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Abstract. In this paper, we investigate the solution of the nonlinear junction Riemann

problem for the one dimensional shallow water equations in a simple star network of three

rectangular channels, by considering possible bottom discontinuities between the chan-
nels and possible differences in the channels width. In the literature, the solution of the

Riemann problem at the junction is investigated for the symmetric case without bottom
steps and channels width variations. Here, the solution is extended to a more general

case, such that neither equality of the channels width nor symmetric flow have assumed

in the downstream channels. All the analysis are performed under sub-critical flow con-
ditions. The results are summarized in a Theorem, and series of numerical examples are

considered to support our findings.

Keywords: Shallow water equations; Riemann problem; junction network.

1. Introduction

Nowadays, mathematical models for network flows constituted by partial differential

equations (PDEs) are well defined (e.g. well posedness, existence, and uniqueness)

[1]. Many applications benefit from this property. Typical examples are free surface

flow in irrigation systems or natural rivers, traffic flow, and blood flow [2–4]. In

particular, open channel flow in networks is of great interest from the environmental-

hydraulic perspective. The simplest form of channels network is a star network. It

consists of three rectangular channels joined at a junction node. Providing realistic

1



2 M. ELSHOBAKI, A. Valiani, and V. Caleffi

conditions at the junction node is therefore a crucial point to characterize the water

flow in such system.

The one dimensional shallow water equations (SWE) are well established for sim-

ulation of open channel flow in both sub-critical and super-critical flow [5]. However,

using SWE in open channels network is not a trivial target because the junction

node is a singular point for the SWE [6]. Therefore implementing one dimensional

simulation in such networks requires internal boundary conditions, which are defined

as functions dependent on the solution, to connect the channels at each junction

node.

In the last decade, the use of the one dimensional SWE for the simulations of

open channels network has been presented in several works, see for examples [7–12].

Avoiding the ill-possedness of the used mathematical model, six unknowns (three

water depths and three water discharges) must computed at the junction node, pro-

viding the internal boundary conditions, and therefore the mathematical model is

well possed. Hence, six relationships have to be defined, forming a nonlinear system

that is numerically solved at each time step to provide the inner boundary con-

ditions. In the case of sub-critical flow [9, 11, 12], three relationships are obtained

by using the characteristics curves [13–15], the fourth relationship is obtained by

assuming the mass continuity at the junction node [6], the two remaining relation-

ships are obtainable by one of the following junction models; Equality model [16],

Gurram model [17], Hsu model [18], and Shabayek model [19]. Equality model is

derived by using equality of specific energy at the junction and it is simplified to

equality of flow depths by neglecting the velocity head at the junction node [16].

Gurram model is derived by applying momentum conservation principle and take

into account the junction angle. Hsu model is similarly derived as Gurram model

but with energy and momentum correction factors. Shabayek model is a general

nonlinear model based on the theory that involves most of the physical phenom-

ena at the junction. In the case of super-critical flow [11,12], four relationships are

obtained by using the characteristics curves [13–15], the fifth relationship is ob-

tained by assuming mass continuity at the junction [6], the remaining relationship

is obtained by the Rice super-critical junction model [20] or a non-linear dynamical

equation with momentum conservation [21–23]. However, these junction model are

used by Engineers without mathematical evidences that guarantee the existence

and uniqueness of the generated solutions.

Indeed, using further mathematical analysis, a recent approach for computing the

internal boundary conditions is defined on a proper extension of the Riemann prob-

lem. This approach is based on the theoretical background provided in [24] and is

numerically verified by Briani et al. [1]. The Riemann solution of SWE in one dimen-

sion is thoroughly investigated in [25–27] with or without bottom discontinuties. A

well posed Cauchy problem for P-system at the junction is established in [28] and

then in [29] is extended to define the Riemann problem for 2x2 conservation laws at

the junction. Goudiaby et al. [24] provides the mathematical tools for establishing

a unique solution of the nonlinear junction Riemann problem of 1-D SWE in a star-
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like network of three channels. Mass conservation and equality of energy levels at

the junction are assumed. The flow is assumed to be symmetric in the downstream

channels and sub-critical along the network.

Here, our analysis consideres the results by Goudiaby et al. [24] and by im-

plementing the nonlinear junction Riemann Problem of 1-D SWE, we face a more

general case. In particular, no assumptions of symmetry or equal channels width

are considered and bottom discontinuities between the channels at the junction are

taken into account. The conservation of mass and the total head equality at the

junction are used as a consequance of the steady state solution of the SWE, more

details about the total head physical meaning can be found in [30]. The flow in the

three channels are assumed to be sub-critical. The Riemann solution is geometri-

cally presented by finding the intersection points of certain curves in phase space.

These curves are Hugoniot loci [32], Integral curves [32], and junction curves. The

junction curves are defined by using mass conservation and total head equality,

whilst the physical domains of the non-dimensional SWE variables are of great

help. Several situations where no solution to the Riemann problem can be found,

are investigated.

The rest of paper is organized as follow: In Section 2, a brief discussion of

the shallow water equations is presented. The solution structure of the junction

Riemann problem is shown in Section 3. In Section 4, some examples to support

the findings of the previous section are presented. Lastly, in Section 5 we conclude

with some discussions on the results.

2. The shallow water equations and its standard Riemann problem

2.1. The shallow water equations

The one dimensional shallow water equations, also known as Saint Venant equations,

are defined as a mathematical model to describe open channel flow by considering

the vertical depth small with respect to the horizontal length scale. SWE are a

particular case of Navier- Stokes equations, obtained by integrating the mass and

momentum equations over the depth. The SWE can be written in a conservative

form as:

∂U

∂t
+
∂F

∂x
= S, in [0, L], (2.1)

with

U =

[
h

hu

]
, F =

[
hu

hu2 + gh2

2

]
, S =

[
0

−gh(S0 − Sf )

]
, (2.2)

where u and h are the flow velocity and flow depth, respectively. L is the channel

length; g is the gravity acceleration; So = − ∂z
∂x is the bed slope and z is the bottom

elevation; Sf is the friction slope. Since the Riemann solution is asociated to the

frictionless cases [25], then the friction slope can be neglected and therefore it is
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assumed here to be equal to zero. A non-zero bottom elevation is considered.

