
Safety-oriented Robot Payload Identification using

Collision-free Path Planning and Decoupling Motions

Saverio Farsonia,∗, Federica Ferragutib, Marcello Bonfèa
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Abstract

The paper presents a procedure for the identification of the inertial param-
eters of the payload mounted on the end-effector of a robotic manipulator
operating in a collaborative setup. The procedure is therefore designed con-
sidering as a primary objective the safe execution of the payload estimation
process, in terms of avoidance of physical objects and protected zones within
the robot workspace, in which the presence of human operators is allowed
and expected. The methods applied in the definition of the proposed oper-
ational sequence include a collision-free path planner and a joint trajectory
generator that allows the safe execution of specific test motions. In particu-
lar, each one of such test motions decouples the effects of all but one inertial
parameter of the payload, in order to improve the accuracy of identification.
Experimental results on a redundant industrial manipulator demonstrate the
feasibility of the proposed identification method.

Keywords: Payload estimation, Collaborative robotics, Collision-free path
planning, Interaction control, Real-time Algorithms

1. Introduction

Recent perspectives on the future of the manufacturing industry give a
strong emphasis on the collaboration between humans and robots, in terms
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of both sharing a common space during working activities and direct physical
interactions (i.e. physical Human-Robot Interaction, pHRI [1]), from manual
guidance and teaching of a robotic task (e.g. skill-based instruction [2], lead-
through programming [3]) to real co-working (e.g. assemblying or trasporting
a workpiece together). Collaborative robots are already available on the
market of industrial manipulators (e.g. KUKA LBR iiwa, Universal Robots
UR3/5/10, ABB Yumi, FANUC CR-35iA etc.), even though the road to their
widespread installation in daily operated workcells, including the presence
of humans and allowing physical contacts and interactions, is paved with
doubts. The most important issue related to industrially relevant uses of
collaborative robots is certainly the safety of humans.

Needless to say, such an issue is covered by international standards and
related government regulations, that have been refined in recent years to ad-
dress specific aspects of human-robot collaboration. In particular, the parts 1
and 2 of the ISO 10218 [4, 5] standard specify requirements and guidelines on
the safe operation of industrial robots, while providing definitions and exam-
ples of collaborative tasks. More recently, the technical specification ISO/TS
15066 [6] introduced specific safety requirements on collaborative industrial
robotic systems, supplementing those given by the ISO 10218. The ISO
10218 standard and the ISO/TS 15066 specification define four collaborative
operating modes: Safety-rated Monitored Stop (SMS), Hand Guiding (HG),
Speed and Separation Monitoring (SSM), Power and Force Limiting (PFL).
A brief and pictorial description of such operating modes can be found in [7]
and in [8] with a focus on the implementation of SSM. From a control systems
and engineering point of view, operating modes classified as HG and PFL
imply significant design challenges, mainly related to the estimation of forces
due to contacts or collisions between the robot and a human (i.e. to limit
power/force exerted by the collision), which is even more challenging when
intentional contacts (i.e. guiding the robot by hand) must be distinguished
from unintentional ones.

Solutions for these challenges may be designed using joint torque sensors
or joint motor currents and an accurate knowledge of robot dynamics. For
example, model-based observers and the so-called residuals analysis for robot
collision detection are presented in [9, 10]. When accurate knowledge of the
dynamic parameters of the robot (i.e. masses, centers of mass and inertia
tensors of each link, joint friction) is not available, alternative solutions may
adopt frequency-domain analysis of motor currents, as described in [11], or
explicitly include modeling uncertainties in the collision detection method,
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by means of adaptive residual thresholds and filters [12]. Detection of human
intents and their isolation from accidental collisions is reported, among oth-
ers, in [10] and [13]. The latter proposes a control effort-based approach that
should not require a dynamic model of the robot, but only the possibility
for a human to manually change its end-effector position. This approach is
reasonable for light and back-drivable haptic devices, like the one used in
the experiments of [13], but questionable for large industrial robots, even if
designed to collaborate with humans. Focusing on the HG mode, the instal-
lation of a force/torque (F/T) sensor on the end-effector of the robot and the
implementation of force or impedence/admittance control schemes could be
a viable option [14], provided that instabilities due to contact/non-contact
transitions or environment/human stiffness are addressed [15, 16].

Using either model-based control schemes or schemes requiring an F/T
sensor on the end-effector of the robot, the inertial properties (i.e. mass,
center of mass, inertia tensor) of the robotic tool or payload introduce non-
negligible effects. Indeed, impedance control resolved at joint torque level or
model-based collision detection must consider the dynamics of the full robotic
structure, while the implementation of an HG mode, based on measuring hu-
man inputs with wrist-mounted F/T sensors, requires proper elimination of
non-contact effects caused by the payload during motion [17, 18, 19]. Other
methods to accomplish the identification of payload inertial parameters that
do not require a F/T sensor on the robot end-effector, exploit the obser-
vation of the joint torques (directly measured by sensors or estimated by
means of motor currents) compared to the torques expected according to the
dynamic model of the system [20]. However, such methods lead to less accu-
rate results compared to those exploiting the F/T sensor. Moreover, while
the inertial parameters of an industrial robot may be precisely calibrated by
the manufacturer during robot design and assembly, this is not commonly
true for tools realized by system integrators or heterogeneous parts grasped
in an industrial plant. Therefore, a procedure for the identification of the
robot payload properties, that could be executed online in an industrial setup
involving human-robot collaborations (i.e. minimizing risks related to colli-
sions and limiting velocity and accelerations of robot motions), would be a
relevant solution for addressing safety-related issues in collaborative robotics.

