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Abstract—HTTP adaptive streaming (HAS) has emerged as the
main technology for video streaming applications. Multiple HAS
video clients sharing the same wireless channel may experience
different video qualities, as well as, different play-out buffer
levels, as a result of both different video content complexities
and different channel conditions. This causes unfairness in the
end-user quality of experience (QoE). In this paper, we propose a
quality-fair adaptive streaming solution with fair buffer (QFAS-
FB) to deliver fair video quality and to achieve asymptotically fair
play-out buffer levels among HAS clients competing for the same
wireless resources in an LTE cell. In the QFAS-FB framework the
share of radio resources is optimized according to video content
characteristics, play-out buffer levels and channel conditions.
The proposed solution is compared with other state-of-the-art
strategies and the numerical results show that it significantly
improves the quality fairness among heterogeneous HAS users,
it reduces the video quality variations, and improves the fairness
among the user’s play-out buffers.

Index Terms—HTTP adaptive streaming, QoE, LTE, fairness.

I. INTRODUCTION

Current trend is toward an explosion of the mobile video

traffic due to the increasing demand from a variety of

multimedia-friendly portable devices such as tablets and smart

phones. According to [1], streaming video applications over

wireless networks will generate three-quarter of the mobile

data traffic with the latter increasing of nearly ten times

between 2014 and 2019. Although the latest enhancement

of the 3GPP mobile standard, i.e., the Long Term Evolution

advanced (LTE-Advanced) [2], substantially improves end-

user throughput and reduces user plane latency, the provi-

sioning of enhanced and fair Quality of Experience (QoE)

to multiple multimedia users still remains a challenge. In fact,

besides a higher probability of traffic congestion in the cellular

networks, mobile users will still experience different channel

conditions with limited link capability and large throughput

fluctuations due to the time-varying nature of the wireless

interface.

HTTP adaptive streaming (HAS) [3] has emerged as the

prominent technology to deliver video streams over internet.

In addition to the commercial implementations, i.e., Microsoft

smooth streaming (MSS) [4], Apple HTTP live streaming

[5] and Adobe HTTP dynamic streaming [6], HAS has been
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recently standardized by 3GPP [7] and MPEG, and denoted as

dynamic adaptive streaming over HTTP (DASH) [8]. In HAS-

based technologies, the video content is encoded at multiple

bit-rates, also called profiles, which may consist of different

temporal, spatial and quality resolutions. For each profile

the video is segmented in several chunks, whose durations

generally range between 2 and 10 seconds. At the end of

profiles encoding, or periodically during encoding, the server

generates a manifest file, which contains synthetic information

describing the available profiles of each chunk. The client,

after receiving a chunk, requests the subsequent chunk by

selecting one of its available profiles according to the play-

out buffer status and current downloading rate, thus enabling

adaptive streaming. A comprehensive review of the MPEG-

DASH standard for multimedia streaming over the internet

can be found in [9].

So far, HAS principle has targeted an end-to-end optimiza-

tion between the client and the server. However, in multi-

user cellular systems the achievable data-rate depends on

the UEs channel conditions, which may be widely heteroge-

neous. Hence, QoS-aware channel-dependent optimization is

the primary key-tool to improve the fairness among HAS UEs.

Mobile networks offer capability for controlling the UE rate

thanks to the radio scheduler at the evolved node B (eNB).

Resource allocation is realized upon the UE’s radio channel

condition and network utilization. LTE [10] supports different

types of services including web browsing, video streaming,

VoIP, online gaming, real-time video, etc., with standardized

quality class indicators (QCI) [11]. Each QCI defines a set

of requirements for quality of service (QoS) bearers, e.g.,

maximum tolerable delay, packet loss rate and/or guaranteed

bit-rate (GBR). A GBR bearer allows to define a minimum

bit-rate and a maximum bit-rate (MBR) to be allocated to a

particular UE.

Nevertheless, if the optimization is performed only in term

of QoS, e.g., by trying to provide the same data-rate to the

UEs [12], the QoE may become significantly unfair. In fact, the

UEs requesting low-motion videos, e.g., interviews or news,

require less data-rate to achieve an excellent QoE compared to

UEs streaming high-motion videos, e.g., sport or music events.

We should keep in mind that video quality does not depend on

the encoding rate only, but it also depends on the complexity

of the video scenes [13]–[15]. Moreover, the QoE can be

significantly degraded if stalling occurs during the video play-

out due to a re-buffering event. In particular, the probability of

stalling may increase for the user equipments (UEs) coming

up into the network when the cell load is high, since they may

have less possibility to build an adequate play-out buffer with
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respect to the already present UEs.

In order to meet QoE requirements we bring content-aware

intelligence into the mobile network. The goal is to provide

a fair video quality to different video flows and to reduce

video quality fluctuations, by also allowing each client to fairly

build an adequate play-out buffer. When multiple videos are

delivered through the same eNB, this can be done through

content- and buffer-aware resource allocation [13], [16]–[19].

In this paper, we propose a quality-fair adaptive video

streaming solution with fair buffer level (QFAS-FB) to provide

comparable QoE to HAS clients competing for the same radio

resources in an LTE cell. The proposed solution allows to

derive optimized GBR values to each HAS UE in order to

achieve the following objectives: (i) maximize the overall

video quality under quality fairness constraint in presence

of different video complexities and channel conditions, and

(ii) control the play-out buffer at the clients, i.e., achieve an

adequate fair amount of video playback time available in the

buffer, even when UEs request videos at different time instants.

The QFAS-FB solution requires a MANE (media-aware

network element) which primarily acts as a pre-scheduler on

top of the LTE radio scheduler. The MANE derives the GBR

values of each UE by solving an optimization problem aimed

at maximizing the aggregate video utility under minimum and

maximum rate constraints, available resources, and quality-

fair and buffer-fair constraints across multiple video clients.

The resulting solutions are then transparently provided to the

LTE radio scheduler and used as GBR and MBR values.

Two strategies are proposed in this paper: (i) the look-ahead

strategy, where the quality level is decided by the client which

reacts to the optimized GBR computed by the MANE, and (ii)

the overwrite strategy, where the quality level of each chunk

is decided by the MANE without client influence.

Numerical evaluations resulting from extensive and detailed

ns2 simulations with different UEs’ starting time show that

both look-ahead and overwrite QFAS-FB solutions provide

significant improvement to the quality received by the end-

users demanding more complex video scenes, even when they

are experiencing bad channel conditions, while the degradation

of the quality perceived by clients receiving low-complexity

video chunks remains tolerable, when compared to other state-

of-the-art frameworks. The overwrite strategy significantly

reduces the video quality fluctuations, compared to the look-

ahead strategy, which already outperforms the benchmarks.

