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Multiple Video Delivery in m-Health
Emergency Applications

Sergio Cicalò, Matteo Mazzotti, Simone Moretti, Velio Tralli, and Marco Chiani

Abstract—M-health services are expected to become increas-
ingly relevant in the management of emergency situations by
enabling real-time support of remote medical experts. In this
context, the transmission of multiple health-related video streams
from an ambulance to a remote hospital can improve the efficacy
of the tele-consultation service, but requires a large bandwidth
to meet the desired quality, not always guaranteed by the
mobile network. In order to deliver the multiple streams over a
single bandwidth-limited wireless access channel, in thispaper
we propose a novel optimization framework that enables to
classify the available video sources and to automatically select
and adapt the best streams to transmit. The camera ranking
algorithm jointly works with a cross-layer adaptation strategy
for multiple scalable streams to achieve different objectives
and/or tradeoffs in terms of number and target quality of the
transmitted videos. The final goal of the optimization is to
dynamically adjust the overall transmitted throughput to meet
the actual available bandwidth, while being able to provide
high quality to diagnostic video sequences and lower quality to
less critical ambient videos. Numerical simulations considering
a realistic emergency scenario with LTE-Advanced connectivity
show that the proposed content/context-aware solution is able to
automatically select the best sources of information from avisual
point of view and to achieve optimal end-to-end video quality for
both the diagnostic and the ambient videos.

I. I NTRODUCTION

Nowadays e-health is one of the most promising applica-
tions of emerging information and communication technolo-
gies [1]. In particular, tele-medicine services can highlybenefit
from the recent advances offered by mobile communication
systems [2], which are now potentially able to support a wide
range of ubiquitous health-care applications, such as tele-
diagnosis [3], real-time monitoring of vital parameters [4],
remote treatment of patients [5] and even tele-surgery.

In tele-medicine, the reliable transmission of heterogeneous
health-related information is being increasingly used forre-
mote patient monitoring and disease management. In this
regard, the usage of a visual sensor network (VSN) can be
employed for remote monitoring applications where video
information is useful for controlling and managing particular
events [6]. In emergency situation, the delivery of video
information to a remote hospital allows the hospital personnel
to support and manage the first-aid operations especially when
the number of operators on the field is limited. Moreover, the
specialists may be allowed to perform preliminary diagnostic
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analysis and to prepare the hospitalization adequately. The
presence of a 4G access network,e.g., Long Term Evolution
Advanced (LTE-A), can be exploited to establish a communi-
cation link with the emergency area, as done,e.g., in the recent
proposals for next-generation public safety networks [7],[8].

However, despite the recent enhancements in the 4G cellular
networks, one of the most critical issue concerning multiple
video transmission still consists in the large amount of data
that each camera collects from the monitored environment.
For this reason, in the context of redundant camera networks,
source selection and management play a fundamental role.
Each camera is characterized by a directional sensing model:
the collected information depends on the direction in which
the camera is oriented and the 3D viewing volume defined
by the camera field of view (FoV). In [9] a camera selection
algorithm is provided with the aim to reconstruct a view from
a user-specified view point. Other works address the specific
problem of camera placement. An example is reported in [10],
where a smart camera-network deployment is proposed to
reach a given coverage objective, while in [11] a multi-camera
management model is described, based on a collaborative
scene analysis aiming to evaluate the area occupancy. In this
work we assume that the camera network is already deployed
across the emergency area: some of the devices are stationary,
while others might be moving, e.g. as a part of the equipment
worn by the first-aid responders. In each moment a subset
of cameras has to be selected in order to perform continuous
monitoring with the required quality.

The selected videos (ambient and/or diagnostic) are col-
lected and aggregated to coordinate the transmissions to and
from the hospital [12]. The possibility to adapt the video
encoding to the current transmission conditions becomes par-
ticularly important in the context of emergency m-health appli-
cations, because mobile links are error-prone and are usually
characterized by limited and variable bandwidth [5][13]. For
these reasons, several works have considered optimized cross-
layer methods to improve the reliability and the quality of
m-health video applications [14]–[22].

In [14] a robust cross-layer method to deliver real-time
robotic ultrasonography video over 3G/WLAN network is
presented. The proposed strategy controls both video encoding
and physical layer parameters to minimize the total distortion
with a total rate constraint. Numerical results considering
a Wireless LAN link show that improvement in terms of
both objective medical video quality and subjective quality
is achieved by using the proposed system. In [15] an adaptive
rate control algorithm has been proposed for H.264/AVC video
streaming in bandwidth demanding m-health applications over
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Fig. 1. The proposed m-health architecture for emergency scenarios.

beyond-3G/4G networks. The approach is intended to satisfy
some pre-defined medical QoS requirements in terms of video
quality, frame-rate and end-to-end delay. The proposed scheme
tested in a HSDPA testbed has shown a better capability to
dynamically satisfy the medical QoS requirements with respect
to the standard H.264 rate control. In [17] this framework has
also been tested in HSUPA and mobile WiMAX networks.
Wireless transmission of H.264/AVC medical ultrasound video
over mobile WiMAX networks is also the focus of the paper
in [19]. Through extensive subjective evaluations resulting
from a realistic testbed, the Authors checked the ability of
4G networks to provide robust and clinically acceptable high-
resolution ultrasound video transmission.

The content/context-aware optimization of m-health video
streaming in emergency situation has been recently addressed
in [20], [21] and [22]. The Authors in [20] and [21] have pro-
posed a full cross-layer optimized architecture with integrated
building blocks for medical media content fusion, delivery
and access, even on the move in emergency contexts. The
novel system architecture has been successfully evaluatedby
both simulations and medical staff evaluations. The Authors
in [22] have proposed an m-health video communication
system for emergency telemedicine and response in disaster
incidents. Numerical results involving H.265/HEVC standard
and realistic modeling of a Wireless LAN network have shown
that a proper trade-off can be found in terms of encoding time,
bitrate, and video quality of the video to transmit.