The aim of the paper is to present a practical method for the estima-
tion of the inertial parameters of a rigid body mounted on the end-effector
of a robot, that takes into account the presence of obstacles, humans and
other protected spaces in the robot operating environment. First, we as-
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sume that the robot is equipped with a wrist-mounted F/T sensor or that
its embedded controller provides an estimation of external forces/torques at
the wrist. Then, we design the proposed method on the basis of a motion
planner generating a sequence of trajectories designed to selectively isolate
the effect on the wrist F/T measurements of one inertial parameter at a time,
while simultaneously addressing worskpace constraints and safety-related ve-
locity/acceleration limits in both cartesian and joint space. The contribution
of the paper is therefore two-fold:

• the results of the proposed identification procedure allow the accurate
setup of robot control algorithms providing safe execution of HG, SSM
and PFL operating modes as defined by the ISO/TS 15066 specifica-
tion;

• the safety of human operators is for the first time, to the best of our
knowledge, taken into account during each phase of the identification
procedure, whose execution does not require to put the robotic workcell
in an offline mode and prevent the access of humans.

Moreover, in the context of an industrial application, the proposed identifi-
cation procedure can be launched by the same person interacting with the
robot during production as an automatic procedure, reducing the need for
trained operators that usually carry out the cell configuration steps in manual
operational mode.

The paper proceeds as follows: Sec. 2 describes the literature on inertial
parameter identification for rigid bodies; Sec. 3 defines how to design test
conditions and motions for a selective identification of a given inertial pa-
rameter at a time; Sec. 4 presents the set of functionalities to be designed
and implemented for the execution of the proposed identification procedure;
finally, Sec. 5 reports the results of practical experiments on a KUKA LWR
4+ redundant manipulator, equipped with an ATI Mini45 F/T sensor.

2. Related literature

The knowledge of the full set of inertial parameters (i.e. mass, center of
mass (COM) and six elements of the inertia tensor 3×3 symmetric matrix) of
a rigid body is of fundamental importance whenever precise motion control
or estimation for that rigid body is required, not only in robotics. Indeed, the
estimation of rigid bodies inertial parameters has been actively investigated
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in most fields of the mechanical engineering literature and the computation
of such parameters is a common feature of CAD software tools. However, it
is known that computer-based estimation is not as reliable as experimental
investigation, which is therefore considered the only effective way to address
uncertainties in geometry, mass distribution, density of materials and so on.
Moreover, it is also important to remark that while the identification of mass
and center of mass can be done relatively easily with methods based on
tests in static conditions, the identification of moments of inertia and inertia
tensor is more difficult, since it requires tests enforcing complex and, possibly,
highly dynamic motions of the rigid body under investigation (e.g. reverse
symmetrical semi-program spherical motions and precessions [21]).

Surveys on experimental identification methods for inertial parameters
can be found in [22, 23, 24]. In most cases, it is reported the use of specif-
ically designed mechanical equipment, from torsional or trifilar suspension
sytems [25, 26] to more complex platforms like the BTI [27] designed at the
Federico II University of Naples, the Tensorobot [28] of the University of Kas-
sel or the InTenso+/InTensino+ test rigs [29] of the Polytechnic University
of Milan. Actual identification methods, focusing on those based on dynamic
tests, can be classified into two main categories [23]: time-domain [25] and
frequency-domain methods [30]. While the former class may be conceptu-
ally simpler (e.g. using pendulum-like oscillation period analysis), it may
also require cumbersome mechanical setup and skilled operators. On the
other hand, methods based on frequency response function (FRF) or modal
analysis imply the use of advanced data acquisition systems (e.g. piezo-
electric accelerometers with signal sampling at several KHz), that may not
be available in daily industrial practice because of their cost, and complex
computations on huge datasets, necessarily executed in post-processing. An-
other interesting aspect that has been investigated recently is the physical
consistency of identification results [31, 32].

