results on the Fourier transforms

To discuss the accuracy of the quadrature procedure in the multidimensional case, we exploit the
results recently obtained by [21] based on the Fourier transforms properties. We introduce the
Fourier transform Of of a generic function f as

Of .�/ D

Z 1
�1

e�2� i � x f .x/ dx: (14)

A synoptic table of the Fourier transforms of some relevant regularized delta functions, without the
normalization length, is reported in Table I. T1

We need to be precise with the similarity rule governing the Fourier transforms of regularized
delta functions whose argument is not t but t=�.

Q1

The similarity rule of the Fourier transform states
that if Of .�/ is the Fourier transform of f .t/, then the Fourier transform of f .a t/

f .ax/! Of
ˇ̌̌
ax
D
1

a
Of
��
a

�
; (15)

where a > 0 is a constant. In Equation (15), the symbol ! indicates the operator mapping a
function into its Fourier transform. By the similarity rule (15), setting a D 1=�, we obtain the
Fourier transforms of the regularized delta functions which depend on the argument t=�.

f

�
x

�

�
! Of

ˇ̌̌
ˇ
x=�

D � Of .� �/: (16)

Table I. Elementary Fourier transforms.

f Of

max.0; 1 � jt j/ .sin.��/=.��//2

max.0; 1 � t2/ .4 sin � � 4� cos �/=
�p

.2�/�3
�

e�ajt j 2a=.a2 C 4�2�2/

e��t
2

e���
2
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6 E. BENVENUTI ET AL.

Furthermore, for a rapidly decreasing function ', the Poisson summation formula states thatX
x2Z

'.x/ D
X
�2Z

O'.�/: (17)

By the similarity rule (15), for the regularized delta functions considered here, Equation (17)
becomes

X
x2Z

'�

�
x

�

�
D �

X
�2Z

O'.� �/: (18)

Noteworthy, according to the similarity rule, making a function wider or narrower makes its Fourier
transform narrower and taller or wider and shorter, respectively, always conserving the area under
the transform. The Fourier transforms of the most relevant �-dependent regularized delta functions
are shown in Table II.T2

4.2. Moment conditions and Fourier transforms

According to [38], the discrete moment order of the one-dimensional delta function approximation
determines the order of approximation related to the replacement of the singular delta function
with the regularized delta function. We next establish the moment conditions for a wide range of
positions of the singularity over a regular grid.

Multidimensional Moment conditions: Assume a regular grid in one dimension with grid points
xj D j h; j 2 Z; x� D xnCp h with 0 < p < 1 and n 2 Z. Consider a ı� general approximation
of the type ı� D `�1� '�.t=�/, where � D M h and the normalization length is `rho D L�, with
M; L > 0. If O'�.�/ has compact support on Œ�ˇ; ˇ�, and

@r O'�.�/

@�r

ˇ̌̌
ˇ
�D0

D

²
L; for r D 0;
0; for 1 6 r < q; (19)

then for all M > ˇ the ı� approximation satisfies q discrete moment conditions.
The result (19) is more general than that stated in [21], because it holds also for general

normalization lengths, whereas in [21] only the case of normalization length equal to � is considered.
A proof of Equations (19) follows. The multidimensional version of the moment conditions for a

level set dependent regularized delta function can be expressed as

Mr.ı�; x
�; h/ D h

X
j2Z

1

L�
'�

�
xj � x

�

�

�
.xj � x

�/r ; (20)

where `� D L� with L > 0. Let us set

fr�.x/ D
1

`�
'�

�
x

�

�
xr D

1

L�
'�

�
x

�

�
xr : (21)

Table II. Elementary Fourier transforms after application of the
similarity rule, Of�.t=�/ D � Of�.t�/.

f� Of�

max.0; 1 � jt j=�/ �.sin.���/=.���//2

max.0; 1 � .t=�/2/ �.4 sin.��/ � 4�� cos.��//=
�p

.2�/.��/3
�

e�jt j=� 2�=.1C 4�2�2�2/

e��.t=�/
2

�e��.� �/
2
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The Fourier transform of Equation (21) is such that

fr�.x/ D
1

L�
'�

�
x

�

�
xr ! Ofr�

ˇ̌̌
ˇ
x

D
�

L�

1

.�2� i/r
@r

@�r
O'�.��/: (22)

where Ofr�
ˇ̌̌
x

indicates the Fourier transform of f as a function of x, to be kept distinguished from