Moreover, our frameworks lead to an overall improvement of

the buffer control by dynamically balancing the buffer levels

at the clients. The overall QoE fairness is thus well improved

compared to other state of the art framework.

The QFAS-FB framework proposed in this paper is built on

the preliminary contribution in [19], where a basic look-ahead

QFAS solution without buffer control has been investigated.

The main novelty of this paper with respect to [19] is the

design of a joint quality- and buffer-fair adaptive streaming

solution, which improves the QoE fairness among the end-

users. The asymptotic buffer fairness optimality of the QFAS-

FB solution is also proved here in a rigorous way. Moreover,

compared to [19], this paper specifically addresses the design

of both the look-ahead strategy and the novel overwrite

strategy to allow the short-term multi-user optimization of the

QoE also in presence of asynchronous chunk requests.

This paper is organized as follows. Next section provides

an overview of the literature on HAS. Section III introduces

the system model. Section IV illustrates the look-ahead and

the overwrite adaptation processes by introducing the main

QFAS-FB optimization problem. In Section V the basic QFAS

optimization problem is formulated and solved. Section VI

details the extended QFAS-FB solution with buffer control.

Section VII presents some final remarks. The performance

of the proposed framework is evaluated in Section VIII and

conclusions are drawn in Section IX.

II. RELATED WORK

Early researches on HAS have focused on the optimization

of a single server-client link, by improving the rate decision

algorithm (RDA) of state-of-the-art commercial clients accord-

ing to the trade-off among number of re-buffering events,

video quality, quality oscillations and video play-out dead-

line [20]–[25]. However, a user-driven approach is generally

suboptimal in a system where multiple HAS clients compete

for the same resources.

In fact, the Authors in [26] have shown that, in a constant-

bandwidth multi-user scenario, three major issues, i.e., effi-

ciency, stability and bandwidth estimation accuracy, have to be

addressed. Efficiency and stability issues result when clients do

not fully exploit the available resources, and perform needless

bit-rate switches. The third issue is due to the fact that users

might fail to precisely estimate the bandwidth in presence

of periodic requests of video chunks, which produce ON-

OFF intervals. In fact, when no limitation on the allocated

resources is taken into account, competing players with non-

overlapping ON-OFF intervals may overestimate their share

of bandwidth. The Authors in [27] analyzed the main causes

of these problems and proposed a novel fair, efficient, and

stable adaptive (FESTIVE) RDA. The framework combines

an optimized bandwidth estimator based on the harmonic

mean of the past measured throughput samples, an improved

profile selector that allows the RDA to converge to a stable

profile, and a randomized chunk scheduler, which increases the

accuracy in the estimation of the bandwidth. Nevertheless, the

large window used to estimate the throughput, which improves

the stability of the quality levels selection, could not cope

with uneven large throughput drops typical of wireless channel

with mobility. To improve the stability-responsiveness trade-

off, the Authors in [28] proposed PANDA, a probe and adapt

client RDA, which results in better bandwidth utilization, with

respect to FESTIVE. The work in [29] extended the PANDA

approach to also consider the content of the video by showing

that content-aware adaptation schemes achieve better QoE

when compared to conventional PANDA scheme. However,

without an efficient in-network optimization, the clients may

still experience abrupt QoE changes, especially in mobility

scenarios. This motivated research to investigate HAS multi-

client in-network optimization for enhancing service capacity,

buffer stability and video quality [12], [17], [18], [30].

A re-buffering aware gradient algorithm (RAGA) to con-

straint the re-buffering probability in a multi-client wire-
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less scenario has been proposed in [30]. It takes advantage

of the periodic report of the buffer level standardized by

DASH [7] by introducing a further constraint on the classi-

cal proportional-fair scheduling problem, thereby allowing a

significant reduction of the buffer outage events. The Authors

in [12] proposed an efficient method, named adaptive GBR

(AGBR), to optimally and adaptively set up the GBR of each

video flow in a LTE network with heterogeneous traffic. The

approach is intended to achieve a level of fairness among

the video flows, according to device characteristics, e.g.,

screen size, while preventing starvation of other data flows.

A similar framework was presented in [31], which also aims

at improving stability and resource utilization, but without

considering heterogeneous traffics. In these frameworks the

definition of the utilities is not content-aware and may not lead

to the best possible quality fairness among the video flows.

While several contributions have proposed enhanced

content-aware transmission techniques for RTP/UDP video

transmission, e.g., [13], [16], [32], few works have recently

investigated content-aware multi-user HAS delivery optimiza-

tion [13], [15], [33]–[36]. A QoE-based HAS delivery frame-

work over wireless networks has been recently proposed

in [35]. According to the proposed QoE-continuum model,

it derives a greedy solution for the maximization of both

cumulative video quality and playback smoothness of each

UE subject to wireless resource constraints. The resulting op-

timized profile level is used to overwrite the chunk requests. In

[37] the Authors present a simple but asymptotically optimal

QoE-driven network optimization for HAS video adaptation

(NOVA). The aim is to jointly optimize the network resource

allocation and the distributed RDAs at the client under a gen-

eral wireless system model, in order to achieve the best users’

QoE. Numerical results show that it achieves significant gain in

terms of the average QoE compared to traditional proportional-

fair resource allocation methods and state-of-the-art RDAs.

The Authors in [15] proposed a content-aware multi-user HAS

video delivery framework in LTE network. Similarly to here, a

MANE (named proxy) is in charge of selecting the streaming

rate required by each client in order to maximize the aggregate

video utilities under resource constraint and may act in both

the overwrite and look-ahead approaches. The approaches

have been extended to also include buffer level optimization,

in which the clients that have a high buffer level may select

a profile rate that is larger than the actual streaming rate.

Specifically the rate increment is proposed to be equal to

the ratio between the buffer level and the chunk duration.

They show that the proposed strategies can provide signifi-

cant improvements with respect to content-blind optimization

strategies. However, QoE fairness is not considered. Hence,

UEs having bad channel conditions and/or small buffer level

experience lower QoE with respect to luckier UEs, while a

similar QoE should be provided to UEs subscribing the same

service. In our approach, we aim to provide the same video

quality by also dynamically prioritizing UEs having a low

buffer level with respect to UEs having already an adequate

buffer. More specifically, the novelty of our proposed approach

is to tackle the problem in terms of buffer fairness among the

users. Moreover, due to the problem formulation for long-term

Fig. 1. System architecture.

time basis in [15], the peculiarities of the look-ahead delivery

strategy of HAS technology, where the video quality changes

according to the content of each chunk, are not taken into

account. Here we specifically design the look-ahead strategy

to allow the client to follow the utility variations between

consecutive chunks.

All of the aforementioned works, as well as the present pa-

per, consider single-layer encoding, i.e., AVC/H.264 standard,

to encode each profile, due to its high encoding efficiency.