The applications, not only in robotics or control engineering, in which the
experimental identification of inertial parameters is beneficial, if not manda-
tory, are many and heterogeneous. For example, parameters of spacecrafts
and aircrafts are considered in [33, 34]. The importance of inertial prop-
erties of a road vehicle even for road accident reconstruction is highlighted
in [35], while studies on motions of humans wearing prosthetic limbs are
reported in [30]. Considering instead robotic applications, with a focus on
industrial manipulators, an important issue that arises (and makes a key
difference with previous examples) is the fact that rigid bodies of interest
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cannot be detached, most of the time, from their mechanical assembly and
mounted on a dedicated test equipment for identification purposes. Indeed,
the majority of proposed methods for inertial parameter identification in
robotics (see [36] for a review) consider the simultaneous identification of the
properties of all mechanical links from joint torque sensors or joint motor
currents, acquired during dynamic motion tests. Despite the large number
of available references, from seminal works based on data-driven regression
[37, 38] or neural networks [39] to more recent approaches in both directions
[40, 41], the topic is still attractive from both theoretical (e.g. optimization
of exciting trajectories [42, 43]) and practical (e.g. low-sampled data acqui-
sition [44]) perspectives. Restricting further the interest on robot payload,
its parameters identification can be viewed as an extension of the full robot
dynamics identification [45] or as a specific task based on measurements from
wrist-mounted F/T sensors [46, 47]. It is worth remarking that all of these
methods assume that the range and the accelerations/velocities of either op-
timally designed or randomly generated test trajectories is only bounded by
the physical capabilities of the robot. As a consequence, robot motions for
payload estimation may be unfeasible when the robot is already installed in
an industrial workcell, not to mention a collaborative one.

As discussed in the previous section, the payload estimation issue is also
related to the safety of humans in collaborative applications, because of its
impact on robot control and collision detection accuracy [48]. However, to
the best of our knowledge the execution of payload identification procedures
themselves, while collaborative modes of operation are active, has never been
addressed previously. In this context, a first issue to be considered is the gen-
eration of robot motions taking into account the presence of humans as obsta-
cles to be primarily avoided [49]. Collision-free motion planning for complex
(e.g. redundant or multi-arm [50]) robotic systems is largely covered by the
literature. Many works consider the use of so-called sampling-based algo-
rithms, based on probabilistic approaches [51] or semi-random searches for
collision-free and kinematically reachable paths [52]. From a practical point
of view, a large collection of efficient motion planning algorithms are im-
plemented by state-of-the-art software libraries, like trajopt [53] and OMPL
[54]), embedding (or including as external parts, e.g. the FCL library [55])
collision checking functionalities for complex geometric objects. Another
safety-related aspect to be considered in the generation of test motions for
payload estimation is the limitation of velocities and accelerations, within
bounds that are acceptable during human-robot coexistence. Such bounds
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are specified in the operational (i.e. cartesian) space by the ISO 10218 and
ISO/TS 15066 documents, but are then enforced at joint level. Interesting
solutions for real-time generation of joint motion taking into account time-
varying velocity/acceleration constraints have been proposed by [56, 57], be-
ing the latter specifically designed for redundant manipulators.

3. Decoupling motions for parameter identification

Forces f s and torques τ s measured by a F/T sensor mounted on the
robot end-effector can be expressed as a function of payload velocities and
accelerations [46] as follows:[

f s

τ s

]
=

[
m(as − gs) + ω̇s ×mcs + ωs × (ωs ×mcs)
Isω̇s + ωs × Isωs + mcs × as −mcs × gs

]
(1)

Where the superscript s indicates that the variable refers to the F/T sen-
sor frame, g is the gravity vector, m is the payload mass, cs is the cen-
ter of mass and I is the inertia tensor. Eq (1) can be reworked to high-
light the linear dependency of Fs from the load inertial parameter vector
Φs = [m,mcsx,mc

s
y,mc

s
z, I

s
xx, I

s
xy, I

s
xz, I

s
yy, I

s
yz, I

s
zz]:

Fs = Vs(as,ωs, ω̇s,gs)Φ
s (2)

where Vs is a 6×10 matrix containing kinematic variables (linear accelera-
tions as, angular velocities ωs and angular accelerations ω̇s) expressed in the
sensor frame. In the following the s superscript is omitted where obvious.

When the robot is motionless, Eq. (1) reduces to:

Fx = −gxm
Fy = −gym
Fz = −gzm
τx = −gzmcsy + gymc

s
z

τy = gzmc
s
x − gxmc

s
z

τz = −gymcsx + gxmc
s
y

(3)

Such equations can be exploited to extract m and mcs by performing a lin-
ear regression on the measured forces and torques in static condition. Note
that if the gravity vector g is aligned with one of the sensor axis xs,ys,zs

the corresponding COM component is not excited and cannot be properly
identified. Therefore, m can be formerly identified during the first motionless

7



phase, while mcs could require more static phases to increase the identifica-
tion accuracy.