All of the aforementioned works consider a single m-health
uplink video transmission and single-layer encoding schemes,
e.g., H.264/AVC or H.265/HEVC. The latter provide high
coding efficiency but lacks from flexibility in rate adapta-
tion. In this work we consider the scalable extension of the
H.264/AVC standard, known as scalable video coding (SVC)
[23], which conjugates good compression efficiency and wide
flexibility for the adaptation to the wireless channel conditions.

In fact, several solutions have been recently proposed for e-
health applications based on SVC,e.g., [24]. The content-
aware optimization of multiple SVC video transmission in the
downlink of cellular network has been extensively investigated
in the literature,e.g., in [25], [26], where generally a proxy is
in charge of optimizing the multiple video streams delivered to
a set of heterogeneous users according to different QoE/QoS
constraints. However, to the best of Authors’ knowledge, the
joint context- and content-aware optimization of the m-health
SVC multiple video streaming has not yet been considered.

In this paper we propose a novel optimization framework in
order to automatically select and adapt the best video streams
to transmit over a single bandwidth-limited wireless access
channel. We first introduce a camera ranking technique for the
VSN deployed in the emergency area. It permits to select one
or more cameras taking into account specific quality criteria
mainly related to the visual representation of the object ofin-
terest. Then, we describe a novel solution for the transmission
of the videos from the emergency area, based on the joint
selection, adaptation and aggregation of the streams directly
performed at the application layer of the processing equipment
inside the ambulance. The proposed context-aware approach
has been developed with the objectives (i) to maximize the
QoE for the final user, (ii) to efficiently manage distributed
hardware resources, and (iii) to optimize the usage of radio
resources for video transmissions.

In our solution the adaptation exploits the information on
the camera visual qualities and on the available rate assigned
by the LTE-A wireless access network in order to optimize the
quality and/or fairness according to two proposed strategies.
The first strategy aims at delivering the highest visual and
video qualities according to different priorities, derived from
the camera ranking outcomes, and some suitably defined
fairness constraints. The second strategy aims at maximizing
the aggregated weighted quality, where the weights are derived
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according to the visual ranking process. Both strategies are
based on the modeling and evaluation of objective video
quality metrics and are tested and compared in the considered
emergency scenarios.

It is shown that the proposed framework permits to achieve
the optimal end-to-end quality even in the presence of rate
limitations and fluctuations due to the wireless channel and
the intense traffic within the LTE-A cell. When the channel
conditions deteriorate, the adaptation strategy appropriately
discards the cameras which provide the lowest visual quality
based on the camera ranking results, thereby ensuring the real-
time transmission of the medical video stream at the required
diagnostic quality.

The framework proposed in this paper is built on the pre-
liminary contribution in [27], where we introduced the basic
ideas behind the camera ranking algorithm (CRA) and the
fairness-oriented adaptation strategy, but without considering
their joint design and optimization and the novel efficiency-
oriented adaptation strategy.

The paper is organized as follows. The overall system
architecture is described in Section II. In Section III we
present the camera ranking strategy, while Section IV and V
detail the SVC quality-to-rate model and the video adaptation
strategies, respectively. Finally, in Section VI, we provide
several numerical results concerning a simulated emergency
scenario where a camera network is deployed with monitoring
purposes.

II. SYSTEM ARCHITECTURE

The m-health scenario addressed in this paper is depicted
in Fig. 1. In the considered emergency area one or multi-
ple injured persons need immediate medical assistance. An
ambulance, equipped with multiple cameras and diagnostic
devices, is present on the scene of the accident. Multiple real-
time video streams are acquired both on-board and outside
the ambulance, which is responsible for locally processingthe
collected information and transmitting the most significant part
of them to the remote hospital. External videos are capturedby
a camera network deployed for monitoring purpose, including
stationary devices and, possibly, mobile cameras worn by the
medical staff. In this work, we assume that the cameras’
position and attitude,i.e., the angle between the optical axis
and the direction of the camera’s motion, are known in real-
time, e.g., by means of inertial units mounted on the devices
[28], GPS receivers or other real-time locating system (RTLS)
[29][30]. Modern equipment for emergency teams, in fact,
are nowadays more frequently capable to provide location
information about people and objects on the field, in order to
improve the efficiency and the safety of the operations [31].

Multimedia flows are collected by the ambulance, processed
in real-time and possibly multiplexed with other medical
information. Then, a joint stream adaptation is performed
on the ambulance taking into account the camera ranking
results, the radio channel and cell traffic conditions, as well
as the amount of resources assigned by the Long Term
Evolution (LTE)/evolved packet core (EPC) network. LTE
allows to prioritize health-care related video traffic overless
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Fig. 2. Block diagram reporting the exchange of informationin the proposed
multi-camera management system.

critical traffic. In particular, LTE provides a standardized traffic
class differentiation based on some sets of predefined QoS
requirements related to throughput, delay and packet loss rate
[32]. Each traffic class is identified by a scalar value, called
quality class indicator (QCI). The QCI classes fall within
two macro-categories: guaranteed bit rate (GBR) and non-
GBR. An example of a mapping schemes of health-related
information to LTE traffic classes can be found in [8].

We consider that the ambulance (in the following also called
m-health user) competes for radio resources with otherK
users within the cell, indexed by the setK, subdivided into
K1 GBR users andK2 best-effort (non-GBR) users, indexed
by the setsK1 and K2, respectively. The e-NodeB tries to
guarantee the transmission ratesR0 to the m-health user1 and
Rk to thek-th GBR user, withk ∈ K1, while the throughput to
best-effort users is provided fairly, according to the remaining
capacity available after allocating all GBR users [33] [34].

In this work, we assume that the first-aid operations take
place in two different phases. In the first phase, the ambulance
collects and sends up toN outdoor ambient videos in which
paramedics approach the patients to provide first assistance.
In the second phase a patient is loaded on the ambulance,
where an ultrasound examination is performed to check his/her
health status. During this operation, the ambulance collects
and sends up to two ambient indoor videos and one diagnostic
video sequence. In both situations, the selected videos aresent
through the available LTE-A radio access network to the emer-
gency management center at the hospital, where specialized
medical staff can follow the first-aid operations, coordinate the
intervention and acquire the health-state information necessary
to prearrange the treatment at the hospital.