Ofr�

ˇ̌̌
x�x�

, the Fourier transform of fr�.x � x�/, being

fr�.x � x
�/ D

1

L�
'�

�
x

�

�
xr ! Ofr�

ˇ̌̌
ˇ
x�x�

D e�2� i � x
� �

L�

1

.�2� i/r
@r

@�r
O'�.��/: (23)

By the Poisson summation formula (17), the relationship

X
j2Z

h'�.h j / D
X
�2Z

O'�

��
h

�
(24)

holds. After setting x� D p h, the moment conditions write

Mr.ı�; p h; h/ D
X
�2Z

e�2� i � p
1

L

1

.�2� i/r
@r

@�r
O'�

���
h

�
: (25)

By exploiting Equations (24) and (23), Equation (20) has the following expression

Mr.ı�; p h; h/ D
X
�2Z

e�2� i � p
1

L

1

.�2� i/r
@r

@�r
O'�.M�/; (26)

where � D M h was set. Finally, the multidimensional version of the discrete form(26) of the
moment conditions for a level set dependent regularized delta function can be formulated as

Mr.ı�; p h; h/ D
1

.�2� i/r
1

L

2
4 @r O'�.M �/

@�r

ˇ̌̌
ˇ
�D0

C
X

�2Z ;�¤0

e�2� i � p
@r O'�.M �/

@�r

3
5 : (27)

From Equation (27), it can be drawn that the second term at the right hand side of Equation (27)
vanishes when

O'� has compact support on .�ˇ; ˇ/ for any M > ˇ;
O'� is a periodic function for certain particular M ;
O'� does not have a compact support, but it decays fast beyond˙ˇ: once fixed a certain tolerance,
it can be truncated outside the interval Œ�ˇ; ˇ�.

In particular, if O'� has compact support on .�ˇ; ˇ/ and the conditions (19) on the derivatives are
satisfied for all M > ˇ, the regularized delta function ı� D `�1 '� exactly satisfies q discrete
moment conditions (27).

When the Fourier transform is non-compact and satisfies conditions (19) up to order q, then q
discrete moment conditions (27) are satisfied in an approximate way with an error which decreases
for increasing width of the truncated support Œ�ˇ; ˇ�.

As proven in [17, 38], compact support functions such as the hat function or the cosine function
fail to satisfy the mass condition (11) for any non integer M . In the two-dimensional and the three-
dimensional case, this limitation becomes more evident. This is because of the number of quadrature
points within the support is not constant, but it changes depending on the discretization and the
geometry of the interface with respect to the mesh.
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4.3. Practical examples of Fourier transforms

Interestingly, the Fourier transform of a compact support regularized delta function such as the linear
hat function (4)

O'H� .�/ D
sin2.� �/

�2 �2
(28)

has an oscillatory character, as shown in Figures 1a and 1b for �=W D 2=10 and �=W D 5=10,F1
respectively. Hence, it does not possess a compact support and cannot be truncated. The mass
condition for this case is

M0

�
ıH� ; x

�; h
�
D 1C

X
�2Z;�¤0

e�2� i � p
sin2.� M �/

�2M 2 �2
; (29)

where L D 1. The second term in the mass condition (29) vanishes for any dilation x� when
sin.�M�/ D 0 for all � 2 Z; � ¤ 0, hence for integers M > 1. Thus, no ˇ exists such that for
any M > ˇ the mass condition is satisfied. Furthermore, the second term in the mass condition
(29) is smaller than 10�7 for any position x� of the discontinuity when M > ˇ D 20. This means
that assuming the truncated semi-support width w� > 20� leads to errors that are at least equal to
10�7. Analogously, the Fourier transform of the bell function displayed in Figures 2a and 2b, for F2
�=W D 2=10 and �=W D 5=10, respectively, has a non-compact support.

Figure 1. Fourier transform O'H� of 'H� D max¹0; .1 � jt=�j/º for �=W D 2=10 (a) and �=W D 5=10 (b),
W being the width of the 2D domain considered.
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Figure 2. Fourier transform O'B� of 'B� D .max.0; .1� jt=�j2/// for �=L D 2=10 (a) and �=W D 5=10 (b),
W being the width of the 2D domain considered.