We define the identification procedure for m and mcs as a cyclic compu-
tation, described by Algorithms 1, 2:

Algorithm 1 Identification of m

1: j = 0
2: Resp0 = [ ]
3: Regr0 = [ ]
4: for i = 1, . . . , Nsample do
5: if ||ẋi|| < εs then
6: Respj = [Respj [Fx, Fy, Fz]

T ]
7: Regrj = [Regrj [gx, gy, gz]

T ]
8: m = regress(Regrj,Respj)
9: j = j + 1

10: return m . The identified value

Algorithm 2 Identification of mcs

1: j = 0
2: Resp0 = [ ]
3: Regr0 = [ ]
4: for i = 1, . . . , Nsample do
5: if ||ẋi|| < εs then
6: Respj = [Respj [τx, τy, τz]

T ]

7: Regrj = [Regrj

 0 −gz gy
gz 0 −gx
−gy gx 0

]

8: mcs = regress(Regrj,Respj)
9: j = j + 1

10: return mcs . The identified value

The function Ψ = regress(Regr,Resp) performs the linear regression
using a least-squares method [58] and returns the vector Ψ of regression
coefficients in the linear model Resp = Regr · Ψ. In Algorithm 1,2 line
6, Respj is the incremental response vector to the regressor Regrj; at line
4 Nsample is the number of acquired samples; at line 5 ẋi is the vector of
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Cartesian velocities and εs is a user defined static threshold, that has to be
tuned taking into account the noise on velocities estimations, so that the
condition ||ẋ|| < εs ensures that the system is motionless.

Furthermore, when xs,ys or zs axis of the sensor frame is aligned with
the gravity vector g, a pure rotational movement with constant angular ac-
celeration around that axis (without translations) can be generated, so that
the expression of the torque acting on the rotating axis reduces to:

τx = ω̇xIxx if xs is rotating
τy = ω̇yIyy if ys is rotating
τz = ω̇zIzz if xs is rotating

(4)

During such motions, if angular accelerations and torques are known with
a proper degree of accuracy, a linear regression can be performed to identify
the inertial parameters Ixx,Iyy and Izz as described by Algorithms 3, 4, 5:

Algorithm 3 Identification of Ixx

1: j = 0
2: Resp0 = [ ]
3: Regr0 = [ ]
4: for i = 1, . . . , Nsample do
5: if |ω̇x| > ε1 AND |ω̇y| < ε2 AND |ω̇z| < ε2 then
6: Respj = [Respj τx]
7: Regrj = [Regrj ω̇x]
8: Ixx = regress(Regrj,Respj)
9: j = j + 1

10: return Ixx . The identified value
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Algorithm 4 Identification of Iyy

1: j = 0
2: Resp0 = [ ]
3: Regr0 = [ ]
4: for i = 1, . . . , Nsample do
5: if |ω̇y| > ε1 AND |ω̇x| < ε2 AND |ω̇z| < ε2 then
6: Respj = [Respj τy]
7: Regrj = [Regrj ω̇y]
8: Iyy = regress(Regrj,Respj)
9: j = j + 1

10: return Iyy . The identified value

Algorithm 5 Identification of Izz

1: j = 0
2: Resp0 = [ ]
3: Regr0 = [ ]
4: for i = 1, . . . , Nsample do
5: if |ω̇z| > ε1 AND |ω̇y| < ε2 AND |ω̇x| < ε2 then
6: Respj = [Respj τz]
7: Regrj = [Regrj ω̇z]
8: Izz = regress(Regrj,Respj)
9: j = j + 1

10: return Izz . The identified value

In Algorithms 3,4,5 at line 5, ε1,ε2 with ε1 > ε2 are user-defined thresholds
that has to be tuned taking into account the noise that affects the estimation
on kinematic derivatives. The condition |ω̇x| > ε1 AND |ω̇y| < ε2 AND
|ω̇z| < ε2 has to ensure that during the identification of Ixx the rotational
movement is only performed on the xs axis. Similar considerations apply to
Iyy and Izz.

The remaining parameters Ixy,Ixz,Iyz are not considered in this work, be-
cause in a typical industrial application the center of mass of robot tool and
payload has a commonly dominant component along the approach-axis (zs).
This fact makes negligible the elements of the inertia tensor outside the di-
agonal (Ixy,Ixz,Iyz) with respect to the diagonal elements Ixx,Iyy,Izz. Indeed,
many industrial robot controllers, such as Kuka Sunrise do not allow the
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configuration of the payload inertia tensor completely, but only its diagonal
elements. However, the proposed approach could be extended to identify
off-diagonal terms of the inertia tensor, even though such extension would
require to specify more complex and composite movements.

Compensation of F/T sensor offsets

The raw measurement Fraw,τ raw of the F/T sensor includes an undesired
temperature-dependent component Fo = [Fox , Foy , Foz ]

T , τ o = [τox , τoy , τoz ],
typical of strain gauge devices:

Fraw = F + Fo

τ raw = τ + τ o
(5)

Assuming that offsets do not significantly vary during the experiments,
they can be estimated by means of an initial calibration procedure that con-
sists of:

• Move the robot along a collision free path from the current pose to a
target pose in which the xs axis of the sensor frame is aligned to the
gravity vector.

• Stop the motion for an adequate time and log the sensor raw measure-
ments for a given time period.

• Keep the mean value F̄+
rawx

,τ̄+
rawx

of the logged measurements.

• Move the robot along a collision free path from the current pose to a
target pose in which the xs axis of the sensor frame is opposed to the
gravity vector.

• Stop the motion for an adequate time and log the sensor raw measure-
ments for a given time period.

• Keep the mean value F̄−
rawx

,τ̄−rawx
of the logged measurements.