However, several contributions have shown the benefits of

using scalable video coding (SVC) standard [38], [39]. The

loss in coding efficiency of SVC is partially recovered thanks

to a reduction of the storage requirement at both the server and

the content distribution network, and thanks to the possibility

of further optimizing the delivery strategy. The Authors in [34]

proposed a quality-based optimization in which the eNB is in

charge to jointly optimizing radio resource allocation and pro-

actively overwrite the profile requested according to a cross-

layer solution. In their approach, clients with good channel and

buffer conditions may request enhancement layers of already

downloaded chunks before the chunks playback deadline,

thereby increasing the overall perceived QoE. However, the

proposed cross-layer strategy requires out-of-standard radio

level optimization and additional processing power to the eNB,

whose resources are generally scarce. Here we specifically

exploit the QoS differentiation allowed by the LTE standard:

the eNB is transparently and dynamically instructed about

the GBR and the MBR to be used for each HAS client, by

keeping unchanged the standard scheduling and radio resource

allocation functionalities.

III. SYSTEM MODEL

As depicted in Fig. 1, we consider an LTE wireless access

network comprising an eNB serving a total of K UEs, subdi-

vided in V HAS UEs indexed by the set V = {1, . . . , V }, and

L data UEs. We assume that the eNB sets up one dedicated

GBR bearer for each HAS UE, whereas the data UEs are

considered as non-GBR.

One or more HAS servers, connected to the eNB through

high-speed backbone network, encode video sequences at

multiple bit-rates and, after segmentation, generate for each of

them a manifest file, also named media presentation descriptor

(MPD). In HAS, each bit-rate defines a profile. We define

Rk = {rk1, . . . , rkN} as the set of N available rate profiles

listed in the MPD of video k, each representing a different

video quality at constant frame rate and resolution. In order

to allow for content-aware optimization, we assume that the

HAS servers generate synthetic video quality information for

each chunk and inserts it in the MPD.
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Notation Description Notation Description

V , V Set and total number of HAS UEs Π Amount of resources for HAS UEs

wk Inverse of the k-th UE achievable rate Rk GBR of UE k
Uk Utility of HAS UE k ∆(x, y) Utility difference metric

Yk, Zk Min. and max. rate of video k Rk Set of profile rates of UE k
Ts Scheduling time interval Tc Chunk duration

ck[n] Last chunk requested by UE k at nTs r̃k[n] Profile rate of chunk ck[n] send to UE k
Bk Buffer fullness of client k δBk(cj) Buffer fullness difference between UE j and UE k

Acronym Full name Acronym Full name

HAS HTTP Adaptive Streaming QFAS-FB Quality-Fair Adaptive Streaming with Fair-Buffer

UE User Equipment QCI Quality Class Indicator

MANE Media-Aware Network Element GBR Guaranteed Bit-Rate

MBR Maximum Bit-Rate SNR Signal-to-Noise Ratio

RDA Rate Decision Algorithm MPD Media Presentation Description

TABLE I
LIST OF MOST USED SYMBOLS AND ACRONYMS

We consider the following parametric rate-utility model,

which is used to describe the utility Uk, in terms of video

quality, of requesting a particular profile with rate rk:

Uk(rk) = fU (rk; ak) . (1)

Here, ak ∈ A ⊂ R
Na is a time-varying and content-dependent

vector of Na parameters, which represents the synthetic quality

information. For all values of ak , fU (r, ak) is assumed to

be a continuous, invertible and strictly increasing function of

r1. The model (1) may represent the relationship between the

peak signal-to-noise ratio (PSNR), the Structural SIMilarity

(SSIM) index [40], or any other strictly increasing quality

metric, and the encoding rate [41]. Due to the high correlation

with subjective tests in assessing the perceived video quality

[42][43], in our numerical evaluation we consider the SSIM

video quality metric. To model the dependency between the

utility (here SSIM) and the rate, we consider a logarithmic

utility function, i.e.,

fU (Rk; ak) = a1 log(a2Rk + a3), Rk ∈ [Yk, Zk] (2)

where Yk, Zk are the minimum and maximum rates of video

k and the parameters a1, a2, a3 depend on the spatial and

temporal complexity of each chunk and are derived through

curve-fitting over the actual discrete empirical points. We use

the non-linear least square trust-region curve-fitting algorithm,

whose convergence is generally achieved with an average

number of iterations and function evaluations approximately

equal to 100 and 300, respectively.2

A MANE, suitably located close to the eNB, is able to in-

tercept and process the MPD requested by each HAS client in

order to get rate and quality information. It may be connected

to several eNB, and may be built upon the content distributed

networks which are widely deployed in multiple locations,

often over multiple backbones. The MANE primarily acts as a

pre-scheduler. Based on the information available in the MPDs

of all clients, it sets up the rate values, i.e., GBRs, that the

1Although f is a continuous function, the set of admissible values of rk
is discrete with finite cardinality.

2The amount of extra-information and the computational complexity re-
quired to generate the set of parameters ak are negligible compared to the
amount of data usually inserted in the MPD (chunk URLs, duration, size, etc.)
and the encoding complexity of the profiles, respectively.

eNB will try to guarantee to the clients, in order to globally

optimize the video streaming QoE of all HAS UEs. The MBR

is set equal to the GBR, in order (i) to allow each client to

precisely estimate its throughput [28] and (ii) to limit the HAS

UEs resource with respect to those reserved to the data UEs

in agreement with a resource sharing constraint.

The eNB allocates the available resources by using a general

proportional-fair scheduler with minimum bit-rate, i.e., GBR,

and MBR constraints for each UE. Following the approach

in [12] and similar to [44], we consider a simplified air

interface model where the achievable rate (averaged over short

term channel variations) for each UE is estimated according

to the average channel state information (CSI) of its link.

If γk is the average signal-to-noise ratio (SNR) experienced

by UE k, the average rate per unit bandwidth is estimated

as log2(1 + γk), by using the Shannon formula. The eNB

sends the CSI to the MANE only when the average channel

conditions of the UE significantly change. This information

exchange requires a negligible burden compared to the typical

signaling among the LTE entities.

IV. FAIR QOE ADAPTATION

As already mentioned, each HAS client is generally in

charge of selecting the most suitable bit-rate profile according

to its own RDA, given the throughput experienced during

previous chunk transmissions. In this case, the most intuitive

optimization strategy for the MANE is to operate according

to a look-ahead strategy, i.e., to act as pre-scheduler that

dynamically sets up the feasible guaranteed minimum and

maximum rates to transparently help the client in selecting op-

timized profile in the subsequent chunk requests. Nevertheless,

the client’s RDA is generally designed to avoid unnecessary

quality fluctuation and to heuristically stabilize the buffer in

best-effort wireless network [12], [24], [27]. Hence it may

not react promptly to variations of the measured throughput

resulting from a dynamic optimization. To overcome this

limitation, besides the look-ahead strategy, we also design

a full proactive strategy, which overwrites the users’ chunk

requests.
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(a) (b)

Fig. 2. Proposed approaches for a single HAS video delivery optimization: look-ahead strategy (a), and overwrite strategy (b). In the figure n∗Ts is the time
instant at which chunk ck is requested.