Let us consider the Fourier transform of non-compact support regularized delta functions. For
instance, the Gauss function (7) is identical to its Fourier transform

O'G D e���
2

; (30)

which is displayed in Figures 3a and 3b for �=W D 0:2 and �=W D 0:5, respectively, over a square F3
domain of length W D 10 mm. Because

R C1
�1 e��t

2=�2 dt D �, and, thus, `� D � and L D 1, we
can state that

O'G� .0/ D L D 1
@ O'G

@�

ˇ̌̌
ˇ
�D0

D 0;
@2 O'G

@�2

ˇ̌̌
ˇ
�D0

¤ 0: (31)

Figure 3. Fourier transform O'G� of 'G� D �
p
.�/e��

2�2s2 for �=W D 2=10 (a) and �=W D 5=10 (b), W
being the width of the 2D domain considered.
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Let us consider another non-compact support regularized delta function, namely the Laplacian
regularized delta function (6). In this case, `� D 2�, and thus, L D 2. The Fourier transform is

O'L� D
2�

1C 4�2�2�2
(32)

and it is shown in Figures 4a and 4b for �=W D 0:2 and �=W D 0:5, respectively, over a squareF4
domain of length W D 10 mm. We can recognize that

O'L� .0/ D 2 D L
@ O'L�

@�

ˇ̌̌
ˇ̌
�D0

D 0;
@2 O'L�

@�2

ˇ̌̌
ˇ̌
�D0

¤ 0: (33)

The mass condition for this case can be written as

M0

�
ıL� ; p h; h

�
D 1C

1

L

X
�2Z;�¤0

e�2� i � p
2 �

1C 4�2�2M 2 �2
: (34)

Note that the support of O'L� is not compact but that it has a monotonic decreasing behavior for
increasing �. Hence, the support width can be truncated. The second term in the mass condition
(29) is smaller than 0.0001 for any dilation x� when M > ˇ D 20. This means that assuming the
semi-support width w� > 20� leads to errors that are at least of the order 10�4. Finally, O'L� and O'G�
satisfy the moment conditions up to order 2.

A collection of the most relevant Fourier transforms is reported in Table II.

4.4. The dependence of the Fourier transform on �

In the numerical analysis, the Laplacian function (6) is exploited. In Figure 5, it is shown that theF5
support of the Fourier transform of the Laplacian function (6) increases for decreasing values of the
regularization length �. Since the narrower the support width of the Fourier transform the lower the
error, we expect that the error decreases for increasing values of �.

Figure 4. Fourier transform O'L� of 'L� D 2�=.1C 4�2�2 �2/ for �=W D 2=10 (a) and �=W D 5=10 (b),
W being the width of the 2D domain considered.
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Figure 5. Fourier transform O'L� in the semi-logarithmic scale for variable �.

The comparison of Figure 3 with Figure 4 suggests that the truncated support width of the trans-
form of the Gauss function is narrower than the truncated support width of the Fourier transform
of the Laplacian function (6). This makes the Gauss function more advantageous to be used to reg-
ularize the singular delta function. However, the use of the Gauss function has the disadvantage
that its antiderivative cannot be expressed as an elementary function. Thus, we cannot find com-
patible displacement and strain fields. On the contrary, although the Laplacian function (6) has
non-compact support, its antiderivative is an elementary function. Thus, a displacement field can be
constructed by means of its antiderivative, and a fully compatible displacement-strain relationship
can be established.

4.5. Truncation error

The support of the Fourier transform can be truncated at a certain truncation length w� from the
regularized discontinuity. The truncation length depends on the error which we expect. For instance,
Figure 5 shows that, at j�j D 20, the order of the truncation error will be around 10�4 with � D 0:5
mm. If we want to decrease w�, the price to pay is a larger truncation error. We next discuss this
issue.

As regularized delta functions have the disadvantage that non vanishing errors for decreasing
mesh size occur [21], we consider regularized delta functions with non-compact support, whose
Fourier transform satisfies differentiability conditions. Then the support is truncated at a distance
w� such that '�.w�/ < C where C is a certain tolerance. Truncation will introduce a further source
of approximation which influences the analytical error. Let the truncation error be evaluated. Denote
the truncated regularized delta function ıw�� as

ı
w�
� .t/ D

8<
:
ı�.t/ for t 2 Œ�w�; w��;

0 otherwise;
(35)

where w� represents half the width of the truncated support of the regularized delta function.
According to [17], the analytical error Ew� associated with truncation can be neglected, provided
that the mass condition and the first moment conditions holdZ w�

�w�

ı
w�
� .t/ dt D 1; (36a)
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Z w�

�w�

ı
w�
� .t/ t dt D 0: (36b)

The first order moment condition (36b) is automatically satisfied because ı� is an even function
[39]. The error in the mass condition (36a) is the truncation error that depends on � and w�. For
instance, the assumption of the Laplacian regularized delta function (6) leads to an error in the mass
condition equal to 2 � e�

w�
� that decreases for increasing w�.