The video adaptation unit on-board the ambulance manages
the inherently different priorities of the data flows generated
by camera network and diagnostic equipment. In particular,it
optimally adapts the SVC-encoded streams, in order to deliver
the ultrasound video (when present) with sufficiently high
quality and a set of ambient videos tuned according to ranking
and fairness criteria.

In Fig. 2 the algorithmic architecture of the proposed solu-
tion is summarized, highlighting the exchange of information
among the different logical units. As it can be noted, the CRA
processes the side information including the positions andthe
parameters of the ambient cameras and provides as output

1Note that here, as well as in the rest of the paper, we indicatethe m-health
GBR user with the subscript 0.
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a set of visual quality metrics. Based on these values, the
following unit selects the optimal set of ambient videos to
transmit, while guaranteeing a sufficient video quality forhigh
priority diagnostic streams (when present). As discussed in the
following sections, real-time video selection and adaptation are
jointly carried out.

III. M ULTI CAMERA RANKING

In this section we describe a new CRA, based on an ordering
criterion dependent on the quality of representation of the
object of interest. According to Fig. 1, we assume that the
area is monitored through a multi-camera network connected
to the ambulance through local wireless links. The proposed
ranking technique is based on geometrical considerations,as
we assume that the visual quality mainly depends on the
orientation of each camera and the 3D viewing volume that
can be captured. First of all, through the preliminary cali-
bration process, the intrinsic parameters of every camera are
determined. The knowledge of the focal length, in combination
with the aspect ratio of the image plane, permits to calculate
the different fields of view (FoVs). Based on camera FoV and
spatial orientation, it is possible to determine which portion
of the area of interest is monitored by the available devices.

The ranking procedure consists in ordering the cameras
according to a visual quality metric that combines the position
of the object of interest with respect to the camera and the pixel
density on the image plane. The size of the object projection
on the image plane depends on the distance between the
object and the camera: the closer is the object, the wider is
its projection. At the same time, the image quality, in terms
of perceivable details, increases with the camera resolution.
Hence, the highest visual quality for the object of interestis
provided by the camera that guarantees the best combination
of distance and resolution. For an object at distanced from the
camera, the visual quality is measured here as the amount of
pixels required to represent a surface of unit area, orthogonal to
the camera orientation, placed at distanced from the camera.

To describe the video acquisition devices we adopted a
pinhole camera model, as depicted in Fig. 3a. With reference
to a generic element of the VSN, dash-dotted lines represent
one of the FoVs, the optical center is identified by the point
c, while the target to be monitored is pointed byp. The
camera orientation is described by the unit norm vectoru,
i.e., with ‖u‖ = 1. For the sake of simplicity and without loss
of generality (w.l.o.g.), we assume that the optical center of the
considered camera is positioned in the origin of the reference
system. With this assumption, the number of linear pixels per
meter required to represent the target inp can be calculated
as

qlin =
r

2 p · u tan θ
[ppm] (1)

where 2θ is the width of the FoV. Given the camera resolution,
r represents the number of linear pixels along the considered
image dimension.

Clearly, assuming a squared aspect ratio for the pixels, the
number of pixels per unit area at the considered distance
is q = q2lin , and it numerically represents thevisual quality
provided by the considered camera. We remark that the pro-
posed ranking algorithm is intended for static or low-motion
scenes. Novel camera selection strategies taking into account
acquisition frame rate and higher velocity for the elementsin
the scene are currently object of study.

To illustrate how the CRA works, we consider the complete
scenario depicted in Fig. 1. The emergency area (monitored by
5 cameras) has been partitioned in sub-areas,i.e., 1 m× 1 m
square surfaces, as depicted in Fig. 3b. For each sub-area, the
proposed algorithm ranks the available cameras based on the
visual quality. In Fig. 3b, we show the camera providing the
best visual quality for each sub-area on a plane perpendicular
to the z-axis, discriminating the devices by assigning different
filling patterns. The object of interest 1 (corresponding toan
injured person on the ground in our simulation) is optimally
captured by the outdoorCamera 4, while the best ranking
acquisition devices for the objects of interest 2 and 3 are
Camera 5andCamera 3, respectively. In the actual application
the position of the object of interest for the emergency,i.e.,
the square in the grid, is selected by the operator.

In the following we will denote with the ranking valueqv the
visual quality of thev-th camera. To simplify the notation, we
assumew.l.o.g that, for the considered object of interest, the
cameras are already numbered according to the ranking values,
that isqi > qj , ∀i > j. Finally, definingVx as the set of thex
highest ranking cameras, we haveV1 ⊂ V2 ⊂ . . . ⊂ VN . For
Reader’s convenience, the most used symbols and acronyms
of this paper are summarized in Table I.

IV. SVC: QUALITY -RATE MODEL

The SVC standard is attractive for applications involving
multi-camera emergency scenarios, as it permits real-timeand
distributed stream adaptation, based on the encoding of video
sequences into scalable streams. From a scalable stream it is
possible to extract a sub-stream in order to meet a given frame
rate, resolution and video quality, according to the different
scalability methods supported by SVC. In this paper we focus
on video quality scalability, also known as signal to noise ratio



5

Notation Description Notation Description
K, K Set and total number of users N Total number of cameras
Rk Target GBR value Fv Source Rate of videov
qv Visual quality of videov pv Priority of videov
wv Weight of videov av, bv, cv Utility parameters for videov

U target
v Target utility of videov Uv Utility of video v
F bl
v BL rate for videov F hl

v Maximum source rate for videov
α Shaping value H Overhead factor

Acronym Full name Acronym Full name
LTE Long Term Evolution BS base station
SVC scalable video coding Q-R Quality-rate
SSIM structural similarity GOP group of pictures
BL base layer EL enhancement layer

GBR guaranteed bit rate SNR signal to noise ratio
IDR intra decoding refresh CRA camera ranking algorithm

TABLE I
L IST OF OF MOST USED SYMBOLS AND ACRONYMS

(SNR) scalability. SNR scalability is obtained by enhancing
the quality of the video stream with the addition of refinement
layers. Two different possibilities are available in the SVC
standard [23], namely the coarse grain scalability (CGS) and
the medium grain scalability (MGS). MGS provides finer
granularity with respect to CGS coding and it is obtained by
dividing a CGS layer into up to 16 MGS layers. In this paper
we focus on MGS scalability.