A. The Adaptation Process

Let us define Ts as the pre-scheduling time interval. The role

of the MANE is to set up the optimized continuous GBRs

Rk[n], ∀k ∈ V , n ∈ N, at every time instant nTs in order

to provide a fair short-term QoE to the HAS users. Due to

the time-varying conditions of the network and the different

streaming starting times, the chunk requests of the clients

may occur at different time instants and are not synchronized

with pre-scheduling time scale. In order to handle the multi-

client asynchronous operations within the framework of the

short-term multi-user adaptation, we build our analysis on the

following assumptions:

a) long-term wireless channel conditions and average ca-

pacity change slowly in the time scale of chunk trans-

missions3

b) rate-utility functions change slowly between consecutive

chunks of each video program

c) Ts is much smaller than the chunk transmission time, so

that the chunk requests can be considered to be exactly

aligned with pre-scheduling time instants4

Based on these assumptions, we define ck[n] as the index,

at the time instant nTs, of the last chunk requested by user k
(as an example, if chunk 3 is requested at the discrete time 297

and chunk 4 is requested at the time 352, then ck[300] = 3,

ck[351] = 3, ck[352] = 4). In the following we will detail

the two different adaptation strategies in an ideal scenario,

according to what is shown in Fig. 2.

1) Look-ahead strategy: The behavior of the RDA at the

client is described by assuming that the wireless network

delivers each chunk to the respective client with a rate that

exactly follows the GBR set up by the MANE. Hence, we

3As also illustrated in Sect. III, note that the air interface is modeled through
the average SNR of the links, which is a long-term channel description.

4In practical applications the pre-scheduling interval is in the order of
milliseconds, which is usually much less than the chunk download time.

further assume that once a chunk, i.e., chunk ck − 1 in

Fig. 2(a), has been fully received by client k, the RDA of

the client completes the measurement of the chunk download

rate RD(ck − 1) and requests the chunk ck with a profile rate

rL
k(ck) = max

r∈Rk(ck),r≤RD
k
(ck−1)

r. (3)

where Rk(ck) is the set of available rate profiles for chunk

ck. If this chunk request occurs at the time instant n∗Ts, the

MANE, based on the current CSI, updates the scheduling rate

Rk[n
∗] of the client k. The GBR values are updated only

for the UEs that actually requested a chunk in the n∗-th pre-

scheduling epoch. The GBR set up will be maintained, i.e.,

Rk[n] = Rk[n
∗], for n > n∗, until a new chunk request occurs.

According to the assumptions stated in Sect. IV-A, when

the channel variations are very slow in time, at the next

chunk request of client k the measured download rate will

be RD
k (ck) = Rk[n

∗], i.e., the GBR value Rk[n
∗] used for

transmission of chunk ck will be the basis for the profile rate

request of chunk ck + 1. Hence, as highlighted in Fig. 2(a),

in order to avoid mismatch, the GBR value Rk[n
∗] will be

computed based on the video utility of the chunk ck + 1.5

2) Overwrite strategy: In the overwrite strategy, the MANE

is still in charge of intercepting the request of chunk ck by

the client k, occurring at time instant n∗Ts, and to update

the prescribed GBR Rk[n
∗], but, as shown in Fig. 2(b),

before forwarding it to the server, the profile rate request is

overwritten by the new rate

rO
k (ck) = max

r∈Rk(ck),r≤Rk[n∗]
r. (4)

The server sends the chunk ck at the rate rO(ck). The MANE,

as in the look-ahead approach, collects the CSI and updates

5If we use the video utility of chunks ck to evaluate Rk[n
∗], then the k-th

UE will request chunk ck+1 with a profile that the RDA selects based on the
utility of chunk ck , but the utilities may vary between consecutive chunks.
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the GBR value Rk[n
∗] when it intercepts the chunk request,

but differently from the previous strategy, Rk[n
∗] is computed

based on the video utility of the chunk ck, since the RDA at

the client has no actual impact in the chunk request.

B. Multi-user Optimization: Problem Formulation

According to the selected strategy, our goal is to design

the sequence of optimized continuous GBRs Rk[n], ∀k ∈ V ,

which maximize the aggregate video quality and jointly allow

the users to experience comparable video quality and to

achieve similar buffer level. This is done by exploiting at each

time n the CSI, the video utility, i.e., the content information

in the MPD of each chunk ck[n] (or ck[n]+1 in the look-ahead

strategy), and the buffer information. While the first objective

can be achieved in the short term, the second objective will

be reached in the long-term, especially considering that UEs

may have very large buffer level gaps at the time they are

requesting their first chunk.

In order to unify the analysis for both approaches, we

introduce the indicator IS = 1 for the look-ahead strategy and

IS = 0 for the overwrite strategy and we will use it to define,

according to (3) and (4), the discrete profile rate requested for

the chunk ck[n]+ IS, which depends on the scheduling rate at

time n. It is given by

r̃k[n] = rk(ck[n] + IS) = max
r≤Rk[n],r∈Rk(ck[n]+IS)

r. (5)

Since r̃k[n] ≤ Rk[n], the difference between them is the

amount of rate available to build the buffer of client k. To

this end, let us define Bk(ck) as the playback time of the

video content still in the buffer when the client k requests the

chunk ck. The value of Bk(ck) is derived by exploiting the

periodic buffer status feedback, which is included in the the

DASH standard [7]. We also refer to it as buffer fullness. Given

the chunk duration Tc, the scheduling rate Rk[n] is implicitly

related to the buffer fullness samples, i.e.,

Bk(ck[n] + 1) = Bk(ck[n])−
r̃k[n]Tc

Rk[n]
+ Tc, (6)

where r̃k[n]Tc is the size of chunk ck[n] and r̃k[n]Tc/Rk[n]
is its download time. The relationship holds if Rk[n] is kept

constant during the transmission of chunk ck[n].
One challenge for the design of the scheduling GBRs Rk[n]

for all the UEs is to optimize the use of the multi-user

wireless channel at each time n, despite the GBRs are required

to be asynchronously updated only at the times of chunk

requests. Under the assumptions stated in Sect. IV-A, the

approach proposed in this paper is to first evaluate the set of

unconstrained scheduling rates R̂k[n] that jointly optimize the

video quality and the buffer level of the users and the use of the

wireless channel at time n. Then, the rate R̂k[n] will be used to

update the GBR value Rk[n] at the time instants at which UE k
requests the chunks. We motivate this approach by considering

that when the channel and video complexity variations are

slow with respect to chunk transmission intervals, the actual

GBRs Rk[n] resulting from the asynchronous rate update will

approximately follow the optimized rates R̂k[n]. The main

benefit of this design choice is the possibility of building an

analytical framework for optimization, adaptation and buffer

control. The proposed approach will be validated by the

numerical results obtained through simulations.