Equation (2.1) can be cast in a quasi-linear form. Then we have

∂v

∂t
+A(v)

∂v

∂x
= 0, in [0, L], (2.3)

with

v =

 hhu
z

 , A(v) =

 0 1 0

c2 − u2 hu gh
0 0 0

 . (2.4)

The matrix A has three real distinct eigenvalues λj with j = 1, 2, 3.

λ1(v) = u− c, λ2(v) = u+ c, λ3(v) = 0, (2.5)

where c =
√
gh is the wave celerity. A very important parameter for the shallow

water equations is the Froude number Fr = u
c . The flow is sub-critical if Fr < 1,

critical if Fr = 1, and super-critical if Fr > 1. The critical curves are defined as

follow

C+ := {q = h
√
gh}, C− := {q = −h

√
gh}, (2.6)

respectively; q = hu is the specific discharge. On the critical curves the left and the

Fig. 1. Star-Network of three rectangular channels.

right eigenvalues (i.e., λ1 and λ2, respectively) coincide with the third eigenvalue

λ3. In this condition the SWE lose their hyperbolicity and therefore system (2.3)

is not a strictly- hyperbolic system [27]. On the other hand, under sub-critical flow

conditions the system is always strictly hyperbolic and the theory of hyperbolic

systems can be used. In the natural open channels networks, the Fr number is

generally small therefore, considering only Fr numbers smaller than 1 does not
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limit the practical utility of this analysis. Thus, for simplicity we restrict ourselves

to sub-critical flow conditions for the rest of the paper.

2.2. Standard Riemann problem

Assuming a constant bottom elevation, the system (2.3) can be used to define the

standard Riemann problem for a single channel. We consider the following initial

piecewise constant states

v(0, x) =

{
vl if x < 0

vr if x > 0
(2.7)

where vl and vr are the left and right initial condition, respectively. In the sub-

critical conditions, the solution consists of two unperturbed states and an interme-

diate state separated by a left wave and a right wave [27]. The intermediate state

is connected to the left unperturbed state through a shock or a rarefaction, and

is connected to the right unperturbed state through a shock or rarefaction. There-

fore, the intermediate state are defined by using the Rankine Hugoniot loci and

Riemann integral curves as it is shown in the next subsection.

2.3. Left and right wave curves

The Hugoniot loci and integral curves are combined to define the left wave curve

(τl-curve) and the right wave curve ( τr- curve). First, we introduce the functions

βl and βr as:

βl(ho; vl) = qo = Rl(ho, vl) ∪ Sl(ho, vl) =

{
Rl(ho; vl), ifho < hl,

Sl(ho; vl), ifho > hl,
(2.8)

and

βr(ho; vr) = qo = Rr(ho, vr) ∪ Sr(ho, vr) =

{
Rr(ho, vr), ifho < hr,

Sr(ho, vr), ifho > hr.
(2.9)

Where the left and the right shock waves are

Sl(ho; vl) = qo = ql + (ho − hl)

 ql
hl
−

√
gho(ho + hl)

2hl

 , forho > hl, (2.10)

Sr(ho; vr) = qo = qr + (ho − hr)

 qr
hr

+

√
gho(ho + hr)

2hr

 , forho > hr, (2.11)

and the left and the right rarefaction waves are

Rl(ho; vl) = qo = ho

(
ql
hl

+ 2
√
ghl − 2

√
gho

)
, forho < hl, (2.12)
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Rr(ho; vr) = qo = ho

(
qr
hr
− 2
√
ghr + 2

√
gho

)
, forho < hr. (2.13)

Then, the τl- curve is

τl(ho; vl) =

[
ho

βl(ho; vl)

]
, (2.14)

and the τr- curve is

τr(ho; vr) =

[
ho

βr(ho; vr)

]
. (2.15)

In the next propositions, the extrema of the previous functions are computed to lo-

cate the maximum and the minimum of the curve τl(ho; vl) and the curve τr(ho; vr).

Proposition 2.1. Considering the sub-critical flow conditions, the only part of the

curve τl(ho; vl) that can intersect with the positive critical curve C+ is the rarefac-

tion portion. That intersection, denoted by vlmo , is characterized by the maximum

of βl and is given by

hlmo =
1

g

(
ql

3hl
+

2

3

√
ghl

)2

, (2.16)

qlmo = βl(h
lm
o ; vl) = hlmo

√
ghlmo . (2.17)

Moreover, τl(ho; vl) is given by a concave function that is increasing in the interval

]0, hlmo ] and decreasing in the interval [hlmo ,+∞[. Therefore, the increasing part of

the function varies from

lim
ho→0+

βl(ho; vl) = 0 to βl(h
lm
o ; vl) = hlmo

√
ghlmo , (2.18)

and the decreasing part varies from

βl(h
lm
o ; vl) = hlmo

√
ghlmo to lim

ho→+∞
βl(ho; vl) = −∞. (2.19)

Proof. The general idea is summarized as follow: First, assuming that the shock

portion is intersected with the critical curve C+. Then, one can show that this

assumption violates the sub-critical flow conditions. Indeed, the proof follows by

contradiction, see [24].

Proposition 2.2. Considering the sub-critical flow conditions, the only part of

the curve τr(ho; vr) that can intersect with the critical curve C− is the rarefaction

portion. That intersection, denotes by vrmo , is characterized by the minimum of βr
and is given by

hrmo =
1

g

(
− qr

3hr
+

2

3

√
ghr

)2

, (2.20)



Nonlinear Junction Riemann Solution 7

qrmo = −βr(hrmo ; vr) = hrmo
√
ghrmo . (2.21)

Moreover, τr(ho; vr) is given by a convex function that is decreasing in the interval

]0, hrmo ] and increasing in the interval [hrmo ,+∞[. Therefore, the decreasing part of

the function varies from

lim
ho→0+

βr(ho; vr) = 0 to βr(hrmo ; vr) = −hrmo
√
ghrmo , (2.22)

and the increasing part varies from

βr(hrmo ; vr) = −hrmo
√
ghrmo to lim

ho→+∞
βr(ho; vr) = +∞. (2.23)

Proof. Look at the proof of Proposition 2.1.