QoE-aware rate adaptation techniques dynamically adapt the
amount of transmitted information to the available channel
bandwidth by taking into account the context and the content
of the video cameras and its impact on the end-user video
quality. Quality-rate (Q-R) models enable to predict the min-
imum bit rate (in bit/s or bps) required to achieve a target
video quality. In order to allow for real-time content-aware
adaptation, the video quality can be evaluated according to
a particular objective video quality metric,e.g., mean square
error (MSE), peak signal to noise ratio (PSNR) or structural
similarity (SSIM) metrics [35]. Here, we consider the SSIM
video quality metric, which has been recently shown to provide
a higher correlation with subjective tests when assessing the
diagnostic quality of ultrasonography video sequence [36]. The
SSIM index has values ranging between -1 and 1, increasing
with the video quality.

Each video sequence is organized in sets of consecutive
frames named groups of pictures (GOPs). The interval between
two consequent I-frames, also known as intra decoding refresh
(IDR) period, is here assumed as a multiple of the GOP size.
Let us consider the SNR-scalable video resulting from the
encoding of the set of picturesIv, captured by the camera
v ∈ VN . The quality of this video, indicated by the utilityUv,
depends on the coding rateF , i.e., Uv = Uv(F ), and generally
is a discrete valued function, as the rates corresponding to
available SVC layers belong to a discrete set. Following
the approach in [37] and recently extended in [26], [38],
the expected Q-R relationship can be modeled by using a
parametric functionUv(F ) of the continuous variableF ,
defined over the limited intervalF ∈ [F bl

v , F hl
v ], whereF hl

v

andF bl
v represent the two limit rates corresponding to all the

available enhancement layers (ELs) and the sole base layer

(BL), respectively. Clearly, encoding the set of picturesIv
with rateF hl

v provides the maximum utilityUhl
v , while Ubl

v is
the utility of the BL.

Although the framework we propose holds for any mono-
tonic strictly increasing and invertible functionUv(F ), in this
paper we consider the following parametric utility model [38]:

Uv(F ) = av ln(F − bv) + cv, av > 0, bv ≤ F bl
v (2)

where the utilityUv is calculated as the average SSIM of the
reconstructed set of pictures. The three parametersav, bv and
cv depend on the temporal and spatial characteristics of the
set of picturesIv and on the frame rate. They are derived
through curve-fitting over the actual discrete empirical points.
A simulation campaign has been carried out to validate the
model (2). The results have shown almost perfect correlation
with a Pearson correlation coefficient (PCC) always larger
than 0.9999 for each set of encoded pictures. In Figure 4,
an example of the empirical Q-R relationship for a randomly
chosen set of pictures in a IDR period is shown for six
ambient video sequences and one ultrasonography video. The
related Q-R curves based on model (2) are also reported for
comparison. The encoding parameters are reported in Table
II and III. As noted in the figure, larger coding rates have
been considered for the ultrasound sequence, since diagnostic
videos often require very high video quality in order to permit
accurate diagnosis by remote specialists [36][39].

V. JOINT V IDEO SELECTION AND SVC ADAPTATION

We assume that the ambulance equipment negotiates with
the LTE access network a GBRR0 to support the emergency
m-health services. Such value might be periodically updated
in case of critical cell-load or bad channel conditions for the
ambulance.

The m-health equipment can exploit the negotiated GBR
to deliver the maximum number of videos with the highest
visual quality according to different objectives and constraints.
We consider here two different strategies with the goal of
jointly selecting the best set of videos to be transmitted and
adapting the streams to the available channel. The first strategy
aims at delivering the highest visual and video qualities
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according to some fairness constraints resulting from the
CRA outcomes. The second strategy aims at maximizing the
aggregated weighted utility, where the weights are derived
from the CRA. Specific target quality constraints for diagnostic
video sequences are also considered. The two content/context-
aware strategies are named fairness-based and efficiency-based
optimization and are described in the following subsections
V-A and V-B, respectively.

A. Fairness-Based Optimization

The proposed fairness-oriented dynamic rate adaptation
strategy consists in maximizing the weighted sum of video
utilities while minimizing the quality difference among the
different videos. The optimization also takes into account
GBR constraint, minimum utility and rate constraints, and
maximum rate constraints. This kind of strategy has been first
proposed in [26], addressing the problem for both empirical
and semi-analytical rate-distortion (R-D) models, and then
extended in [33] to consider the different priorities of thevideo
sequences. However, the Authors in [26], [33] used the MSE
as video distortion metric, without considering absolute utility
constraints. Here, this approach is extended to consider the
VSN and the visual quality evaluated by the CRA, with the
aim to jointly select the best video set to be delivered and to
provide the most fair qualities. Since the video sources work
with sets of discrete values of rates, the optimization problem
in its primitive form, introduced in [26], can be relaxed into the
following optimization problem based on continuous valuesof
rates

max
1≤x≤N

max
Fv ,v∈Vx

∑

v∈Vx

wvUv(Fv) (3a)

s.t. Uv ≥ U target
v , ∀v ∈ Vx (3b)

∑

v∈Vx

HFv ≤ R0, (3c)

F bl
v < Fv < F hl

v , ∀v ∈ Vx (3d)

∆p(Ui, Uj) = 0, ∀i, j ∈ Vx, (3e)

whereH is the estimated overhead introduced at the different
layers of the network architecture,Fv andU target

v , with v ∈ Vx,
are the rate in bit per second (bps), and the target utility of
video streamv, respectively.

Constraints (3c) and (3d) impose that the adapted video
sequences must be supported in real-time by the available
transmission GBRR0, thereby allocating at least the BL rate
and no more than the maximum encoding rate to each selected
video stream.