To derive the unconstrained scheduling rates R̂k[n] we want

to maximize the aggregate video utilities while minimizing the

utility difference among multiple video at each chunk request,

subject to minimum and maximum utility constraints, wireless

resource constraints and asymptotic buffer fairness constraints.

By keeping in mind the relationships in eq. (5) and eq. (6),

the optimization problem can be stated as follows6

max
∑

k∈V

Uk(r̃k[n]) (7a)

min
∑

i∈V

∑

j>i

∆
(

Ui(r̃i[n]), Uj(r̃j [n])
)

(7b)

s.t. Uk(Yk[n]) ≤ Uk(r̃k[n]]) ≤ Uk(Zk[n]), ∀k ∈ V (7c)
∑

k∈V

wk[n]Rk[n] ≤ Π[n] (7d)

lim
n→∞

δBk(cj [n]) = 0, ∀k, j ∈ V , k 6= j (7e)

where wk[n] = [log2(1 + γk[n])]
−1 is the inverse of the rate

per unit bandwidth depending on the average SNIR γk[n]
experienced by UE k. The value of Π[n] defines the average

amount of resources dedicated to the HAS UEs, which is

dynamically computed as in [12] at every scheduling interval

based on number of UEs and scaling factors.

The utility-fairness metric in (7b) is defined as:

∆(Ui, Uj) =











0 if Ui = fU (Yi; ai) ∧ Uj < Ui

0 if Ui = fU (Zi; ai) ∧ Uj > Ui

|Ui − Uj | otherwise.
(8)

where ∧ denotes the AND operator. This metric was intro-

duced in [13] in terms of video distortion and extends the

simple fairness metric |Ui − Uj| to the case where Ui, Uj are

constrained to their minimum and maximum values. In fact, in

presence of utility constraints, if a video achieves its maximum

utility, it is reasonable to use the available resources to increase

the utilities of other videos. On the other hand, in a case of

scarce resources, if decreasing the rate of the i-th video is

not possible since its minimum utility value has been already

reached, it is necessary to decrease the rate of the other videos,

at the price of decreasing the related utility.

Eq. (7e) is the fairness condition for buffer fullness, given

by the buffer fullness difference between the UE j and the UE

k 6= j, i.e.,

δBk(cj) = min
i=0,1

∣

∣Bj(cj)−Bk(ck[n
∗(cj)] + i)

∣

∣ (9)

where n∗(cj) is the time instant at which the request of chunk

cj occurs. The min operator ensures that the evaluation of the

buffer fullness difference is carried out between aligned chunk

requests in the asymptotic condition.

We should remark that the asynchronous update of the

GBRs, occurring at the UEs’ chunk request, only affects the

constraint (7d), which may not instantaneously hold. In this

6Although we use Uk(r̃k[n]) for the sake of conciseness, we remark that
Uk also depends on time index n through the set of parameters ak .
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case, a part of radio resources is drained from, or released to,

best effort data UEs.

The problem in (7) is a mixed integer non-linear problem

(MINLP), thus NP-hard, and has multiple objectives. More-

over, part of the optimization has a short-term time basis,

whereas the buffer fullness constraint in (7e) holds on the long-

term. As the optimal solution is computationally prohibitive,

we propose to tackle the problem in two steps. The first

step aims at finding a solution for short-term quality fairness

without constraints on the buffer. The second step addresses

buffer fullness fairness constraint in the long term, by keeping

unchanged the utilities achieved in the first step.

We address the first step in the next section by deriving

an adaptive quality-fair solution, without buffer constraints.

In Section VI, we then handle buffer fairness by deriving a

quality-fair and buffer-fair solution that is proved to achieve

long-term buffer fairness among the clients.

V. QUALITY-FAIR ADAPTIVE STREAMING (QFAS):

PROBLEM AND SOLUTION

In this section we aim at deriving scheduling rates in

order to maximize the overall video quality while minimizing

the quality difference among multiple videos, but without

considering buffer constraints. Since the resulting problem

(7a)-(7d) is handled in the short-term, in the following we

will drop the time index n for the sake of clarity.

Due to the relationship in (5) between Rk and r̃k, the

problem (7a)-(7d) is still MINLP. In order to derive low-

complexity sub-optimal solution, we consider a continuous

(relaxed) domain for rk and for the utility Uk by using

rk = Rk. Accordingly, as shown in [45], the resulting

relaxed version of the multi-objective problem (7a)-(7d) can be

rewritten as a convex single-objective maximization problem

where the objective in (7b) is eliminated and replaced by an

equality constraint. The basic QFAS optimization problem is

then stated as follows:

max
Rk,k∈V

∑

k∈V

Uk(Rk) (10a)

s.t. Uk(Yk) ≤ Uk(Rk) ≤ Uk(Zk), ∀k ∈ V (10b)
∑

k∈V

wkRk ≤ Π (10c)

∆
(

Ui(Ri), Uj(Rj)
)

= 0 ∀i, j ∈ V , i 6= j (10d)

The optimization problem in (10) admits a feasible solu-

tion under the condition
∑

k∈V wkYk ≤ Π. By consider-

ing the trivial condition
∑

k∈V wkZk ≥ Π as true, it has

been proved in [13] that the problem (10) collapses in a

constraint-satisfaction problem where the objective is achieved

by fulfilling constraint (10c) with an equality constraint, i.e.,
∑

k∈V wkRk = Π. The solution of problem (10), denoted

with R̃k, can be derived by relaxing constraint (10b) with

two boolean variables and by applying the procedure with

quadratic complexity described in Algorithm 1.