• Compute the offset component as Fox = F̄+
rawx+F̄−

rawx

2
,τox = τ̄+rawx+τ̄−rawx

2

• Repeat the procedure for ys and zs axis.

After this calibration procedure, the sensor raw acquisitions can be cor-
rected by subtracting the estimated offsets.
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4. Methods

The three identification movements involve a task that is defined in terms
of Cartesian angular velocities expressed in the sensor frame. Because the
ISO standards impose the maximum value on linear velocities, the ramp on
the angular task velocities has to be properly designed to not exceed these
limits. If the robot payload can be contained into a box of known dimensions
the maximum admissible value of angular velocity can be computed as the
ratio between the maximum linear velocity and the maximum distance of the
sensor frame from the extreme point of the box.

Therefore, the starting pose can be chosen taking into account safety and
practical considerations. In this work the starting pose is computed by a
grid-based optimization algorithm that maximizes the distance of the robot
link and payload from the obstacles and the protected area, while ensuring an
high manipulability to avoid singular configurations during the motion. After
reaching the starting pose the robot has to be properly controlled to perform
the identification movement without exceeding the limits on joint velocities
and accelerations. As proposed in [57], a redundant robot can efficiently
accomplish a task expressed in Cartesian velocities domain exploiting its
null space and taking into account hard constraints as limited joint range or
bounded velocities. In the remainder of the section the grid-based search of
optimal starting configuration and the Saturation in the Null Space algorithm
(SNS) are presented.

Grid-based search of optimal starting configuration

The robot starts the identification movements from a configuration that
can be optimized with reference to a customized objective index. In this
work the adopted indices are:

• Minimum value of the normalized link-obstacle distance vec-
tor, where the normalization is computed by means of the robot workspace
diameter;

• Manipulability index, computed as the ratio between the minimum
and the maximum singular value of the jacobian matrix J.

Therefore the objective function can be expressed as:

fo(q) = wdmin(D) + wm
min(svd(J(q)))

max(svd(J(q)))
(6)
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Where svd(J) returns a vector containing the singular values of the matrix J,
min and max operators extract respectively the minimum and the maximum
value of an input vector. D is the normalized vector of minimum link-obstacle
distances.

The whole robot workspace is sampled into a three-dimensional grid of
Nv vertices. For each vertex, the objective function is computed for a num-
ber of Nc joint configurations and the optimum configuration is maintained.
Then, the result can be refined generating a second grid, smaller than the
previous one and centered in the selected vertex. The same iterative proce-
dure is repeated for the second grid and the optimum configuration qopt is
finally selected as starting configuration for the identification movement. The
pseudo-code of Algorithm 6 describes the iterative double-grid procedure to
generate the optimal starting configuration for the identification movement.
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Algorithm 6 The double grid-based search of the optimal starting configu-
ration

1: procedure getStartConfiguration(axis) . axis = x, y, z
2: ojective = −1
3: qopt = null
4: v∗ = null
5: V1 = Cartesian workspace grid
6: for v in V1 do
7: for i = 1, . . . , Nc do
8: q = getConfigForPose(v)
9: obj = f(q)

10: if obj > ojective then
11: objective = obj
12: qopt = q
13: v∗ = v
14: V2 = smaller grid centered inv∗

15: for v in V2 do
16: for i = 1, . . . , Nc do
17: q = getConfigForPose(v)
18: obj = f(q)
19: if obj > ojective then
20: objective = obj
21: qopt = q

22: return qopt . The optimal starting configuration

Where v = vx, vy, vz is a vertex of the selected grid, the function getConfigForPose(v)
returns a random collision-free configuration that solves the inverse kinematic
problem with reference to the sensor frame. Fig. 1 highlights the first grid
containing the robot workspace and the smaller grid where the optimal con-
figuration search has been refined.

Note that the sensor frame in the desired vertex position has the to be
oriented so that the selected axis is parallel to the gravity vector. Then,
the remaining axes can be oriented taking into account the operator safety
conditions. Indeed, a protected zone, in which an operator can freely move,
is often defined in a robot workcell. However, even if the robot is outside the
protected area, accidental break of power supply can cause the detachment
of the robot payload. Therefore, assuming that the identification movement
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Figure 1: The double grid and the optimal robot starting configuration for the identifica-
tion movement.

consists of a partial rotation along one axis, other axes can be at first oriented
so that in case of detachment the load is thrown outside the protected area.
This can be realized choosing, if possible, the z-axis of payload to start the
identification motion orthogonal to the plane that represents the boundary
of the protected area.