The set of conditions in (3e) is verified when the quality
difference among the different videos is minimized with con-
tinuous rates. The function∆p(Ui, Uj) is the utility-fairness
metric for each pair of videos. It extends the fairness metric
introduced in [26] to include priority information. It is defined
as

∆p(Ui, Uj) =

{

0 if (i, j) ∈ F ∨ (j, i) ∈ F

δp(Ui, Uj) otherwise
(4)

with δp(Ui, Uj) = |pi(1− Ui)− pj(1− Uj)| and

F = {(i, j) :(Ui = Umin
i ∧ pi(1− Ui) > pj(1− Uj))∨

(Ui = Uhl
i ∧ pi(1 − Ui) < pj(1− Uj))}

(5)

wherep = [p1, . . . , pN ] � 0 is a vector of positive real values,
which is used to prioritize video sequences, according to some
specified macro-classes of video sources,e.g., to assign an
higher priority to diagnostic videos with respect to ambient
videos. Moreover,Umin

v = max(Ubl
i , U

target
v ), and ∧ and ∨

represent the logical AND and OR operators, respectively.
The function in (4) extends the elementary fairness metric

δp(Ui, Uj) to the case where the utilitiesUi and Uj are
constrained to their minimum and maximum values. In fact, in
presence of rate and/or utility constraints, if a video achieves
its maximum utility, it is reasonable to use the available
resources to increase the utilities of other videos. On the other
hand, in a case of scarce amount of resources, if decreasing
the rate of thei-th video is not possible since its minimum
weighted utility value has been already reached, it is necessary
to decrease the rate of the other videos, at the price of
decreasing the related utility. As an example, by setting the
value of pv equal to 2 for the class of high priority videos,
and equal to 1 for the remaining videos, the adaptation module
will be able to provide for reasonable values of GBR an SSIM
higher than or equal to 0.95 to the videos in the high-priority
class, as long as the other videos are supported with an SSIM
not lower than 0.9. We remark that, as the GBR decreases, the
difference in quality between macro-classes will also decreases
andvice versa.

Finally, the weightswv in (3a) are used to account for the
different visual qualities according to the outcome of the CRA,
and are evaluated as follows:

wv =

(

qv
∑

s∈VN
qs

)α

, ∀v ∈ Vx (6)

whereα ≥ 0 is a parameter driving the trade-off between the
number of videos to transmit and the final received quality.
As it will be shown in the numerical results, a small value of
α favors the transmission of more videos with lower quality,
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Algorithm 1 Pseudo code to solve problem (3)

1: Input : V , R0; F bl
v , F hl

v , U
target
v , wv, av , bv, cv, ∀v ∈ VN ;

2: for all x = N, . . . , 1 do
3: if

∑
v∈Vx

HFmin
v ≤ R0 then

4: if
∑

v∈Vx
HF hl

v ≤ R0 then

5: setF̃ (x)
v = F hl

v , ∀v ∈ Vx;
6: else
7: zv = 1, ∀ v ∈ Vx;
8: repeat
9: yv = 1, ∀ v ∈ Vx; condh = 0;

10: repeat
11: ComputeŨ : Γ (y, z, x, Ũ) = 0;
12: condm = 0;
13: for all v ∈ Vx : yvzv = 1 do

14: F̃
(x)
v = ηve

Ũ−1
wvav + bv;

15: if F̃
(x)
v < Fmin

v then
16: F̃

(x)
v = Fmin

v ; yv = 0; condm = 1,
17: yv = 0;
18: break
19: end if
20: end for
21: until condm = 0
22: for all v ∈ Vx : yvzv = 1 do
23: if F̃

(x)
v > F hl

v then
24: F̃

(x)
v = F hl

v ; zv = 0; condh = 1,zv = 0;
25: end if
26: end for
27: until condh = 0
28: end if
29: if

∑
v∈Vx

wvF
(x)
v ≥

∑
v∈Vx+1

wvF
(x+1)
v then

30: x∗ = x;
31: end if
32: end if
33: Transmit the video in the setVx∗ with rate F̃

(x∗)
v

34: end for

while a large value ofα forces to select and transmit a lower
number of videos with higher quality.

Finally note that constraint (3b) enforces a target video
quality (e.g., when also diagnostic video are considered) in
the case that a non-conservative selection of the priorities does
not allow to achieve such target value.

1) Solutions of problem(3) and Algorithms:By exploiting
the invertible Q-R function in eq. (2), constraints (3b)-(3d)
collapse in a unique constraint,i.e.,

Fmin
v < Fv < F hl

v ∀v ∈ Vx (7)

written in terms of minimum rateFmin
v = max(F bl

v , F target
v ),

where

F target
v = ηve

U
target
v

av + bv (8)

andηv = e−
cv

av .
A first step to reduce the search space of the outer discrete

maximization problem considered in (3a),i.e., the maximiza-
tion with respect to the numberx of video to transmit, is to
exploit the feasibility condition resulting from the combination
of the constraints (7) and (3c),i.e.,

∑

v∈Vx

HFmin
v ≤ R0. (9)

In fact, by recalling thatV1 ⊂ V2 ⊂ . . . ⊂ VN , the left-
hand side of (9),i.e.,

∑

v∈Vx
HFmin

v , is a strictly increasing
sequence of the integerx. Hence, the condition (9) allows us
to derive the maximum value of the integerx that makes the
problem feasible. On the other hand, the minimum value ofx
can be derived from the trivial condition

∑

v∈Vx
HF hl

v > R0,

Algorithm 2 Pseudo code to solve problem (13)

1: Input : V , R0; F bl
v , F hl

v , U
target
v , wv, av , bv, cv, ∀v ∈ VN ;

2: for all x = N, . . . , 1 do
3: if

∑
v∈Vx

HFmin
v ≤ R0 then

4: if
∑

v∈Vx
HF hl

v ≤ R0 then

5: setF̃ (x)
v = F hl

v , ∀v ∈ Vx;
6: else
7: zv = 1, ∀ v ∈ Vx;
8: repeat
9: yv = 1, ∀ v ∈ Vx; condh = 0;

10: repeat
11: condm = 0;
12: for all v ∈ Vx : yvzv = 1 do

13: F̃
(x)
v = wvav

Λ(y,z,x)−
∑

n∈Vx
ynznbn

∑
n∈Vx

wnynznan
+ bv

14: if F̃
(x)
v < Fmin

v then
15: F̃

(x)
v = Fmin

v ; yv = 0; condm = 1;
16: yv = 0;
17: break
18: end if
19: end for
20: until condm = 0
21: for all v ∈ Vx : yvzv = 1 do
22: if F̃