We can also prove that the states (ho, qo) such that ho < hlmo and ho < hrmo
violate the sub-critical flow conditions. Therefore, Proposition 2.1 and proposi-

tion 2.2 assure that τl(ho; vl) and τr(ho; vr) intersect only at one point which

is the intermediate state v∗ in the solution of the standard Riemann problem

(2.3) and (2.7). Furthermore, the components (h∗, q∗) of the intermediate state

v∗ = τl(h∗; vl) ∩ τr(h∗; vr) are computed by solving the following nonlinear func-

tion:

β(h∗; v) ≡ βl(h∗; vl)− βr(h∗, vr) = 0. (2.24)

Example 2.1. We present the standard Riemann solution of (2.3) and ( 2.7) with

initial data:

vl =

hlql
zl

 =

1

0

0

 , vr =

hrqr
zr

 =

0.5

0

0

 . (2.25)

Figure 2 represents the Riemann solution of Example 2.1. In the regions above the

curve C+ and below the curve C−, the sub-critical flow conditions are not satisfied.

Note that these regions are the same in all next figures of Section 3 and Section

4. The dot lines represent the left and right rarefaction (Rl(ho; vl) and Rr(ho; vr)).

The solid lines represent the left shock and right shock (Sl(ho; vl) and Sr(ho; vr)).

The intermediate state v∗ in the Riemann solution is the intersection between the

curves τl and τr. The intermediate state is connected to the left initial state vl
through a rarefaction (dot line) and to the right initial state vr through a shock

(solid line). The state vlmo is the maximum value of the left- curve τl and corresponds

to the intersection between the left-curve τl and the critical curve C+. Similarly, the

state vrmo is the minimum of the right curve τr and corresponds to the intersection

between the right curve τr and the critical curve C−. For more clarification, Figure

3 shows the evolution of the Riemann solution plotted at t = 0.2[s]. It is clear that

the solution consists of two waves, the first is a rarefaction and the second is a

shock, and the intermediate state.
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Fig. 2. The solution of the standard Riemann problem in a single channel.
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Fig. 3. Water height and flow discharge profiles in the standard Riemann solution at t = 0.2[s],

are shown in solid lines. The initial data are shown in dot lines.

3. Nonlinear junction Riemann problem

In this Section, we newly provide the solution structure of the junction Riemann

problem in the presence of bottom discontinuities and for non-symmetric down-

stream channels with possible different channels width. By considering the star
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network reported in Fig.1, the shallow water equations are defined as:
∂v1
∂t +A1(v1)∂v1

∂x = 0, x < xJ ,
∂v2
∂t +A2(v2)∂v2

∂x = 0, x > xJ ,
∂v3
∂t +A3(v3)∂v3

∂x = 0, x > xJ ,

(3.1)

where xJ is the junction point and A(v) is defined in (2.4). The junction Riemann

problem is given and governed by the initial data:
v1(0, x) = v1l, x < xJ ,

v2(0, x) = v2r, x > xJ ,

v2(0, x) = v3r, x > xJ .

(3.2)

Considering the Riemann problem (3.1-3.2), the Riemann solution consists of six

states denote by v1l, v2r, v3r, v1∗, v2∗, and v3∗. From v1l to v1∗, the relationship

(2.10) or (2.12) holds. From v2r to v2∗ and from v3r to v3∗, the relationship (2.11)

or (2.13) holds. The states v1∗, v2∗, and v3∗ are connected to each other by the mass

conservation and the total head balance relationships. The following conditions are

obtained

q1∗ = ω2q2∗ + ω3q3∗; q2∗ =

(
r

ω2

)
q1∗, q3∗ =

(
1− r
ω3

)
q1∗, atxJ , (3.3)

h1∗ +
q21∗

2gh21∗
= Z2 + h2∗ +

q22∗
2gh22∗

, atxJ , (3.4)

h1∗ +
q21∗

2gh21∗
= Z3 + h3∗ +

q23∗
2gh23∗

, atxJ , (3.5)

where 0 < r = ω2
q2∗
q1∗

< 1 is the discharge ratio. 0 < ω2 = b2
b1

and 0 < ω3 = b3
b1

are the ratio between the second channel width and the first channel width, and

the third channel width and the first channel width, respectively. Z2 = z2 − z1
and Z3 = z3 − z1 are the bottom discontinuities between the first and the second

channels, and between the first and the third channels, respectively. The conditions

at the junction (xJ = 0) are the conservation of mass and the total head balances.

For a more detailed discussion about the physical meaning of the total head concept

and its relation to the flow depth ratio, we refer to [30,31].

Moreover, the correct left wave connecting v1∗ to v1l is

q1∗ = β1l(h1∗; v1l), (3.6)

where β1l is given by (2.8), and the correct right waves connecting v2∗ to v2r and

v3∗ to v3r are

q2∗ = β2r(h2∗; v2r), (3.7)

and

q3∗ = β3r(h3∗; v3r), (3.8)

where β2r and β3r are given by (2.9), respectively.
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3.1. Existence and uniqueness of the solution of the nonlinear

junction Riemann problem

In this subsection, we show that the solution of the junction Riemann problem (3.1-

3.2) exists under certain hypothesis and is unique under sub-critical flow conditions.

Moreover, we demonstrate also the conditions for which the solution does not exist.

Hence, we look to find (h1∗, h2∗, h3∗, q1∗, q2∗, q3∗) that satisfy (3.3-3.8), while system

(3.6-3.8) consists of eight possible combination. These possible combinations are:

(1) If h1∗ < h1l, h2∗ < h2r, and h3∗ < h3r i.e., left and right waves are rarefaction,

then (v1∗, v2∗, v3∗) satisfies (3.3-3.5) such that v1∗ ∈ R1l, v2∗ ∈ R2r, and v3∗ ∈
R3r.