In the following we will use ı� to indicate the truncated regularized delta function.

5. REGULARIZED SINGULARITIES IN THE XFEM FRAMEWORK

In this section, we define the kinematics (Section 5.1) and the variational formulation (Section 5.2)
of the regularized XFEM framework adopted. The limit case for vanishing regularization length is
discussed in Section 5.3.

5.1. Kinematics

The displacement field is approximated by enriching the space of the shape functions with additional
enrichment functions added by the partition of unity method, that is, adding a term given by the
product of the Heaviside function by the standard shape functions. Consider a body V with boundary
@V . Let u be the displacement field. Displacements are imposed on the boundary @Vu, while trac-
tions f on the portion @Vf , where @Vu and @Vf are disjoint. A displacement jump Œu�S D uC � u�

is considered across the surface S , with S \ Vu D ; and S \ Vf D ;. Let d.x/ be the signed
distance function of x from the surface S . We Heaviside function H.d.x// such that H.d.x// D 1

for d.x/ > 0 and H.d.x// D �1 for d.x/ 6 0.Q2 Volume V is subdivided into Ne finite elements
connected at N nodes. The partition of unity approximation of the displacement field is

u.x/ D
X
I2N

NI .x/vI C
X
j2S

H.d.x//NJ .x/aI : (37)

In (37), uI and aI denote the I -th nodal degrees of freedom corresponding to the standard part of
the displacement field u and to the displacement jump, respectively.

For the subsequent developments, it is useful to express Equation (37) in the vector form

u.x/ D N.x/vCH.x/N.x/a; (38)

where vectors v and a collect the nodal degrees of freedom and H.d.x//. The strain field is computed
via compatibility from (37) as

".x/ D B.x/VCH.d.x//B.x/AC ı.x/ NN.x/A; (39)

where B is the compatibility matrix, NN is such that

NA˝ n � NNA; (40)

and ı.x/ is defined through the generalized gradientrH.x/ D ı.x/n.x/. Following the methodology
proposed in [25, 29], regularization is carried out. The Heaviside function H is replaced with a
regularized Heaviside function H�

H�.x/ D
Z d.x/

�1

ı�.t/ dt; lim
�!0

H�.x/ D H.x/; (41)
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Figure 6. A qualitative sketch of regularized Heaviside (a) and Dirac delta function (b).

and ı� is defined by Equation (3). A qualitative picture of H� and ı� is proposed in Figure 6. F6
The regularized displacement writes

u�.x/ D N.x/VCH�.x/N.x/A; (42)

whereas the strain field is

"�.x/ D B.x/VCH�.x/B.x/AC ı�.x/ NN.x/A: (43)

The regularized strain (43) converges in a weak sense [36] to the singular strain (39).

5.2. Variational formulation

Let the material occupying volume V be elastic characterized by the constitutive matrix E. The
mechanical response of the regularized interface is governed by the constitutive matrix K NE, where
K > 0 is a scalar constitutive parameter that can be varied to reproduce soft and stiff interfaces,
and NE D E=t is the constitutive matrix of the bulk divided by the dimension t to get dimensionally
consistent constitutive relationships. For instance, a soft interface is obtained withK < 1 and a stiff
interface with K > 1. The dimensional consistency and the motivations for assuming NE in this way
were thoroughly discussed in [25]. In particular, it was proven [25, 28] that a variational formulation
based on the quadratic form of the regularized strain (43) leads to wrong results. A consistent vari-
ational formulations can be constructed treating the strain ı�.x/ NN.x/A as an equivalent eigenstrain
[28]. In the following, the spatial dependence is omitted.

Let us set

rUH� D BVCH�BA: (44)

We introduce the energy

J D 1

2
a
�
rUH� ;rUH�

�
C
1

2
Kb.A;A/ � l.V/; (45)

where

a
�
rUH� ;rUH�

�
D

Z
V

rUH� � ErUH� dV; (46a)

b.A;A/ D
Z
V

ı� NNA � NE NNA dV; (46b)

l.V/ D
Z
@Vf

f � NV dV: (46c)
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As extensively shown in [27, 28], the constitutive laws associated with the above variational

formulation are

� D E
�
B.x/VCH�.x/B.x/A

�
(47)

in V , with the constraint that

� D K NE NN.x/A (48)

in the portion V� where the regularization is active, NN being defined in Equation (40).
The total energy (45) can be written in a more compact form as

J D 1

2
U �KH�U dV C

1

2
KA �Kı�A � l.V/; (49)

where the stiffness matrix

KH� D

�
Kvv

H� Kva
H�

Kav
H� Kaa

H�

�
(50)

collects the submatrices

Kvv
H� D

Z
V

BtEB dV; Kav
H� D

Z
V

H�BtEB dV D Kvat

H� ; Kaa
H� D

Z
V

H2
�BtEB dV; (51a)

while

Kı� D

Z
V

ı� NNt NE NN dV: (52)

Following [27], the solving equations are obtained solving problem infV;A J as the stationarity
conditions of function J .