(x)
v > F hl

v then
23: F̃

(x)
v = F hl

v ; zv = 0; condh = 1,zv = 0;;
24: end if
25: end for
26: for all i ∈ Vx do
27: for all j ∈ Vx : j > i do
28: if Ui(F̃

(x)
i ) > Uj(F̃

(x)
j ) ∧ wi < wj then

29: Fmin
j = ηv exp(

U(F̃
(x)
i

)

av
) + bv ;

30: condh = 1;
31: end if
32: end for
33: end for
34: until condh = 0
35: end if
36: if

∑
v∈Vx

wvF
(x)
v ≥

∑
v∈Vx+1

wvF
(x+1)
v then

37: x∗ = x;
38: end if
39: end if
40: Transmit the video in the setVx∗ with rate F̃ (x∗)

v

41: end for

i.e., if x is too small and does not satisfy such condition, all
the videos can be transmitted at the highest quality in real-time
without adaptation.

Moreover, for each value ofx, the inner optimization
problem collapses into the following constraint satisfaction
problem:

∑

v∈Vx

HFv = R0, (10a)

∆p(Ui, Uj) = 0 ∀i, j ∈ V , i > j (10b)

Fmin
v < Fv < F hl

v ∀v ∈ V (10c)

The optimal algorithm proposed in [33] to solve a problem
similar to the inner maximization in (10) according to a MSE-
based R-D model can be now suitably extended to consider
the SSIM-dependent Q-R function, by replacing the functions
of eq. (5) and (6) in [33] as follows:

Γ (y, z, x, U) =
∑

v∈Vx

[

yvzv

(

η′ve
U−1
wvav + bv

)]

− Λ(y, z, x)

(11)
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whereη′v = e
1−cv

av ,

Λ(y, z, x) =
R0

H
−

∑

v∈Vx

[

(1− yv)F
min
v + (1− zv)F

hl
v

]

(12)

and y = [y1, . . . , yN ], z = [z1, . . . , zN ] are boolean vectors
that indicate whether (1) or not (0) the minimum and max-
imum rate constraints are active, respectively. The resulting
algorithm is then iterated by varying the numberx of videos
to be transmitted to search for the best video setVx∗ for
which the weighted sum of the utility is maximum. We report
the overall algorithm to solve the problem (3) in Algorithm
1, whose complexity can be estimated as follows. The inner
loop (lines 8-32 of Algorithm 1) requires in the worst case
x(x + 1)/2 iterations, withx ≤ N , whereas the outer loop
requires in the worst casesN iterations. By neglecting the low-
order terms, the worst-case complexity isO(N3). We refer the
interested reader to [33] for further details.

B. Efficiency-Based Optimization

The proposed efficiency-oriented dynamic rate adaptation
strategy consists in maximizing the weighted sum of the video
utilities under the following constraints: available GBR,and
maximum rate for each video, minimum utility and rate for
each video. With respect to the optimization in (3) fairnessis
not taken into account, but a video utility ordering based on
the visual quality is introduced. The novel problem is stated
as follows:

max
1≤x≤N

max
Fv ,v∈Vx

∑

v∈Vx

wvUv(Fv) (13a)

s.t.
∑

v∈Vx

HFv ≤ R0, (13b)

F bl
v < Fv < F hl

v ∀v ∈ Vx (13c)

(Ui − Uj)(wi − wj) ≥ 0, ∀i, j ∈ Vx (13d)

Uv ≥ U target
v , ∀v ∈ Vx (13e)

where the novel constraint (13d) imposes that a video offering
an higher visual quality must be delivered with higher video
quality with respect to a video with lower ranking values. It
should be reminded that the weightswv are set according to
eq. (6).

1) Solutions of problem(13) and Algorithms: Since the
objective is concave and the constraints convex, the inner max-
imization in (13) is a convex optimization problem. Several
optimization method can be used to solve it,e.g., interior-
points or Lagrangian dual multipliers methods. However,
constraint (13d) would require the derivation ofx(x − 1)/2
dual variables, through,e.g., sub-gradient method. In order to
keep the complexity low, we consider here a low-complexity
sub-optimal solution, which is derived by applying a method
similar to the one proposed in the previous section,i.e., by
relaxing the reduced problem (13a)-(13b). In this case the
solution without considering constraint (13d) is obtainedby
replacing line 14 of Algorithm 1 with the following equation:

F̃ (x)
v = wvav

Λ(y, z, x)−
∑

n∈Vx
ynznbn

∑

n∈Vx
wnynznan

+ bv (14)

Source and Coding Parameters
Number of max. video per stage5
Frame rate 30 fps
GOP Size 8
IDR period 32
EL encoding MGS
Number of ELs 3
QP difference among ELs 4

System model
User distribution Uniform
Number of users 15
Number of best effort user 14
Cell layout Single circular cell
Cell Range 300 m

Channel model
Path Loss 40 + 15.2 log(d), d = distance in meter
Shadowing model Log-normal with 4dB standard deviation
Channel Model ITU A extended Pedestrian model
Doppler Bandwidth 5Hz

PHY model
System Bandwidth 5 MHz
Subcarrier spacing 15 KHz
Number of subcarriers per PRB 12
Frame duration 10 ms
Slot duration 0.5 ms
OFDM symbols per slot 7
User’s power budget 23 dBm
Noise Power Density 2 · 10−20 W/Hz

TABLE II
SIMULATION PARAMETERS

Video Source Position Resolution BL QP
Camera 1 outdoor 1024x720 46
Camera 2 outdoor 1024x720 46
Camera 3 outdoor 1024x720 46
Camera 4 outdoor 960x540 38
Camera 5 outdoor 720x574 38
Camera 6 indoor 640x480 46
Camera 7 indoor 640x480 46
Ultrasound indoor 640x480 38

TABLE III
POSITION, RESOLUTION AND BL ENCODINGQPOF THE CONSIDERED

VIDEOS

as shown in Algorithm 2. An additional loop is considered to
verify constraints (13d) with a resulting worst-case complexity
of O(N4). Algorithm 2 lead to an optimal solution, if and only
if

Ui(F̃
(x)
i ) ≥ Uj(F̃

(x)
j ) (15)

∀i, j > i ∈ Vx : wi > wj , yiziyjzj = 1, meaning that the
constraint (13d) is violated only for videos with minimum or
maximum rate constraints active. In our numerical evaluation
(15) always holds.