Saturation in the null space

The saturation in the null space (SNS) algorithm maps a desired Carte-
sian task ẋtask at the current robot configuration q into joint target velocities
q̇ref ensuring to not exceed the specified limits. SNS starts computing the
minimum velocity norm solution by means of the pseudoinverse of the task
Jacobian J(q), if it does not represent a feasible solution, one or more joints
can be saturated to limit exceeding velocities while maintaining the desired
target task. If joint saturation is still insufficient, the task is finally scaled.
The basic version of SNS and the procedure to get the task scaling factor
and the most critical joint (i.e. the joint whose velocity is the closest to the
limits) are described in form of pseudo-code in Algorithm 7 and Algorithm
8, respectively.
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Algorithm 7 Saturation in the null space algorithm, the main loop

1: procedure SNS
2: W = −1, q̇N = 0,s = 1, s∗ = 0,limit = FALSE
3: while not limit do
4: q̇ref = q̇N + pinv(JW)(ẋtask − Jq̇N)
5: if ∃qi ∈ q̇ref : qi > Qi,max OR qi < Qi,min then
6: limit = TRUE
7: a = pinv(JW)ẋ
8: b = q̇ref − a
9: [stmp, jc] = getScaleAndCriticalJoint(a,b)

10: if stmp > s∗ then
11: s∗ = stmp

12: W∗ = W
13: q̇∗

N = q̇N

14: Wjcjc = 0
15: if q̇jc > Q̇max then
16: q̇N,jc = Q̇max

17: else
18: if q̇jc < Q̇min then
19: q̇N,jc = Q̇min

20: if rank(JW) < 6 then
21: s = s∗, W = W∗, q̇N = q̇∗

N

22: q̇ref = q̇N + pinv(JW)(sẋtask − Jq̇N)
23: limit = FALSE
24: return q̇ref . The target joint velocities
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Algorithm 8 Saturation in the null space algorithm, get the task scaling
factor and the most critical joint

1: procedure getScaleAndCriticalJoint(a,b)
2: for i = 1, n do
3: Smin,i = (Q̇min,i − bi)/ai
4: Smax,i = (Q̇max,i − bi)/ai
5: if Smin,i > Smax,i then
6: Smin,i = Smax,i

7: Smax,i = Smin,i

8: smax = mini(Smax,i)
9: smin = maxi(Smin,i)

10: jc = argmini(Smax,i)
11: if smin > smax OR smax < 0 OR smin > 1 then
12: s = 0
13: else
14: s = smax

15: return s,jc . The task scaling factor and the most critical joint

In Algorithm 7 pinv(·) is the pseudoinverse operator, W is a diagonal
matrix with 0/1 elements, if Wii is null then the velocity of the joint ji is
saturated. While in Algorithm 8 s ≤ 1 is the task scaling factor, jc is the
most critical joint and q̇N is the null space component of the joint target
velocities that contains the contribution of the saturated joints.

Note that the specified limits on joint positions Qmin < q < Qmax, ve-
locities Vmin < q̇ < Vmax and accelerations Amin < q̈ < Amax are merged
together and mapped into velocity constraints taking into account the sam-
pling time Ts as follows:

Q̇min,i = max(
Qmin,i−qi

Ts
,−Vmax,i,−

√
2Amax,i(qi −Qmin,i))

Q̇max,i = min(
Qmax,i−qi

Ts
, Vmax,i,−

√
2Amax,i(Qmax,i − qi))

(7)

Identification of load inertial parameters

The overall identification procedure consists of two robot movements for
each of the three axes of the F/T sensor. First, the robot has to be moved
along a collision-free path from its current configuration towards the optimal
configuration computed by means of the grid-based procedure of Algorithm
6. The collision-avoidance motion can be planned by means of the Open
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Figure 2: The block diagram of the motion to the optimal starting configuration for the
identification motion.

Motion Planning Library (OMPL) framework [54] involving the usage of
RRT-Connect or RRT-Star algorithm in the joint space. The block diagram
of Fig. 2 shows how the motion to the optimal starting configuration is
accomplished.

Once the starting configuration is reached, the robot has to be controlled
to perform the identification movement. As discussed in Section 3, the desired
task xtask is expressed in the Cartesian angular velocities domain and consists
in one or more trapezoidal signals generating a constant acceleration motion.
The task is mapped into joint target velocities by means of the SNS algorithm
and then integrated to provide the reference signal to the robot low-level
position controller. During the motion the current joint positions are used
to compute the next joint target positions (SNS) and check if the minimum
distance between robot, payload and obstacles are exceeding a certain safe
threshold and, in case, stop the robot and restart the procedure.

In the meanwhile, the F/T sensor measurements are acquired and linear
accelerations, angular velocities and acceleration expressed in the F/T sensor
frame are on-line estimated by means of the Kalman filter of [19] so that the
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Figure 3: The block diagram of the procedure for the identification of inertial parameters.

identification regression can be performed and the inertial parameters can be
updated. The block diagram of Fig. 3 represents the proposed identification
procedure.