The accuracy analysis based on the Fourier transform and presented in Section 4.2 is used
to evaluate the influence of the matrix (52) containing the regularized delta function on the
computed results.

5.3. The limit case

Let us consider the case where the penalty-like term b.A;A/ vanishes according to the following
laws

b.A;A/ D 0!

8<
:

A D 0 and K !1;

or A ¤ 0 and K ! 0:
(53)

In this special case,

lim
�!0

KH� D K; (54)

where

K D
�

Kvv Kva

Kav Kaa

�
(55)
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is the standard stiffness matrix of the XFEM formulation [15], having set

Kvv D BtEB; Kav D HBtEB D Kvat ; Kaa D H2BtEB: (56a)

In the subsequent Section 6, the limit case based on the adoption of parameters leading to the fulfill-
ment of Equation (53) is also investigated. The aim is to evaluate the accuracy of the regularization
procedure when stress singularities at the regularized interface vanish. The accuracy of the quadra-
ture procedure will then be related to the discrepancy between the computed stress values and those
predicted by the analytical solution.

6. NUMERICAL RESULTS

As a benchmark problem, the slender three-dimensional solid shown in Figure 7 has been consid- F7
ered. The solid has length 2 mm and square cross section with area A D 0:4 � 0:4 mm2. The solid
is clamped at one end and subjected to a traction of intensity �xx D 1 MPa prescribed at the free
end. The material is characterized by a Young modulus E D 10; 000 MPa and vanishing Poisson
ratio. An inclined joint at the center of the bar is placed. Meshes of hexahedra are considered con-
sisting of at least 5 � 5 elements in the cross section. The meshes have been refined at the center.
Some meshes are displayed in Figure 8. In particular, the mesh a) has the minimum size h D 0:0276 F8
mm along the longitudinal axis and the mesh (b) has the minimum size h D 0:0067 mm. These
mesh sizes correspond to 1:3% and 0:3% of the longitudinal length, respectively. The elements con-
taining Gauss points where the regularized Heaviside function is larger than a certain tolerance are
enriched. The tolerance is related to the width of the support of the regularization. The influence
of this width on the accuracy of the results is discussed in the simulations shown below. When the
standard Gaussian quadrature is used, enriched hexahedra with a quadrature grid of 83 Gauss points
were adopted. Non-enriched hexahedra contain 23 Gauss points.

Figure 7. Geometry of the benchmark test; the solid is subjected to prescribed stress N�xx D 1 MPa.
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Figure 8. Typical meshes made of hexahedra adopted in the computation; the mesh a) has the minimum size
h D 0:0276 mm along the longitudinal axis, the mesh b) has the minimum size h D 0:0067 mm along the

longitudinal length = 2 mm.
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The accuracy obtained via Gaussian quadrature is compared with that obtained by means of CUB-
PACK adaptive quadrature FORTRAN tool. Mesh adaptive schemes [8] were excluded, to exploit
the quadrature procedures already implemented in most commercial codes. We also consider meshes
that are not aligned with the interface position, in line with the spirit of the XFEM [10, 37].

As an example of regularized delta function with non-compact and compact support, the
Laplacian function (6) and the bell function (5) with n D 2, respectively, were adopted [34].

In Section 6.1, the issue of the stress singularities, which can arise in a tensile butt joint, is inves-
tigated. The accuracy in those cases where the stress singularity vanishes is studied in Section 6.2.
The section ends with a critical discussion of the results in Section 6.3.

6.1. Stress singularities

For a free edge bi-material joint such as that shown in Figure 9, a displacement singularity ofF9
strength H r� and a stress singularity of strength H r��1 may appear at the interface corner. In ref-
erence [40], the stress at the singularity was obtained as � D N�w1��a.˛1; ˛2/, where a is a function
of the Dundurs parameters ˛1 and ˛2; N� is the remote stress, and w is the width of the bi-material
strip.