VI. N UMERICAL RESULTS

In our simulations we have considered an LTE-like single-
cell access network with system bandwidth set to 5 MHz.
Uplink single-carrier frequency division multiple accessis
assumed, where users may transmit over orthogonal physical
resource block (PRB) with frequency spacing of 180 KHz
and time duration of 1 ms. Radio resource allocation and
scheduling are performed according to the methods proposed
in [34], which consider both mixed and heterogeneous traffic.
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Camera 1

Camera 2 Camera 4

Camera 3 Camera 5

Camera 6

Ultrasound

Camera 7

Fig. 5. Available cameras in phase 1 (Cameras 1-5) and phase 2 (Cameras 6-7andUltrasound).

.

Object of Interest
Camera 1 2 3

1 5790 10329 7909
2 4130 11413 2468
3 5196 4988 10304
4 77268 26848 0
5 31935 117711 0

TABLE IV
CRA RESULTS(qv ) FOR THE THREE CONSIDERED POSITIONS OF THE

OBJECTS OF INTEREST

A set ofK = 15 users with a maximum per-user power budget
of 23 dBm is uniformly distributed in a cell of 300 m, resulting
in an average SNR ranging from 5 to 28 dB. More specifically,
in the proposed case study the ambulance user experiences an
average SNR of 13 dB2 and receives from the access network a
GBRR0 with values negotiated in the range from 1 to 6 Mbps.
All the other users are best-effort users,i.e., K2 = K,K1 = 0.
The radio channel for all users is modeled according to the
ITU extended pedestrian A model, with a Doppler frequency
of 5 Hz [40].

Since the focus of this work is on the combination of
multistream video adaptation and multiuser resource allocation
in emergency scenarios, we have assumed no packet-loss
across the radio channel, and the resource allocation obtained
by using the techniques and the algorithms in [21], [34] has
been built on the channel capacity based rate estimation. In
real LTE networks, near-zero packet-loss probability can be
achieved by employing advanced adaptive modulation and
coding techniques for Turbo codes, similar to what proposed
in [41]. In addition, a packet-level FEC may be further applied
at the higher layers of the protocol stack, thus enabling a
complete packet-loss recovery at the cost of a slight reduction
in the video throughput (see,e.g., [42]).

2The ambulance is assumed to be statically located on the emergency area

We consider two different phases of the first-aid operations.
As illustrated in Fig. 1, in the first phase the ambulance sends
up toN=5 outdoor ambient videos, denoted asCamera 1, . . .,
Camera 5. In the second phase, the ambulance collects and
sends 2 ambient indoor videos, namelyCamera 6andCamera
7, and one diagnostic video sequence. All the videos have been
acquired with a frame rate of 30fps, while their resolutions
are reported in Table III. Examples of frames acquired by the
available devices are reported in Fig. 5.

Each video sequence is encoded with the JSVM reference
software [43] with one BL and three SNR ELs. MGS is con-
sidered to encode the quality layers. Both enhancement frames
and BL key-picture frames are used for motion compensation,
thereby limiting the drift issue during the adaptation process
[23]. As indicated in Table III, the quantization parameter(QP)
of the ambient videos BL (indoor and outdoor) is set to 46,
while the ultrasonography video BL is encoded with QP equal
to 38. The QP difference between adjacent ELs is set to 4 for
all videos. The GOP size and the IDR period are here set to
8 and to 32 frames, respectively. After encoding, the resulting
quality in terms of average SSIM, ranges approximately from
0.82 to 0.95 for the ambient videos, and from 0.89 to 0.98 for
the ultrasound video. The three parameters of the model in (2)
are evaluated for each IDR period, resulting in an adaptation
interval of about1 sec. The video priority weightspv of the
ambient videos are set to 1, whereas the priority weight of
the ultrasound video is set to 2. We consider a target video
quality for the ultrasound video, in terms of SSIM, equal to
0.95. Finally, video play-out deadline at the receiver is set to
200 ms and the overhead factor is set toH = 1.

The proposed strategies for joint video selection and adap-
tation, denoted as prioritized equal quality (PEQ) (see section
V-A) and maximum weighted quality (MWQ) (see Section
V-B) are compared with an equal rate adaptation strategy,
denoted with Equal Rate (ER), used as benchmark. ER aims
at providing fairness only in terms of assigned bit-rate, while
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satisfying the minimum and maximum rate constraints. It is
unaware of the individual Q-R relationship of each video,
i.e., it is content-agnostic, and it is built according to [26].
Moreover, ER does not perform context-aware video selection
and prioritization.

In Table IV the visual quality metrics defined in Sec. III
are reported for the outdoor ambient videos available in
the first phase of the scenario. In particular, the valuesqv
corresponding to three different objects of interests within the
emergency area have been listed. For example, the outcome
of the CRA for the first object of interest is{4, 5, 1, 3, 2}.
For the third object of interest only the first three cameras
are useful, as the object is outside the FoV ofCamera 4and
Camera 5.

We investigate the impact of the shaping parameterα, used
in the CRA-based camera weights as in eq. (6). In Fig. 6, the
weighted sum of the utilities

∑

v∈Vx
wvUv(Fv) (Fig. 6(a)),

and the normalized sum of utilities1
x

∑

v∈Vx
Uv(Fv) (Fig.