(2) If h1∗ > h1l, h2∗ > h2r, and h3∗ > h3r i.e., left and right waves are shock, then

(v1∗, v2∗, v3∗) satisfies (3.3-3.5) such that v1∗ ∈ S1l, v2∗ ∈ S2r, and v3∗ ∈ S3r.

(3) If h1∗ < h1l, h2∗ > h2r, and h3∗ > h3r i.e., left rarefaction wave and right shock

waves, then (v1∗, v2∗, v3∗) satisfies (3.3-3.5) such that v1∗ ∈ R1l, v2∗ ∈ S2r, and

v3∗ ∈ S3r.

(4) If h1∗ > h1l, h2∗ < h2r, and h3∗ < h3r i.e., left shock wave and right rarefaction

waves, then (v1∗, v2∗, v3∗) satisfies (3.3-3.5) such that v1∗ ∈ S1l, v2∗ ∈ R2r, and

v3∗ ∈ R3r.

(5) If h1∗ > h1l, h2∗ > h2r, and h3∗ < h3r i.e., left shock wave, first right shock

wave, and second right rarefaction wave, then (v1∗, v2∗, v3∗) satisfies (3.3-3.5)

such that v1∗ ∈ S1l, v2∗ ∈ S2r, and v3∗ ∈ R3r.

(6) If h1∗ > h1l, h2∗ < h2r, and h3∗ > h3r i.e., left shock wave, first right rarefaction

wave, and second right shock wave, then (v1∗, v2∗, v3∗) satisfies (3.3-3.5) such

that v1∗ ∈ S1l, v2∗ ∈ R2r, and v3∗ ∈ S3r.

(7) If h1∗ < h1l, h2∗ > h2r, and h3∗ < h3r i.e., left rarefaction wave, first right shock

wave, and second right rarefaction wave, then (v1∗, v2∗, v3∗) satisfies (3.3-3.5)

such that v1∗ ∈ R1l, v2∗ ∈ S2r, and v3∗ ∈ R3r.

(8) If h1∗ < h1l, h2∗ < h2r, and h3∗ > h3r i.e., left rarefaction wave, first right

rarefaction wave, and second right shock wave, then (v1∗, v2∗, v3∗) satisfies (3.3-

3.5) such that v1∗ ∈ R1l, v2∗ ∈ R2r, and v3∗ ∈ S3r.

3.1.1. Mass-energy conservation at the junction.

For any left sub-critical state v1∗, the states v2∗ and v3∗ are computed by solving

the junction conditions (3.3-3.5). The states v2∗ and v3∗ are sub-critical states with

h2∗ > 0 and h3∗ > 0. Substituting the mass equation (3.3) in the total head balances

(3.4-3.5), the junction conditions give the following algebraic equations:

h32∗ + a2h
2
2∗ + c2 = 0, a2 = −h1∗ + Z2 −

q21∗
2gh21∗

, c2 =

(
r

ω2

)2
q21∗
2g
≥ 0, (3.9)

h33∗ + a3h
2
3∗ + c3 = 0, a3 = −h1∗ + Z3 −

q21∗
2gh21∗

, c3 =

(
1− r
ω3

)2
q21∗
2g
≥ 0. (3.10)
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The specific energy of each cross section (AB, CD, EF) at the channels junction

can be written as follows:

E1∗ = h1∗ +
q21∗

2gh21∗
, E2∗ = h1∗ +

(
r

ω2

)2
q21∗

2gh22∗
, E3∗ = h1∗ +

(
1− r
ω3

)2
q1∗

2gh23∗
.

(3.11)

The corresponding critical flow depths can be written as:

hc1 = 3

√
q21∗
g
, hc2 =

3

√(
r

ω2

)2
q21∗
g
, hc3 =

3

√(
1− r
ω3

)2
q21∗
g
, (3.12)

respectively, being:

hc2 =

(
r

ω2

) 2
3

hc1, hc3 =

(
1− r
ω3

) 2
3

hc1. (3.13)

Using the critical depth hc1 as the reference depth, the critical specific energy in

each cross section at the junction can be written as:

Ec1 =
3

2
hc1, Ec2 =

3

2

(
r

ω2

) 2
3

hc1, Ec3 =
3

2

(
1− r
ω3

) 2
3

hc1 (3.14)

The critical depth hc1 and the critical specific energy Ec1 are used to dimension-

less all the depths and all the specific energies in the three channels. The non-

dimensional depths are:

η1 =
h1∗
hc1

, η2 =
h2∗
hc1

, η3 =
h3∗
hc1

. (3.15)

and the non-dimensional specific energies are:

Γ1 =
E1∗

Ec1
, Γ2 =

E2∗

Ec1
, Γ3 =

E3∗

Ec1
. (3.16)

So that the fundamental relations between the non-dimensional specific energy and

the non-dimensional depth at each channel are [31]:

Γ1 =
2

3
η1+

1

3

1

η21
, Γ2 =

2

3
η2+

1

3

(
r

ω2

)2
1

η22
, Γ3 =

2

3
η3+

1

3

(
1− r
ω3

)2
1

η23
. (3.17)

The relationships (3.17) are plotted in Fig. 4, for a set of parameters r = 0.7,

ω2 = 0.2, and ω3 = 0.8. In the following, the influence on the solution of r and

ω into the solutions is highlighted. The variables η and Γ are investigated in the

following domains:

1 < η1 <∞,
(
r

ω2

) 2
3

< η2 <∞,
(

1− r
ω3

) 2
3

< η3 <∞, (3.18)

1 ≤ Γ1 <∞,
(
r

ω2

) 2
3

≤ Γ2 <∞,
(

1− r
ω3

) 2
3

≤ Γ3 <∞. (3.19)

Since the study is limited to sub-critical flows, both the choking of the flow and the

critical transition are excluded from the present analysis. In other word, the specific
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energy in any cross section in the channel is larger than the critical value, that is

necessary to cross over the junction. Using (3.15-3.17), then equations (3.9-3.10)

Fig. 4. Energy vs depth

are written in the following non-dimensional form

η32 + α2η
2
2 + µ2 = 0, α2 = −3

2
Γ1 + ∆ξ2, µ2 =

1

2

(
r

ω2

)2

, (3.20)

η33 + α3η
2
3 + µ3 = 0, α3 = −3

2
Γ1 + ∆ξ3, µ3 =

1

2

(
1− r
ω3

)2

, (3.21)

where ∆ξ2 = Z2

hc1
and ∆ξ3 = Z3

hc1
are the non-dimensional bottom discontinuities.