Rao [41] determined the stress concentration in composites structures and bonded joints. For
instance, let the interface be slanted by an inclination angle ˛ (Figure 10a). When interfaces bondF10
a soft material with a stiff material, like in the case in Figure 10a, Rao showed that for inclination
angles 0 < ˛ < 118:7, singular stress fields can arise at the interface. A similar but different case,
shown in Figure 10b, is a soft joint with Young modulusE3 and thickness h3 between two materials
with Young modulus E1 and E2 and thickness h1 and h2, respectively, where E1 h1 > E3 h3 and
E2 h2 > E3 h3. The analytical solution predicts possible stress singularities at points A and C for
0o < ˛ < 61:3o.

We next study two cases corresponding to vertical interface with ˛ D �=2 and inclined interface
with ˛ D �=3. Whereas, in the former case, stress singularities are not expected, in the latter case
they can occur according to [41].

With reference to the benchmark problem of Figure 7, we have first investigated the way the
present model takes into account stress singularities. We next show that stress singularities are
smoothed owing to the fact that the strain and stress fields are regularized. For instance, Figure 11F11
shows the decreasing trend of the stress singularity for increasing � when the typical mesh size is
h D 0:0067 mm and K D 0:0001. In particular, the stress component �xx normalized with respect
to the value N� D 1 MPa corresponding to no singularities is plotted against the � values. The con-
tour map of the maximum stress values displayed in Figure 12 shows that the stress singularitiesF12

Figure 9. Adhesive butt joint under tension . A stress singularity is expected at point P [41, 42].
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Figure 10. a) Interface between a soft material with E1 and h1, and a stiff material with E2 and h2: Sin-
gularities are possible for 0ı < ˛ < 118:7ı b) Adhesive soft joint between stiff materials; singularities are

possible at A and C when E1h1; E2h2 > E3h3 when 0o < ˛ < 61:3o according to [41].

Figure 11. Slanted discontinuity with ˛ D �=3: �xx= N� for increasing �, where N� D 1 MPa.
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Print Figure 12. Slanted discontinuity with ˛ D �=3: Contours of the maximum stress values �xx for the mesh

with h D 0:0067 mm, K D 0:0001, setting � D 0:0001 mm, and using the Laplacian regularized delta
function and Gaussian quadrature.

are located where indicated by the theoretical results [41]. The results shown in Figures 11–12 were
obtained by means of a Gaussian quadrature procedure by considering a regularization semi-support
width equal to 30�. As motivated in Section 6.2 and discussed in Section 6.3, this width makes the
truncation error negligible. Figure 13 shows the enriched elements in green at the center of the bar. F13
Moreover, the stress peak value converges when the mesh size h is refined. In particular, Figure 14 F14
shows the contour plot of the stress component �xx obtained with h D 0:0033 mm and setting
� D 0:0001 mm, which corresponds to a ratio �=h D 0:03.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
DOI: 10.1002/nme

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54



UN
CO

RR
EC

TE
D

PR
O

O
F

18 E. BENVENUTI ET AL.
C

ol
or

O
nl

in
e,

B
&

W
in

Pr
in

t

Figure 13. Slanted discontinuity with ˛ D �=3: adopted enriched elements for the mesh having h D 0:0067
mm, settingK D 0:0001, � D 0:0001mm; the Laplacian regularized delta function and Gaussian quadrature

were employed.
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Figure 14. Slanted discontinuity with ˛ D �=3: Stress profile for the finest mesh having h D 0:0033
mm, setting K D 0:0001, � D 0:0001 mm; the Laplacian weight function and Gaussian quadrature were

employed.

Furthermore, Figure 11 shows that for � > 0:021 mm the stress singularities are smoothed, and
the stress field converges to the solution �xx D N�xx everywhere. Although the regularized XFEM
is perfectly able to reproduce stress concentrations by using very small values of �, in Section 6.2,
the value � D 0:021 mm is adopted when a soft joint is modeled so that the stress singularity is
ruled out.

6.2. Accuracy evaluation

To evaluate the accuracy of a quadrature procedure based on standard Gaussian quadrature, a com-
parison with the analytical solution is required. Because the tensile butt joint problem was shown
to be characterized by the occurrence of stress singularities [41–43], we separate the effect of the
choice of the quadrature procedure from the effect of the stress singularity, and we discuss here
those cases where the singularity is ruled out. This is obtained considering either a stiff joint with
very large stiffness, in particularK D 10; 000, or a value of the regularization parameter � D 0:021
mm, owing to the conclusions drawn in Section 6.1. Note that the proposed approach is general, as
it can be employed for both narrow and large regularization length with respect to the mesh size.