6(b)) are plotted with respect to the parameterα and the
number of transmitted videox with a GBRR0 = 3 Mbps. The
utilities are obtained as the result of the inner maximization
in problem (3) of the PEQ strategy,i.e., by consideringx as
an input parameter. Withα = 0, i.e., when the visual quality
is not considered in the video selection, the addition of one
video generally improves the weighted sum-utility, as long
as the minimum rates are supported by the available GBR.
This is due to the small slope of the logarithmic SSIM-to-rate
relationship and to the relatively high values of the minimum
SSIM of the encoded videos. A low value ofα is reasonable to
be set up for general monitoring purposes, thereby ensuringthe
transmission of most of the ambient videos, but with low video
quality. As the parameterα increases, the effect of the visual
quality valuesqv of the CRA is emphasized, leading to the
selection of smaller sub-sets of videos with the highest visual
qualities, and to a consequent improvement in the perceived
video quality, as shown in Fig. 6(b).

Fig. 7 shows the impact of the available GBR on the
optimum number of video to transmit,i.e., x∗, (Fig.7a) and on
the normalized sum of the utility (Fig.7b), for different value
of the shaping parameterα. We can note that the optimum
number of videox∗ does not significantly depend on the GBR,
and remains approximately constant whenα is fixed. Fig.7b
highlights the benefit of decreasing the parameterα at low
GBR, thereby significantly increasing the per-camera utility of
the transmitted videos with the highest visual quality. Based
on these results, in the following we will useα = 2.5.

In Fig. 8 we show the expected video quality,i.e., the
SSIM evaluated through the continuous model in (2), and
the actual received video quality at the remote hospital, for
all the ambient videos transmitted during the first phase. The
three adaptation strategies proposed in the paper, namely,PEQ,
MWQ and ER can be compared from the different subfigures.
Three different objects of interest are considered, whose visual
weightsqv have been reported in Table IV. In this case, the
GBR R̄0 is set to 4 Mbps. We can note how the PEQ strategy
optimizes the number of transmitted video by selecting the best
two and the best three videos with the highest visual quality
for the first two and the third object of interest, respectively, in

order to jointly maximize the weighted quality and to preserve
quality fairness. The difference in quality between the expected
and the received quality (Fig. 8a vs 8b) is due to the gap
between the continuous and the discrete utility solutions.The
MWQ strategy transmits most of the videos by prioritizing
the videos with the highest visual quality for each object of
interest,i.e., Camera 4, Camera 5andCamera 1, respectively.
In both cases the video quality of the camera with the highest
visual quality is significantly improved with respect to theER
approach, especially for the first two objects of interest. As
an example, by using the ER strategy, the videos ofCamera
4 andCamera 5are delivered with poor quality,i.e., with an
SSIM close to 0.8.

The improvements achievable by the proposed PEQ strategy
are more evident in the second phase of the emergency situa-
tion. The results of MWQ are approximately equal to those of
PEQ, due to the fact that the two ambient videos have similar
spatial and temporal complexity. Therefore, in Fig. 9 we report
only the PEQ results. Even at large GBR,i.e., R0 = 6
Mbps (Fig. 9a) ER strategy may fail to provide the minimum
SSIM to the ultrasound video,e.g., at time instant of 8 and
32 seconds. The qualities resulting from the PEQ strategy
closely follow the selected video quality priorities providing an
SSIM difference that proportionally decreases as the individual
SSIM increases. The minimum quality is always ensured to
the diagnostic video. At lower GBR,i.e., R0 = 3 Mbps, the
video quality of the diagnostic video falls below 0.9 thereby
invalidating the necessary diagnostic requirement. In order to
deliver the ultrasonography video sequence at the minimum
required quality, the PEQ strategy discards the ambient videos,
leaving all the available resources to the diagnostic video,
thereby enabling effective tele-diagnosis services.

VII. C ONCLUSION

We have presented a joint framework for context-aware
selection and content-aware adaptation of a set of hetero-
geneous SVC videos transmitted over LTE uplink in a m-
health emergency scenario. The proposed methods select the
videos from one or more cameras taking into account a
specific ranking criteria mainly related to the quality of the
visual representation of the object of interest and adapt the
video streams to the available bandwidth according to two
different SVC-based adaptation strategies. The first quality-
fair strategy aims at delivering the highest visual and video
quality according to different priorities, derived from the
CRA outcomes, and some fairness constraints. The second
efficiency-based strategy aims at maximizing the aggregated
weighted quality, where the weights are derived according to
the visual ranking process. Both strategies are based on the
modeling and evaluation of SSIM quality metric and have
been tested and compared in the two operational phases of the
considered emergency scenarios. Several numerical results are
presented showing the significant improvements of the end-
to-end video qualities of both diagnostic and ambient videos,
compared to a benchmark adaptation strategy. Moreover, when
the GBR granted to the ambulance decreases, the proposed
strategies appropriately discard the videos coming from the
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Fig. 6. 3D plots of the normalized weighted sum of the utilities
∑

v∈Vx
wvUv(Fv), and the normalized sum of the utilities1

x

∑
v∈Vx

Uv(Fv) with respect
to the parameterα and the number of transmitted videox. The utilities are obtained from the inner maximization of problem (3) withR0 = 3 Mbps. The
markers in (a) indicate the optimal solutions forx.

0
1

2
3

4
5 1

2
3

4
5

1

2

3

4

5

GBR [Mbps]α

 x
*

(a)

0
1

2
3

4
5

1
2

3
4

5
0.8

0.85

0.9

0.95

1

αGBR [Mbps]

N
or

m
al

iz
ed

 S
um

−
U

til
ity

(b)

Fig. 7. 3D plots of the optimum number of transmitted videosx∗, and the normalized sum of the utilities1
x∗

∑
v∈Vx∗

Uv(Fv) with respect to the parameter
α and the GBR granted to the Ambulance.

cameras providing the lowest visual quality in order to improve
the quality of the diagnostic videos, which are the most
important for an effective tele-diagnosis.
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0 10 20 30 40 50 60
0.7

0.75

0.8

0.85

0.9

0.95

1

time [s]

S
S

IM

 

 

Outdoor Camera 1
Outdoor Camera 2
Outdoor Camera 3
Outdoor Camera 4
Outdoor Camera 5

Object 
of Interest 2

Object 
of Interest 3

Object 
of Interest 1

(b) PEQ: received end-user quality
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(c) MWQ: expected video quality
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(d) MWQ: received end-user quality
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