Eq. (3.20) and Eq. (3.21) are based on the use of the following third degree poly-

nomial:

P (η) = η3 + αη2 + µ; η = (η2, η3) α = (α2, α3), µ = (µ3, µ3). (3.22)

Considering the proper domains of r and ω, then µ is always positive. For the

forward facing step bottom the maximum permitted height of step is simply equal

to the difference between the upstream specific energy and the critical downstream

specific energy [30], that is:

2

3
∆ξ2 ≤ Γ1 −

(
r

ω2

) 2
3

,
2

3
∆ξ3 ≤ Γ1 −

(
1− r
ω3

) 2
3

. (3.23)

It is worth nothing that (3.23) and the restriction to sub-critical conditions imply

α < 0, while µ > 0 comes from the constrains on r.
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Using Cardano’s method [33], the roots of Eq. (3.22) are shown to be dependent on

the following discriminants:

∆2 = µ2

(
4

27
α3
2 + µ2

)
, (3.24)

∆3 = µ3

(
4

27
α3
3 + µ3

)
. (3.25)

∆ > 0 implies complex roots; ∆ = 0 implies multiple roots; ∆ < 0 implies real

roots.

Taking into account the definitions of α and µ in (3.20-3.21) and of sub-critical

conditions, the following relations hold:

4

27
α3
2 + µ2 = −1

2

(
Γ1 −

2

3
∆ξ2

)3

+
1

2

(
r

ω2

)2

= −1

2
Γ3
2 +

1

2

(
r

ω2

)2

< 0, (3.26)

4

27
α3
3 +µ3 = −1

2

(
Γ1 −

2

3
∆ξ3

)3

+
1

2

(
1− r
ω3

)2

= −1

2
Γ3
3 +

1

2

(
1− r
ω3

)2

< 0 (3.27)

in the physical domain of Γ1, Γ2, and Γ3 in (3.19).

Considering µ > 0 and Equations (3.26-3.27), then ∆ < 0 and therefore the poly-

nomial (3.22) has three real roots. Equation (3.23) is equivalent to ∆2 < 0 and

∆3 < 0, therefore the restriction on the discriminants is related to the step height

compared with the specific energy values.

For a given set (Γ1, ∆ξ2, ∆ξ3), the admissible range of r
ω2

and of 1−r
ω3

can be

obtained: (
r

ω2

)
≤
(

Γ1 −
2

3
∆ξ2

) 3
2

,

(
1− r
ω3

)
≤
(

Γ1 −
2

3
∆ξ3

) 3
2

. (3.28)

The discharge ratio r and the width ratio ω, as defined in equation (3.3), have to

satisfy conditions (3.28) for a certain set of η1 and ∆ξ. Conditions (3.28) can be

read as the maximum degree of the channels width contraction that is compatible

with the flow across the junction.

Considering the following expressions:

− 1− 27α2

2µ3
2

= −1 + 2

(
r

ω2

)2
1

Γ3
2

, −1− 27α3

2µ3
3

= −1 + 2

(
1− r
ω3

)2
1

Γ3
3

, (3.29)

and using the physical domains defined in Eq. (3.19), it is :

− 1 < −1− 27α

2µ3
< 1, 0 < θ = arccos

(
−1− 27α

2µ3

)
< π. (3.30)

Taking into account that ∆ < 0 and the inequalities in Eq. (3.30), then using

Cardano’s method and trigonometry properties, the polynomial (3.22) has three

real roots. The first root is

η(1) =

(
1

2
Γ1 −

1

3
∆ξ

)[
1− 2 cos

(
θ

3

)]
. (3.31)
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From (3.19) and (3.30), η(1) is shown to be real and negative and therefore is

excluded. The second root is

η(2) =

(
1

2
Γ1 −

1

3
∆ξ

)[
1− 2 cos

(
2π − θ

3

)]
. (3.32)

From (3.19) and (3.30), η(2) is shown to be positive and less than
(

r
ω2

)2/3
for the

second channel and less than
(

1−r
ω3

)2/3
for the third channel. The root η(2) is the

super-critical solution and therefore is excluded from the next analysis. The third

root is

η(3) =

(
1

2
Γ1 −

1

3
∆ξ

)[
1− 2 cos

(
2π + θ

3

)]
. (3.33)

From (3.19) and (3.30), η(3) is shown to be real and positive. It is greater than(
r
ω2

)2/3
for the second channel and greater than

(
1−r
ω3

)2/3
for the third channel.

The root η(3) is the sub-critical solution. The following Proposition summarize the

previous results in terms of dimensional variables with Y = η(3)hc1 and η(3) =

(η2, η3)

Proposition 3.1. For a given left state v1∗ that satisfies sub-critical flow condition,

there are only two right states v2∗ and v3∗ that satisfy the junction conditions (3.3-

3.5). The right states are

v2∗ =

Y (a2, c2)(
r
ω2

)
q1∗

z2

 ; Y (a2, c2) = −a2
3

[
1− 2 cos

(
2π + θ2

3

)]
, (3.34)

and

v3∗ =

 Y (a3, c3)(
1−r
ω3

)
q1∗

z3

 ; Y (a3, c3) = −a3
3

[
1− 2 cos

(
2π + θ3

3

)]
, (3.35)

with

a2 = −h1∗ + Z2 −
q21∗

2gh21∗
, c2 =

(
r

ω2

)2
q21∗
2g
, θ2 = arccos

(
−1− 27c2

2a32

)
, (3.36)

and

a3 = −h1∗ + Z3 −
q21∗

2gh21∗
, c3 =

(
1− r
ω3

)2
q21∗
2g
, θ3 = arccos

(
−1− 27c3

2a33

)
. (3.37)

r and ω satisfy (3.28) and (3.3).
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3.1.2. Junction curves.