We study the convergence properties of regularized delta functions with non-compact and com-
pact support in two ways: by mesh refinement for fixed support width and by varying the support
width for a fixed mesh.

The norm

E1 D sup
°ˇ̌̌
�hxx � N�xx

ˇ̌̌±
(57)

has been used for evaluating the accuracy of the results in the cases where the stress singularity
vanishes, so that the analytical solution predicts that the xx components of the computed stress,
�hxx should converge to the prescribed value N�xx everywhere in the domain. Moreover, we have also
used the error related to the computed displacement of the free end uh.L/

Eu D
ˇ̌̌
uh.L/ � Nu

ˇ̌̌
(58)
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where Nu is the analytical value. First the case of the vertical discontinuity is considered. In
Figure 15a, the convergence in the case of the Laplacian function (6) is shown for decreasing mesh F15
size h. The error is indicated in the logarithmic scale. The “˘” continuous line indicates the error E1
(57) using the Gaussian procedure, whereas the “�” continuous line interpolates the error obtained
by the Adaptive procedure. The same markers with the dashed line indicate the homologous errors
obtained by adopting the displacement norm Eu (58). The parameterK has been set equal to 10,000,
whereas the regularization parameter � D 0:021 mm and truncated semi-support w� D 10� have
been taken. The error evaluated according to E1 (57) is usually larger than that evaluated according
to the norm (58). Hence, in the results shown hereafter, the error E1 is adopted. In Figure 15b, the

Figure 15. We display the case of vertical discontinuity with ˛ D �=2;K D 0:0001; � D 0:021 mm,
truncation lengthw� D 10�, non-compact support Laplacian function (a), and compact support bell function
(b). The “˘�” and “˘��” lines correspond to the error E1 (57) computed with the Gaussian quadrature and
the adaptive quadrature, respectively; the “��” and “���” lines correspond to the error Eu (58) obtained

with the Gaussian and the adaptive quadrature procedure, respectively.
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accuracy obtained by using the bell function is shown. Convergence is assessed with respect to the
error E1 (57) for K D 0:0001, and semi-support width w� D 10 � D 0:21 mm corresponding to
the 10% of the length of the structural member. The � and ˘ markers denote the Gaussian and the
adaptive quadrature, respectively.

The slanted discontinuity case with ˛ D �=3 has been taken into consideration. In order to estab-
lish a comparison with the results shown for the vertical discontinuity case, the same parameters
K D 0:0001, and � D 0:021 mm have been chosen. In Figure 16a and 16b, the convergence of theF16
error E1 (57) for increasing h is shown for the Laplacian regularized delta function, and the bell
function, respectively. The� and ˘markers denote Gaussian and adaptive quadrature, respectively.
It can be noted that the trend of E1 (57) is oscillating when the bell function is used. As a general

Figure 16. Slanted discontinuity with ˛ D �=3, and non-compact support (Laplacian) function (a), compact
support (bell) function (b): Convergence of the error E1 (57) for K D 0:0001; � D 0:021 mm. � and ˘

markers indicate Gaussian and adaptive quadrature, respectively.
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trend, it was indeed observed that the error can vary in a wide range independently of the mesh size.
This implies that the adaptive quadrature procedure loses convergence even for very fine meshes.
Therefore, it can be drawn that the use of the bell function is not reliable when the discontinuity
is slanted.

It is worth noting that the proposed regularized approach is fully effective also for values of the
regularization parameter that are very small with respect to the mesh size. Figure 17 shows indeed F17
the convergence of the error E1 (57) for � D 0:0002 mm, which is 0:02% of the length of the
structural member, and corresponds to �=h D 0:06 when the finest mesh with h D 0:0033 mm is
chosen. The semi-support width w� D 10� D 0:002 mm, corresponding to 0:2% of the length of
the structural member.

Figures 18 display the accuracy of the approximation for increasing width of the support of F18
the Laplacian function (6). The parameter K was set equal to 0.0001 in Figure 18a and equal to
10,000 in Figure 18b. The “˘” markers denote the results obtained by adopting a truncated sup-
port of 20�. The “�” and “�” markers are associated with the errors obtained by truncating the
support at a length equal to 40� and 60�, respectively. In Figure 18b, the perfect interface is repro-
duced and the jump discontinuity vanishes. Hence, the accuracy is independent of the width of the
truncated support.