More specifically, we define yk, zk ∈ {0, 1}, k ∈ V , with

(yk, zk) 6= (0, 0), the binary variables that indicate whether

Algorithm 1 Pseudo code to solve problem (10)

1: if
∑

k∈V
wkYk ≥ Π then

2: report infeasibility
3: else if

∑
k∈V

wkZk ≤ Π then

4: Set R̃k = Zk , ∀k ∈ V

5: else
6: zk = 1, ∀ k ∈ V;
7: repeat
8: condZ = false; yk = 1, ∀ k ∈ V;
9: repeat

10: condY = false;
11: Compute Ũ : Γ (y,z, Ũ) = 0;
12: for all k ∈ V : zkyk = 1 do
13: R̃k = f−1

U
(Ũ ;ak);

14: if R̃k < Yk then
15: R̃k = Yk; yk = 0; condY = true;
16: end if
17: end for
18: until condY is false
19: for all k ∈ V : ykzk = 1 do
20: if R̃k > Zk then
21: R̃k = Zk; zk = 0; condZ = true;
22: end if
23: end for
24: until condZ is false
25: end if

(1) or not (0) the two constraints Rk ≥ Yk and Rk ≤ Zk,

respectively, are satisfied. We also define the function

Γ (y, z, U) =
∑

k∈V

ykzkwkf
−1
U (U ; ak)−Π(y, z) (11)

where

Π(y, z) = Π−
∑

k∈V

wk

[

(1− yk)Yk + (1− zk)Zk

]

, (12)

and f−1
U is the inverse function of fU . Since fU (r; ak) is a

continuous and strictly increasing function of r, f−1
U (U ; ak)

is continuous and strictly increasing function of U . Algorithm

1 is finally derived by following the methods applied to the

problem presented in [13], which has a similar structure. At

each iteration in the inner loop (lines 9-18), it evaluates the

fair utility value that allows to fulfill the available resources

for all the HAS UEs not violating the constraints in (10b).

Then, it iteratively checks whether or not the utility solutions

of these UEs violate constraints in (10b). If this happens for

one HAS UEs, the algorithm assigns the relative minimum

(lines 12-17) or maximum (lines 19-23) utility to this specific

UE and re-evaluates the fair utilities for all the other UEs.

It is worth to emphasize that, when the solutions R̃k at time

n are known, the evaluation of r̃k[n] with (5) has the meaning

of finding the nearest discrete values of rates that replace the

relaxed continuous solutions. We finally note that the expected

gap in terms of utility between the proposed sub-optimal and

the optimal solutions is bounded with high probability by

the sum of the utility differences between consecutive user

profiles, which in turn depend on both the number of available

profiles and their rate values. In fact, the larger is the number

of available profiles, the better is the accuracy given by the

continuous rate relaxation of the problem, considering that the

utility difference between consecutive profiles decreases.
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VI. QFAS WITH FAIR-BUFFER (QFAS-BF): PROBLEM

AND SOLUTION

In section V we have derived content-aware continuous

rate solution which enforces quality-fair video delivery. If this

solution were directly used at the eNB to update the GBR

values of the users, the following main fairness issues could

arise concerning the buffer level, i.e.,

• In the case that the transmission rate of one user results to

be equal to the discrete profile rate at each chunk request

(e.g., equal to the minimum rate R̃k[n] = Yk[n], ∀n), the

client will have no possibility at all to build its own buffer.

• Users coming up into the system at different times when

traffic load conditions are severe may have less possibility

to build their own buffer with respect to the already

present users.

In other words, by using basic QFAS solutions, we have no

control on the buffer level among the users. This may lead

to buffer starvation in practical scenarios where, due to the

random channel variability, the actual download rate of the

chunks may differ from the download rate estimated by the

client or the MANE. provided by the eNB.

We overcome these issues by reshaping the transmission rate

values R̃k[n] in order to satisfy the buffer fairness constraint

(7e) of the general problem (7), without changing the discrete

quality-fair rates achieved in the first step of optimization.

More specifically, given the discrete profile rate solutions

r̃k[n], evaluated as function of R̃k[n] as

r̃k[n] = max
r≤R̃k[n],r∈Rk(ck[n]+IS)

r, (13)

and the buffer fullness of each client, we derive a new set of

unconstrained scheduling rates R̂k[n] that allows to satisfy the

constraints (13), (7d), and (7e) of the main problem, i.e.,

R̂k[n] > r̃k[n], ∀k ∈ K (14)

Π[n] =
∑

k∈V

wk[n]R̂k[n] (15)

lim
n→∞

δBk(cj [n]) = 0, ∀k, j ∈ V , k 6= j (16)

The eq. (14) readily holds when suitable functions ξk(B[n]) >
0 of a given set of buffer fullness values B[n] =
{b1[n], . . . , bV [n]} are considered, such that

R̂k[n] = r̃k[n]
[

1 + ξk(B[n])
]

. (17)

With this choice we rewrite eq. (15) as
∑

k∈V

wk[n]r̃k[n](1 + ξk(B[n])) = Π[n] (18)

which is always satisfied by introducing a new unconstrained

function η(bk[n]), k ∈ V , to have

ξk(B[n]) =
Π[n]−

∑

i∈V wi[n]r̃i[n]
∑

i∈V wi[n]r̃i[n]η(bi[n])
η(bk[n]). (19)

This can be proved through simple algebra manipulations. To

obtain new scheduling rates through (17) and (19), we finally

need to determine the function η(bk[n]) and the set B[n], that

allows to satisfy condition (16). We have the following lemma.

Lemma 1: If at least one of the discrete rates r̃k[n] is strictly

smaller than the corresponding QFAS continuous rate solution

of Algorithm 1, i.e.,

∃ s ∈ V : r̃s[n] < R̃s[n], ∀n (20)

then the function

η(bk[n]) =
1

bk[n]

{

1 if bk[n] = maxv∈V bv[n]

1 + ǫ otherwise
(21)

with bk[n] = Bk(c
∗
k[n]), ∀k, where

c∗k[n] = ck[n
∗(c1)]+argmin

i=0,1

∣

∣B1(c1[n])−Bk(ck[n
∗(c1)]+ i)

∣

∣

(22)

and 0 < ǫ ≪ 1 is an arbitrary constant value close to zero,

satisfies all the conditions (14), (15) and (16).

Proof: See Appendix.

By combining the result of Lemma 1 together with (17) and

(19), we finally obtain

R̂k[n] = r̃k[n]

(

1 +
1

µkBk(c∗k[n])

Π[n]−
∑

i∈V wi[n]r̃i[n]
∑

i∈V

wi[n]r̃i[n]
µiBi(c∗i [n])

)

.

(23)

where µk = 1 if Bk(c
∗
k[n]) = maxv∈V Bv(c

∗
v[n]), µk =

1/(1+ ǫ) otherwise. Lemma 1 implies that if the UEs experi-

ence different values of buffer fullness at a given time, due to,

e.g., different start-up time, the selection of the GBR as in eq.

(23) allows each UE to asymptotically achieve a fair buffer

fullness value. This is done by selecting a transmission rate

that is larger than the QFAS discrete rate of a factor inversely

proportional to the buffer fullness of each client.

We remark that in the look-ahead approach the rate solution

R̂k[n] > r̃k[n], should however not exceed the nearest discrete

rate r′k[n] > r̃k[n]. Otherwise, the k-th client may select

the profile rate r′k[n], given R̂k[n] ≥ r′k[n], thus changing

the discrete quality-fair rates resulting from the first step of

optimization. A solution to the problem in (17)-(19) with

the additional constraint R̂k[n] < r′k[n] can be derived with

algorithmic methods similar to the ones proposed in the outer

loop of Algorithm 1. However, we omit the discussion of

this solution since the solution in (23) satisfies the constraint

with high probability, given a reasonably large ratio between

consecutive discrete rate profiles. In our numerical evaluation

the constraint was never violated in all the scenario considered.