Using Sec. 2.3 and Sec. 3.1.1: Let v1o ∈ τ1l(h1o; v1l), v2o ∈ τ2r(h2o; v2r), and v3o ∈
τ3r(h3o; v3r). For any value of h1o, we have (h2., q2.) and (h3., q3.) the physically

admissible states satisfying sub-critical flow conditions that connect to v1o by the

junction conditions. Where, the states (h2., q2.) and (h3., q3.) satisfy

h2. = Y (a2(h1o), c2(h1o)), q2. =
r

ω2
β1l(h1o; v1l), (3.38)

h3. = Y (a3(h1o), c3(h1o)), q3. =
(1− r)
ω3

β1l(h1o; v1l), (3.39)

where Y (., .) is given by (3.34-3.35) and

a2(h1o) = −h1o + Z2 −
β2
1l(h1o, v1l)

2gh21o
, c2(h1o) =

(
r

ω2

)
β2
1l(h1o; v1l)

2g
, (3.40)

a3(h1o) = −h1o + Z3 −
β2
1l(h1o; v1l)

2gh21o
, c2(h1o) =

(
(1− r)
ω3

)
β2
1l(h1o; v1l)

2g
. (3.41)

β1l(h1o, v1l) is defined by (2.8). Therefore, the junction curves denoted by

J1(h1o; v1l) and J2(h1o; v1l) can be defined as follow

J1(h1o; v1l) =

[
h2.
q2.

]
, J2(h1o; v1l) =

[
h3.
q3.

]
. (3.42)

Note that the intermediate states in the solution of the junction Riemann prob-

lem are computed by the intersections of J1 with τ2r and J2 with τ3r and their

corresponding states on τ1l. The next Propositions describe the extrema of the

functions Y (a2(h1o, c2(h1o)) and Y (a3(h1o, c3(h1o)).

Proposition 3.2. The functions Y (a(h1o), c(h1o)) are defined in (3.34) and (3.35).

They have their minimums at the maximum hlm1o which is given in Proposition 2.1,

such that {
dY (a2(h1o),c2(h1o))

dh1o
|h1o=hlm

1o
= 0,

d2Y (a2(h1o),c2(h1o))
dh2

1o
|h1o=hlm

1o
> 0.

(3.43)

{
dY (a3(h1o),c3(h1o))

dh1o
|h1o=hlm

1o
= 0,

d2Y (a3(h1o),c3(h1o))
dh2

1o
|h1o=hlm

1o
> 0.

(3.44)

Moreover, the functions Y (a(h1o, c(h1o)) are decreasing in ]0, hlm1o ] and increasing

in [hlm1o ,∞[. The decreasing part of the functions varies from

lim
h1o→0+

Y (a2(h1o), c2(h1o)) =
9

2
hlm1o − Z2 to Y lm

1o , (3.45)

lim
h1o→0+

Y (a3(h1o), c3(h1o)) =
9

2
hlm1o − Z3 to Y lm

2o . (3.46)
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while, the increasing part from

Y lm
1o to lim

h1o→0+
Y (a2(h1o), c2(h1o)) = +∞, (3.47)

Y lm
2o to lim

h1o→0+
Y (a3(h1o), c3(h1o)) = +∞, (3.48)

with

Y lm
1o =

(
hlm1o
2
− Z2

3

)[
1− 2 cos

(
θ2 + 2π

3

)]
, (3.49)

Y lm
2o =

(
hlm1o
2
− Z3

3

)[
1− 2 cos

(
θ3 + 2π

3

)]
, (3.50)

such that

θ2 = arccos

(
−1 + 2

(
r

ω2

)2(
hlm1o

hlm1o − 2
3∆ξ2

)3
)
, (3.51)

θ3 = arccos

(
−1 + 2

(
1− r
ω3

)2(
hlm1o

hlm1o − 2
3∆ξ3

)3
)
. (3.52)

Proposition 3.3. The junction curves J1(h1o, v1l) and J2(h1o; v1l) consist of two

branches connected by the minimum states, are denoted by vlm2. and vlm3. , respectively.

These states correspond to vlm1o by the junction conditions, withh
lm
2. = Y lm

1o , qlm2. =
(

r
ω2

)
qlm1o ,

hlm3. = Y lm
2o , qlm3. =

(
1−r
ω3

)
qlm1o ,

(3.53)

where Y lm
1o and Y lm

2o are given by Proposition 3.2. qlm1o is given by Proposition 2.1.

For any state (h2., q2.) on the junction curve J1(h1o; v1l) and (h3., q3.) on the

junction curve J2(h1o; v1l), we have{
h2. ≥ Y lm

1o ,

h3. ≥ Y lm
2o .

(3.54)

Furthermore, the following relations hold{
dh2.

dh1o
< 0, dq2.

dh1o
> 0, if 0 < h1o < hlm1o ,

dh3.

dh1o
< 0, dq3.

dh1o
> 0, if 0 < h1o < hlm1o ,

(3.55)

{
dh2.

dh1o
= 0, dq2.

dh1o
= 0, if h1o = hlm1o ,

dh3.

dh1o
= 0, dq3.

dh1o
= 0, if h1o = hlm1o ,

(3.56)

{
dh2.

dh1o
> 0, dq2.

dh1o
< 0, if hlm1o < h1o < +∞,

dh3.

dh1o
> 0, dq3.

dh1o
< 0, if hlm1o < h1o < +∞.

(3.57)



Nonlinear Junction Riemann Solution 17

Proposition 3.3 shows that each junction curve has two branches. One branch

corresponds to non sub-critical states which satisfies (3.55) and (3.56), and are

denoted by J1+(h1o; v1l) and J2+(h1o; v1l), respectively. This branch is excluded

from the analysis for violating sub-critical flow conditions. The second branch of

the junction curves, are denoted by J1−(h1o; v1l) and J2−(h1o; v2l), satisfy (3.56) and

(3.57), and corresponds to sub-critical flow conditions. The intermediate states in

the solution of the junction Riemann problem are obtained by the intersection of the

junction branches J1− and J2−, and the right curves τ2r(h1o; v2r) and τ3r(h1o; v3r),

respectively.