The overall identification procedure can be summarized as follows:

• Motion to start configuration, with xs aligned with the gravity vector:

1. Grid-based search of optimal starting configuration (Algorithm 6);

2. Generation of collision avoidance path to starting configuration;

3. Execute motion;

• Identification motion for Ixx

1. Command the robot using the target computed by means of SNS
(Algorithm 7);

2. Monitor robot configuration to avoid collision;

3. Compute Cartesian velocities and acceleration of the payload;

4. Acquire F/T measurements;

5. Identify the inertial parameters (Algorithm 1,2,3).

• Repeat the procedure for ys and zs axis.
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5. Experimental results

The proposed identification scheme has been implemented using the Oro-
cos real-time framework and tested on a 7-DOF KUKA LWR 4+ (workspace
radius 800 mm, rated payload 7 kg), equipped with a 6-DOF F/T ATI Mini45
IP65 (measuring range ± 145 N on X-Y, ± 290 N on Z, ± 5 Nm on all axes,
resolution 1/16 N - 1/752 Nm). The planning of robot motions has been
implemented using V-REP [59] by Coppelia Robotics, a robotic simulation
framework whose main features are:

• Robot models: 3D and kinematic models of several manipulators can
be included in a simulation.

• 3D import: STL and other common 3D mesh file formats can be im-
ported to create a realistic scene of the workcell.

• Scripting: Lua and C++ regular APIs can be used to create customiz-
able scripts associated to the scene objects.

• Path planning: OMPL are wrapped into a dedicated plugin.

• Minimum distance calculation: distances between any scene object can
be efficiently computed.

• Remote Control: thanks to the Remote API framework the simulation
can establish a client-server TCP/IP socket to interact with an external
application as a Matlab script or a Java program or directly control a
remote hardware (i.e. the robot).

The experimental workcell has been reconstructed in V-REP including
virtual obstacle planes representing the obstacles and the limit of the pro-
tected area. Fig. 4 shows the simulated scene with the robot at the cell home-
position (A) and the optimal configurations for the identification movements
(B,C,D) computed by means of the grid-based search.

The proposed method has been tested by using two different payloads
whose inertial description has been CAD computing and used as the reference
for the identification of inertial parameters. The payloads adopted in the
experiments are an asymmetric steel block and an aluminum cylinder.

The Cartesian velocity task for each of the three robot movements consist
of two opposed trapezoidal signals with accelerations equal to 4.8 rad/s2
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Figure 4: A: home-position; B,C,D robot optimal configurations for the identification
movements.

A B

Figure 5: Payloads used in the experiments. A: steel block; B: cylinder.
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Figure 6: The angular velocities during the identification movement.

followed by a motionless phase of about 1 s for the identification of mass and
COM. Fig. 6 and Fig. 7 show the tracking of the task expressed in form of
angular velocities and accelerations, respectively.

Moreover, Fig. 8 and Fig. 9 show the F/T sensor measurements compared
to the forces and torques reconstructed offline using the estimated velocities
and accelerations and the identified inertial parameters.

The identified parameters and the percentage errors are reported in Table
1. Note that the adopted reference values come from the direct measurement
for m, while c and I are CAD-computed using the measured mass as input
for computation.

Table 1: Identification results

Steel block Cylinder

reference identified error (%) reference identified error (%)

m (kg) 2.7830 2.7806 0.08 1.0600 1.0598 0.01
mcx(kg ·m) 0 < 10−7 0 0 < 10−7 0
mcy(kg ·m) −4.682 · 10−2 −4.662 · 10−2 0.42 0 < 10−7 0
mcz(kg ·m) 1.015 · 10−1 1.014 · 10−1 0.05 1.908 · 10−2 1.904 · 10−2 0.16
Ixx(kg ·m2) 6.928 · 10−3 7.033 · 10−3 1.51 1.259 · 10−3 1.278 · 10−3 1.54
Iyy(kg ·m2) 6.634 · 10−3 7.407 · 10−3 11.64 1.259 · 10−3 1.417 · 10−3 12.57
Izz(kg ·m2) 3.326 · 10−3 3.081 · 10−3 7.36 1.603 · 10−3 1.755 · 10−3 9.48
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Figure 7: The angular acceleration during the identification movement.
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Figure 8: Forces measured by the F/T sensor during the identification movement.
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Figure 9: Forces measured by the F/T sensor during the identification movement.

Error analysis

The main sources of error in the identification of inertial parameters are
the F/T sensor measurement noise and the uncertainties on the estimations of
orientation and angular acceleration of the F/T sensor frame provided by the
Kalman filter during the identification motions. Table 2 shows the variances
of F/T sensor measurements, computed during the motionless phases and the
variance of the Kalman filter estimations of orientation (represented by the
quaternion q) and angular acceleration ω̇. In the following the experiments
are referred to the steel-block payload.

Table 2: The main uncertainty sources

(a) F/T sensor noise variances

Parameter Variance

Fx(N)2 3.0 · 10−3

Fy(N)2 2.3 · 10−3

Fz(N)2 5.3 · 10−3

τx(Nm)2 7.9 · 10−6

τy(Nm)2 9.3 · 10−6

τz(Nm)2 9.2 · 10−6

(b) Kalman filter estimation variances

Parameter Variance

q0..3 ≈ 10−14

ω̇x(rad/s2)2 1.1 · 10−3

ω̇y(rad/s2)2 1.1 · 10−3

ω̇z(rad/s2)2 1.1 · 10−3

It is worth observing that the variances associated to orientation estima-
tion are negligible if compared to those of F/T measurements, so that it can
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be assumed that in Eq. (3) the gravity vector g, computed on the basis of the
estimated quaternion, is not affected by uncertainty propagation, while the
only error source derives from F/T sensor measurements. Therefore, the co-
variance matrix Σ of the identified parameters m and mc can be recursively
expressed as in [46]:

Σk = [1−Σk−1regrTk (regrkΣk−1regrTk + Λ)] (8)

where Λ contains the variances of the F/T sensor measurements and 1 is the
identity matrix. Note that in case of mass identification Σ = Σm reduces to
one-element matrix (Alg. 1), while Σ = Σc is a 3x3 matrix in case of mc
identification (Alg. 2).