VII. FINAL REMARKS

The proposed QFAS-FB framework can be extended to con-

sider the following important aspects of practical applications:

1) When the rate-utility functions change significantly be-

tween consecutive chunks of each video program, contradict-

ing assumption b in Sect. IV-A, uncontrolled quality variations

may occur by using the proposed framework. In order to limit

the quality fluctuations (as in [35], [37]), the problem in (7) can

be slightly modified by extending constraint (7c) as follows
{

Uk(rk[n]) ≤ min(U(Zk), U(r∗k[n− 1]) + δTH)

Uk(rk[n]) ≥ max(U(Yk), U(r∗k[n− 1])− δTH)
(24)
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Cell layout Single hexagonal cell

Cell Range 2 km

Carrier Frequency 700 MHz

Path Loss COST 231-Hata model

Channel Model ITU A Pedestrian model [47]

Shadowing Log-normal

User Speed 3 km/h

System Bandwidth 10 MHz

UL/DL duplexing FDD

Pre-scheduling time interval 100 ms

TABLE II
SIMULATION PARAMETERS

where δTH is the maximum quality variation between consec-

utive chunks and r∗k[n] is the discrete rate solution at time n.

This allows to keep the quality variations among consecutive

chunks within a proper range.7

2) The QFAS-FB framework allows each client to infinitely

increase the buffer level until the maximum buffer capacity

is reached. However, in practical scenarios most of the users

interrupt the play-back before the end of the full video.

Therefore, the higher the maximum buffer level, the larger

the waste of bandwidth for downloading data that will be

discarded. To overcome this problem, the proposed framework

can be easily extended to limit the transmission rate R̂k[n]
to exactly the value of the quality-fair discrete rate r̃k[n],
when a suitably defined buffer fullness target BT is reached

by client k. This can be easily done by setting bk[n] = ∞, if

bk[n] ≥ BT, without compromising the asymptotic optimality

of the proposed framework. In this case, the buffer fullness

can be stabilized to BT and the remaining resources can be

exploited by the other HAS/data users.

VIII. NUMERICAL RESULTS

The numerical results are obtained through Monte Carlo

simulations on a ns2-platform which includes HAS servers and

clients, LTE radio interface and radio resource management,

as well as the different protocol layers (TCP/IP, PDCP and

RLC). The UEs are uniformly distributed in a cell with

an average SNR ranging from 2 to 25 dB. We consider

V = 6 HAS UEs and L = 24 FTP UEs, and a log-normal

shadowing with a standard deviation of 8 dB, if not otherwise

specified. The main system parameters are listed in Table II.

The simulation time of each drop is set to 360 seconds and

UEs are randomly activated during the first 60 seconds. The

sequences are extracted from real time programs with 4CIF

resolution and frame rate equal to 30 fps. Each of them is

encoded by the DASH Encoder [46] with 10 profiles having

rates ranging from 150 kbps to 5 Mbps. Chunk duration Tc is

set to 2 seconds.

The RDA engine is based on the Microsoft Smooth Stream-

ing player [4], which aims at heuristically stabilizing the buffer

fullness to 20 seconds. The RDA may select an higher (lower)

profile rate if the buffer fullness is larger (smaller) than a

suitable threshold, e.g., 30 (10) seconds, and the slope of

7In the results that will be presented in Sect. VIII, we have used this
extension with δTH = 0.05. However, in all our experiments, the constraint
in (24) has never been violated.

Sequence Spatial Compl. Temporal Compl. Description

clip Medium Medium A music video clip

spiderman Medium High Spiderman movie

sport Very High Very High Canoe competition

interview Low Very Low An interview

bunny Medium Medium Big Buck Bunny movie

home High High Home documentary movie

TABLE III
TEST VIDEO SEQUENCES : COMPLEXITY (COMPL.) AND DESCRIPTION

the buffer evolution is high, i.e., the buffer level is quickly

changing. The maximum buffer threshold under which the

RDA requests a chunk immediately after the previous chunk is

downloaded is set to 40 seconds. The so-called “panic” buffer

threshold, which causes the RDA to necessarily request the

lowest profile is set to 5 seconds. The first chunk is requested

at the lowest profile. Each client starts to play-out the video

after the first chunk is received.

As mentioned in Sect. III, we consider the SSIM metric

to assess the perceived video quality. The SSIM is a value

between -1 and 1. According to [48] SSIM values larger

than 0.94 correspond to a good visual quality, i.e., mean

opinion score (MOS) equal to 4, whereas SSIM values ranging

between 0.86 and 0.94 result in a MOS of 3, i.e., fair

quality. SSIM values lower than 0.86 indicate poor quality. The

validation results of the model in eq. (2) show almost perfect

correlation to empirical points with a Pearson coefficient

always higher than 0.99 for each chunk of the considered video

sequences.

We compare three QFAS-based proposed strategies, i.e., (i)

the basic look-ahead QFAS strategy (QFAS-LH) where the

GBRs of the clients are evaluated as the outcome rates of

Algorithm 1 without the buffer control, (ii) the look-ahead

QFAS with fair buffer strategy (QFAS-FB-LH) where the GBR

is evaluated according to eq. (23), and (iii) the overwrite

QFAS with buffer fair strategy (QFAS-FB-OW), with the two

following approaches: (i) best effort (BE), where all UEs are

non-GBR with QCI equal to 9 [11]; (ii) AGBR approach

proposed in [12] where the GBR values are updated every

2 seconds for each HAS UE (non-GBR UEs have QCI equal

to 9 and HAS UEs have QCI equal to 4).

In order to have a fair comparison between AGBR and

QFAS-based solutions, the amount of available resources Π
dedicated to HAS UEs is dynamically updated every pre-

scheduling time instant, according to the on-line implemen-

tation proposed in [12], i.e.,

Π[n] = π
V [n]

V [n] + L[n]
+ (1− π)Π[n − 1] (25)

where V [n] and L[n] are the number of active HAS and data

UEs, respectively, at time nTs. The parameter π = 10−3 is

selected to slowly adapt the required resource partitioning

to the number of UEs change. In order to have a clear

understanding of the results, it is important to remind that the

behavior of the system in the look-ahead strategy depends on

both QFAS-based algorithm and RDA at the client. If we focus

on the buffer, the main task of the QFAS-FB-LH algorithm is

to allow buffer growth to all clients, since the buffer level is



1051-8215 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2015.2504732, IEEE
Transactions on Circuits and Systems for Video Technology

10

0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chunk SSIM

E
m

pi
ri

ca
l C

D
F

 

 
BE
AGBR
QFAS-LH
QFAS-FB-LH
QFAS-FB-OW

Fig. 3. Empirical CDF of the chunk-by-chunk SSIM at the clients
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Fig. 5. Empirical CDF of the buffer fullness evaluated at each chunk request
of the clients

controlled by the RDA. In the overwrite strategy, QFAS-FB

algorithm is also able to provide buffer fairness, since it has

full control of the video streaming optimization.