Moreover, by considering Propositions 2.1, 2.2, 3.1, 3.2, and 3.3 the solution of the

junction Riemann problem is summarized in the following Theorem:

Theorem 3.4. The Riemann Problem defined in (3.1-3.5) has a unique solution if

and only if {
qlm2. > β2r(hlm2. ; v2r),

qlm3. > β3r(hlm3. ; v3r),
(3.58)

where (hlm2. , q
lm
2. ) and (hlm3. , q

lm
3. ) are given in Proposition 3.3, and β2r and β3r are

given by (2.9), and condition (3.23) is satisfied. Then, the intermediate states in

the junction Riemann solution are given by

v1∗ =

h1∗q1∗
z1

 =

 h1.
β1l(h1.; v1l)

z1

 , (3.59)

v2∗ =

h2∗q2∗
z2

 =

 Y (a2(h1.), c2(h1.))

β2r(Y (a2(h1.), c2(h1.)); v2r)

z2

 , (3.60)

v3∗ =

h3∗q3∗
z3

 =

 Y (a3(h1.), c3(h1.))

β3r(Y (1)(a3(h1.), c3(h1.)); v3r)

z3

 , (3.61)

where h1. is the solution of

β(h1.; v) ≡ β2r (Y (a2(h1.), c2(h1.)); v2r) + β3r (Y (a3(h1.), c3(h1.)); v3r)

−
(
r

ω2
+

1− r
ω3

)
β1l(h1.; v1l), h1. > hlm1o , (3.62)

with hlm1o is given by Eq. (2.16).

Proof. The proof of Theorem 3.4 is summarized as follow: the only valid junction

branches that gives sub-critical states are J1− and J2− under the conditions (3.58)

and (3.23). This means that the state qlm2. and qlm3. are located above the right curves

τ2r and τ3r, respectively. Thus, from Proposition 2.1 and Proposition 3.3 it follows
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that J1− and J2− intersect at a single point with τ2r and τ3r, respectively. This

intersection gives the intermediate states v2∗ and v3∗ of the Riemann solution. The

intermediate states satisfy the following relationships:

h2∗ = Y (a2(h1.), c2(h1.)); β2r(h2∗; v2r) =

(
r

ω2

)
β1l(h1.; v1l), (3.63)

h3∗ = Y (a3(h1.), c3(h1.)); β3r(h3∗; v3r) =

(
1− r
ω3

)
β1l(h1.; v1l). (3.64)

Then, for h1. > hlm1o and combining equation (3.63) and equation (3.64), we get

β2r (Y (a2(h1.), c2(h1.)); v2r) + β3r (Y (a3(h1.), c3(h1.)); v3r)

−
(
r

ω2
+

1− r
ω3

)
β1l(h1.; v1l) = 0, h1. > hlm1o . (3.65)

Therefore, the value of h1. is obtained by finding the root of the following function

β(h1.; v) ≡ β2r (Y (a2(h1.), c2(h1.)); v2r) + β3r (Y (a3(h1.), c3(h1.)); v3r)

−
(
r

ω2
+

1− r
ω3

)
β1l(h1.; v1l), h1. > hlm1o . (3.66)

Moreover, the intermediate state v1∗ in the Riemann solution is

v1∗ =

h1∗q1∗
z1

 =

 h1.
β1l(h1.; v1l)

z1

 . (3.67)

On the other side, the curves J1−, J2− and τ2r, τ3r intersect only if vlm2. is above

the curve τ2r and vlm3. above the curve τ3r. Therefore, if vlm2. ∈ τ2r and vlm3. ∈ τ3r,

the intermediate states are given by (vlm1o , v
lm
2. ) and (vlm1o , v

lm
3. ), are not valid states

because Proposition 2.1 shows that vlm1o is a critical state. Then, condition (3.58)

holds and condition (3.23) must be satisfied, to avoid complex roots. Indeed, the

proof of the theorem is completed.

4. Numerical examples

In this section some examples of the solutions of the nonlinear junction Riemann

problem are presented. The solutions are plotted in two phases. The first phase is the

h−q phase plane. The second phase is the h−x and q−x phase planes at a fixed time.

Both symmetric case (i.e., the two downstream channels are symmetric) without

bottom discontinuities, and the non-symmetric case with bottom discontinuities

and different channels width, are presented. The behavior of the different solutions

is investigated. To supply r, the nonlinear system (3.3-3.8) is numerically solved by

using a hybrid method for nonlinear equations [34]. This implies that r is computable

if the system (3.3-3.8) admits a numerical solution and therefore the computed

value of r is considered. For the case in which the system (3.3-3.8) does not admit

a numerical solution, r is chosen for a purpose of declaration.
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Example 4.1. We consider the following initial Riemann data

v1l =

1.1

1.2

0

 , v2r =

1.2

0.3

0

 , v3r =

1.2

0.3

0

 (4.1)

for the symmetric case of the downstream flow (i.e., b1 = b2 = b3 and r = 0.5) by

the symmetry of the downstream flow.

Figure 5 shows that the solution in the three channels consists of three intermediate

Fig. 5. The solution of the junction Riemann problem in symmetric case and without bottom
discontinuities.

states. The intermediate states are v1∗, v2∗ , and v3∗. The states v2∗ and v3∗ are

coincident due to the symmetry of the downstream flow. The intermediate states

v2∗ = v3∗ are obtained by the intersection of the junction curve J− (dash line), and

the right wave curves τ2r and τ3r (dot-solid line). The state v1∗ is the corresponding

state, and belongs to the left wave curve τ1l. Then, the solution is completed by a

left shock (solid line) that connects the states v1l and v1∗ in the first channel. The

states v2r = v3r are connected to the states v2∗ = v3∗ through a shock (solid line)

for the second and the third channels. Indeed, condition (3.58) is satisfied. Figure 6

shows the evolution of water height and flow discharges profiles in the three channels

at t = 0.2 [s]. The junction Riemann solution is represented by solid lines and the

dash lines represent the initial data profile. The intermediate states in the Riemann

solution satisfy the mass-energy conservation at the junction. The solution consists

of a shock occurring in the first channel for x < 0, a shock occurring in the second

channel for x > 0, and a shock occurring in the third channel for x > 0.
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Fig. 6. Water height and flow discharge evolution of junction Riemann solution in symmetric case

and without bottom discontinuities at t = 0.2[s].