The influence of the truncation error on the error E1 (58) obtained with Gaussian quadrature in
the case of slanted discontinuity with ˛ D �=3 is highlighted further in Figures 19. The figures
refer to the mesh with minimum mesh size h D 0:0067mm. In particular, in Figure 19a, the contour
plot of the error on the stress component � xx is shown for the case of � D 0:021 mm and a semi-
support width equal to 10� D 0:21mm, whereas K D 0:0001. This set of parameters refer to the
case of a soft joint. In Figures 19b and 19c, the semi-support widths equal to 20� D 0:42 mm
and 30� D 0:63 mm, respectively, were adopted. Figure 19d shows the error E1 (57) obtained in
the perfect (stiff) interface case by assuming K D 10; 000. It has been obtained for fixed value of
� D 0:021 mm and semi-support width equal to 20�. For the stiff interface case, the contour plot of
the error corresponding to the semi-support width 30� is similar to that shown in Figure 19d.

Figure 17. Slanted discontinuity with ˛ D �=3 and non-compact support (Laplacian) function: Convergence
of the error E1 (57) for K D 10; 000; � D 0:0002 mm. � and ˘ markers indicate Gaussian and adaptive

quadrature, respectively.
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Figure 18. Slanted discontinuity with ˛ D �=3 and non-compact support (Laplacian): Convergence of the
error E1 (57) for increasing width of the support with K D 0:0001 (a) and K D 10; 000 (b). The markers

“˘,” “�,” and “�” indicate truncation length w� D 10�;w� D 20�, and w� D 30�, respectively.

6.3. Discussion of the results

In Section 4.2, it has been shown that the error implied by the replacement of the singular delta
function with the regularized delta function within the stiffness matrix is related to the values that
the Fourier transform of the regularized delta function reaches at increasing distances from the
discontinuity. If the Fourier transform of a regularized delta function has an oscillatory character,
this oscillatory character makes the truncation not possible. Conversely, if the Fourier transform has
a compact support or a support that can be truncated, then the moment conditions can be satisfied for
certain values of �. In particular, the Laplacian regularized delta function has a Fourier Transform
of the latter type, whereas the bell function has a Fourier transform of the former type.
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Figure 19. Slanted discontinuity with ˛ D �=3: The figures display the error E1 (57) in % on the stress
component �xx obtained with the Gaussian quadrature procedure, being the exact value for vanishing sin-
gularity �xx D 1 MPa. The minimum mesh size is h D 0:0067 mm, and � D 0:021 mm. In a), b), and
c) K D 0:0001, and the truncation length w� is 10�; 20� and 30�, respectively. In d), K D 10; 000, and

w� D 20�.

The simulations in Section 6 have confirmed that the errors do not decrease for decreasing mesh
size when the bell-type regularized delta function is used: The errors oscillate and there is no war-
ranty that the procedure converges. The adaptive quadrature algorithm loses convergence for certain
meshes. Therefore, a procedure based on the adoption of the bell function is not robust and effective.
Conversely, when the Laplacian function is used, the convergence has been shown to be slower but
effective, and the simple integration procedure based on Gaussian quadrature is sufficient to acquire
consistent and reliable results. As expected according to the similarity rule of the Fourier transforms,
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the convergence rate increases when the truncated support width increases, being acceptable for a
truncated semi-support width in the range 20�–30�.

Moreover, from Figure 19, it can be drawn that the truncation error vanishes when the truncated
support width increases. When the Gaussian quadrature procedure is applied, the error decreases for
increasing mesh size, whereas when adaptive quadrature is exploited, the error is smaller even for
coarse meshes.

7. CONCLUSIONS

Regularized delta functions with compact support are easy to be implemented. However, quadrature
procedures based on regularized delta functions with compact support are not robust and stable,
because Gaussian and adaptive quadrature fail to find a solution for any position of the regularized
displacement discontinuity.

In this paper, we have shown that the Fourier transform of the regularized delta function simplifies
the choice of the proper regularized delta function. Indeed, regularized delta functions with Fourier
transforms displaying narrow support lead to the lowest error. In particular, the error that affects
the computations exhibits an oscillating trend for decreasing mesh size in the case of regularized
delta functions with compact support and a stable and monotonically decreasing trend in the case
of regularized delta functions with non-compact support. As for regularized delta functions with
non-compact support, the truncation error of the Fourier transforms affects the total error. The order
of the truncation error depends on the support width of the Fourier transform and decreases for
increasing regularization length.

The examples shown in this paper prove that a regularization procedure based on the Laplacian
function is robust and effective and that Gaussian quadrature leads to an acceptable compromise
between simplicity and accuracy, provided that the mesh is sufficiently fine with respect to the
regularization support.
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