Uncertainties can be finally defined by means of the 1-sigma rule as the
square root of the diagonal terms (neglecting correlations) of the error co-
variance matrix Σ, to obtain a 68% confidence level:

δm =
√

Σm

δ(mcx) =
√

Σc1,1

δ(mcy) =
√

Σc2,2

δ(mcz) =
√

Σc3,3

(9)

where the symbol δ indicates the uncertainty associated to a variable.
On the other hand, the error model of Eq. (8) is not appropriate for cal-

culating the uncertainties associated to the identified values of Ixx,Iyy,Izz. In
Eq. (4) both uncertainties on torque measurements and angular acceleration
estimations have to be taken into account as they have a similar order of
magnitude. In that case, uncertainties can be propagated by means of the
following calculations [60]:

δIxx
Ixx,ref

=
√

( δτx
τx,ref

)2 + ( δω̇x

ω̇x,ref
)2

δIyy
Iyy,ref

=
√

( δτy
τy,ref

)2 + ( δω̇y

ω̇y,ref
)2

δIzz
Izz,ref

=
√

( δτz
τz,ref

)2 + ( δω̇z

ω̇z,ref
)2

(10)

in which Ixx,ref is the CAD-computed target value of Ixx, δτx and δω̇x are
calculated as the square root of the variance reported in Table 2 (i.e. 1-
sigma uncertainty), ω̇x,ref = 4.8 rad/s is the target acceleration and τx,ref =
Ixx,ref · ω̇x,ref is the expected torque during the identification motion. The
components of y and z axis are analogously defined.
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The uncertainties on the inertial parameters are reported in Table 3, com-
puted as the final values from of recursive procedure (8) for m and mc and
from the uncertainty propagation formula (10) for Ixx,Iyy,Izz. Such theorical
uncertainties are a bit smaller than the experimental identification errors.
However, it is worth to note that the previously described propagation anal-
ysis does not take into account systematic errors such as the misalignment
of the robot basis with respect to the horizontal plane.

Table 3: Uncertainties on inertial parameters

Parameter Reference value and uncertainty

m (kg) 2.7830± 7.9 · 10−4 (0.03 %)
mcx (kg·m) 0± 1.8 · 10−6

mcy (kg·m) −4.682 · 10−2 ± 1.4 · 10−6 (0.003 %)
mcz (kg·m) 1.015 · 10−1 ± 2.0 · 10−6 (0.002 %)
Ixx (kg·m2) 6.928 · 10−3 ± 2.6 · 10−4 (3.7 %)
Iyy (kg·m2) 6.634 · 10−3 ± 1.6 · 10−4 (2.4 %)
Izz (kg·m2) 3.326 · 10−3 ± 1.2 · 10−4 (3.6 %)

6. Conclusions

The paper has described the logical sequence applied to design a method-
ology for the identification of the robot payload, supporting human-robot
collaborative applications. In particular, the design of the identification pro-
cedure started from considering that the effect on a wrist-mounted F/T sen-
sor (or estimator) of a relevant inertial parameter (i.e. the mass, the center
of mass or the diagonal terms of the inertia tensor) can be decoupled from
the effects of other parameters by executing specific test motions. Such test
motions can then be safely executed even in presence of human operators,
provided that the robot configuration at the beginning of motion is properly
selected (i.e. optimizing the distance from safe constrained zones or other
obstacles and the manipulability of the robot in that configuration) and that
both cartesian and joint velocities/accelerations are kept within appropriate
bounds.

An aspect that is particularly relevant for future extensions of the pro-
posed method, which has not been considered so far, is the adaptation of the
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planned paths and trajectories to the real situation of the collaborative work-
cell. Indeed, in a really collaborative scenario humans should not be forced
to operate within a limited part of the workspace. Dynamically changing
safety zones would require online re-scheduling or even re-planning of the
payload identification motion sequence. The design of an efficient and prac-
tically feasible solution for this issue is the main objective of future works. A
further development could involve a quantitative analysis of the requirements
in terms of payload identification accuracy and its effects on the detection of
external forces and collision, aimed at the compliance with the international
standard specifications on collaborative applications.
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C. Fantuzzi. Variable admittance control preventing undesired oscillat-
ing behaviors in physical human-robot interaction. In Proceedings of
the IEEE International Conference on Intelligent Robots and Systems,
pages 3611–3616, Vancouver, Canada, 2017.

28