In the next examples, we demonstrate the effect of the backward bottom dis-

continuities on the Riemann solution.

Example 4.2. We consider the following initial data with small backward bottom

discontinuities z1 > (z2, z3) and the computed r = 0.76. The widths b1 = 1, b2 = 0.9,

and b3 = 0.5 are considered.

v1l =

1.1

1.2

0.1

 , v2r =

1.2

0.3

0

 , v3r =

1.3

0.3

0

 . (4.2)

The junction Riemann solution is shown in Fig. 7 for small backward bottom

discontinuities. The junction curves are shown by dash lines that intersect with the

wave curves (dot-solid lines) and therefore the intermediate states in the Riemann

solution are obtained. The intermediate states v1∗, v2∗, and v3∗ are connected to the

initial states v1l, v2r, and v3r though a left shock (solid-line) for the first channel, a

right shock (solid-line) for the second channel, and a right shock (solid-line) for the

third channel, respectively. The Riemann solution exists and therefore (3.67) and

(3.23) are satisfied. In Fig. 8, the evolution of water height and flow discharge at

time t = 0.2 [s] are plotted. The Riemann solution is shown by the solid lines and

the initial data are in dash lines. The solution consists of a shock occurring in the

first channel for x < 0, a shock occurring in the second channel for x > 0, and a

shock occurring in the third channel for x > 0. Mass and energy are conserved by

the intermediate states while r and ω satisfy condition (3.23).

Example 4.3. Consider the following initial data with large backward bottom

discontinuities with r = 0.75. The widths b1 = 1, b2 = 0.9, and b3 = 0.5 are
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Fig. 7. The solution of the junction Riemann problem with small backward bottom discontinuities
(e.g., z1 = 0.1, z2 = z3 = 0) and with the computed r = 0.76.
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Fig. 8. Water height and flow discharge evolution for junction Riemann solution in non symmetric
case and with small backward bottom discontinuities at t = 0.2[s].

considered.

v1l =

1.1

1.2

0.8

 , v2r =

1.2

0.3

0.0

 , v3r =

1.3

0.3

0.0

 . (4.3)

Figure 9 shows that the Riemann solution does not exist while condition (3.67) is

violated and there is not an intersection between the junction curves and the right
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Fig. 9. The solution of the junction Riemann problem with large backward bottom discontinuous
(e.g., z1 = 0.8, z2 = z3 = 0) and r = 0.75.

wave curves. Here, the backward bottom step minimize the existence of the Rie-

mann solution. This might be due to energy dissipation and considering an energy

correction may extend the existence field of the solution.

In the next examples, we demonstrate the effect of the forward bottom discon-

tinuities on the Riemann solution.

Example 4.4. We consider the following initial data with small forward bottom

discontinuities (z2, z3) > z1 with the computed r = 0.75. The widths b1 = 1,

b2 = 0.9, and b3 = 0.5 are considered.

v1l =

1.1

1.2

0.0

 , v2r =

1.2

0.3

0.1

 , v3r =

1.3

0.3

0.1

 . (4.4)

Figure 10 shows that the Riemann solution exists under small forward bottom dis-

continuities. The solution consists of a shock that connects the left initial state to

the first intermediate state in the first channel. The right initial state is connected to

the second intermediate state by a shock in the second channel. For the third chan-

nel, a rarefaction connects the second right initial state and the third intermediate

state. The three intermediate states are connected by the junction relationships.

r and ω satisfy condition (3.23). Conditions (3.67) and (3.23) are satisfied. The

evolution of the solution at t = 0.2 [s] is shown in Fig. 11.
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Fig. 10. The solution of the junction Riemann problem with small forward bottom discontinuities
(e.g., z1 = 0.0, z2 = z3 = 0.1) and the computed r = 0.75.
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Fig. 11. Water height and flow discharge evolution for junction Riemann solution in non symmetric

with small forward bottom discontinuities (e.g., z1 = 0.0, z2 = z3 = 0.1) at t = 0.2[s].

Example 4.5. Consider the following initial data with large forward bottom dis-

continuities with r = 0.75. The widths b1 = 1, b2 = 0.9, and b3 = 0.5 are considered.

v1l =

1.1

1.2

0.0

 , v2r =

1.2

0.3

0.4

 , v3r =

1.3

0.3

0.4

 . (4.5)
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Under a large forward bottom discontinuities: Figure 12 shows that condition (3.67)

Fig. 12. The solution of the junction Riemann problem with large forward bottom discontinuities

(e.g., z1 = 0.0, z2 = z3 = 0.4) and r = 0.75.

and condition (3.23) are not satisfied and therefore there is not a solution. These

examples are illustrated the direct effect of condition (3.67) and condition (3.23) on

the existence of the Riemann solution.

5. Summary and conclusion

In this work, we have studied the existence and uniqueness of the solution of the

nonlinear Riemann problem in three rectangular channels network without assum-

ing special hypothesis except the sub-critical flow condition. The analysis is made

challenging by the presence of bottom discontinuities and width variations between

the channels forming the junction. Working on the conservation of the mass and

total head at the junction, we have given the existence domain of the solution in

terms of relationships between the amplitude of the bottom discontinuities, the ra-

tio of the channels widths, and the discharge allocation. Working on the relations

between quantities across the rarefaction and shock waves we have completed the

existence analysis. The physical meaning of each relationship is clearly stated and

analyzed in this work.

The overall result can open the door to the application of the nonlinear junction

Riemann solution in practical simulation of open channels networks allowing the

definition of physically sound internal boundaries between channels. Justifying the
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use of this Riemann solution in the internal boundaries definition thought the com-

parison with alternative strategies and the validation against experimental are the

topics of future work.
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