Fig. 3 shows the empirical cumulative distribution function

(CDF) of the chunk-by-chunk SSIM at the clients for each

strategy. We can note how AGBR approach allows to strictly

increase the received quality with respect to BE approach,

mainly thanks to the increasing of the average rate provided

to HAS clients. The QFAS-based approaches perform similarly

in terms of received SSIM by improving the received quality

of approximately the 40th and the 30th percentile of the

received chunks, with respect to BE and AGBR approaches,

respectively. Moreover, in the 10 % of the cases the QFAS-

FB-OW strategy increases the video quality from 0.85 to 0.9

with respect to content-blind optimization strategies, whereas

high-SSIM users lose no more than 0.03. Nevertheless, such

FTP UEs HAS UEs BE AGBR QFAS-LH QFAS-FB-LH QFAS-FB-OW

24

6 0.935 0.947 0.941 0.945 0.946

12 0.925 0.942 0.938 0.939 0.940

18 0.918 0.935 0.926 0.928 0.931

12
6

0.958 0.967 0.967 0.967 0.970

36 0.914 0.934 0.930 0.931 0.935

TABLE IV
AVERAGE SSIM AT THE CLIENTS

FTP UEs HAS UEs BE AGBR QFAS-LH QFAS-FB-LH QFAS-FB-OW

24

6 0.068 0.054 0.029 0.027 0.017

12 0.072 0.060 0.032 0.032 0.021

18 0.073 0.064 0.038 0.036 0.029

12
6

0.041 0.032 0.017 0.017 0.009

36 0.086 0.065 0.039 0.036 0.031

TABLE V
STANDARD DEVIATION OF THE SSIM AT THE CLIENTS

quality degradation is hardly be perceived by the end-user, as

many contributions in literature have shown, e.g., [49].

Table IV and V report the SSIM averaged over all clients

and simulations, and the related standard deviation for dif-

ferent numbers of HAS and FTP users. When the number

of HAS users increases and the number of FTP users is

fixed, the average portion of resources dedicated to each

single HAS user decreases (see eq. (25)), leading to a general

worsening of the mean and the standard deviation of the video

quality. The average SSIM of the QFAS-based strategies is

approximately equal to that of AGBR approach, but with a

significant improvement in the quality fairness among clients.

The standard deviation of the utilities, i.e., the amount of

quality variation perceived by each client for each chunk, is

reduced up to about four times. The QoE fairness improvement

of the proposed strategies is also evident in Table VI where

the average Jain index [50] of the SSIM is reported. The Jain

index evaluates the fairness of a set of V values and ranges

from 1/V (worst fairness) to 1 (maximum fairness).

The improvements achievable by the QFAS-FB-OW strat-

egy are more noticeable in Fig. 4 where the stability of the

considered approaches, i.e., the ability to avoid large quality

fluctuation at the clients, is investigated by evaluating the

normalized SSIM variation between consecutive chunks, i.e.,

|Uk(ck[n] + 1) − Uk(ck[n])|/Uk(ck[n]). To this purpose, the

empirical CDF reported in Fig. 4 has a range limited to

the high percentile values where fluctuations on the SSIM

are larger than 0.04. The possibility to overwrite the chunk

request allows the QFAS-FB-OW strategy to achieve the best

performance, by limiting the quality fluctuations generated by

the RDA at the clients, to a value smaller than 0.03 in 95 %

of the cases. It is interesting to note that also QFAS-FB-LH

(QFAS-LH is omitted for sake of clarity), strictly overtakes

AGBR and BE strategies.

The behavior of the buffer at the clients resulting from the

investigated strategies is analyzed in Fig. 5 and Table VI,

where the empirical CDF of the buffer fullness samples Bk[n],
i.e., the amount of video time still available to play-out in the

buffer at each chunk request, and the average Jain index of the

buffer fullness levels computed every 2 seconds of simulation,

are reported. The basic QFAS-LH approach provides the worst

results in terms of buffer stability and fairness, especially
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for clients requesting most of the times the chunks with the

lowest profile rate. Compared to BE and AGBR, QFAS-FB-

LH significantly increases the buffer fairness at the clients

as the average Jain index moves from approximately 0.90 to

0.94. Nevertheless, it still performs worse with respect to the

QFAS-FB-OW strategy, which provides almost perfect buffer

fairness, with an average Jain index approximately equal to

0.99.

This behaviour appears more clear in Fig. 6 and Fig. 7,

where the time evolution of both chunk-by-chunk SSIM and

buffer fullness at the clients are reported for one drop of

simulation, respectively. Here, we consider a more challenging

scenario, where the standard deviation of the log-normal shad-

owing is set to 12 dB. It can be clearly noted in Fig. 6a that a

fair-rate approach, i.e., AGBR, provides unfair video quality by

significantly impairing the QoE of the clients streaming high-

motion videos, e.g., “sport” and “home”, with respect to other

clients playing low-motion movies, e.g., “interview”. In the

QFAS-LH strategy without control of the buffer (see Fig. 7b),

the buffer of “interview” is always close to the panic threshold

and the user experiences several rebuffering events, i.e., video

playback interruptions. In this specific case the rebuffering

percentage is equal to 7 % with a maximum rebuffering time

of 3.5 seconds. The QFAS-FB-LH strategy counteracts this

issue by allowing all the clients to build their buffer. As a

result, the video playbacks are never interrupted. However, the

buffer stability, as well as the quality improvements, are still

not remarkable. This is also due to the fact that the state-of-

the-art RDA at the client generates quality fluctuations. This

issue is definitely overcome by the QFAS-FB-OW strategy,

which provides both video fair quality and buffer stability.

BE AGBR QFAS-LH QFAS-FB-LH QFAS-FB-OW

BF 0.904 0.902 0.815 0.939 0.989

SSIM 0.881 0.914 0.987 0.990 0.999

TABLE VI
AVERAGE JAIN INDEX OF THE BUFFER FULLNESS (BF) AND THE QUALITY

(SSIM) AT THE CLIENTS FOR V = 6 AND L = 24

Finally, in Fig. 8 we report the empirical CDF of the average

FTP UE throughput. We note that, although in the QFAS-based

approaches the GBRs are updated asynchronously, thereby

draining some FTP resources in the short-term, the average

performance of the FTP UEs is not degraded with respect

to AGBR scenario, where the resource constraint (7d) always

holds.

IX. CONCLUSIONS

In this paper, we have proposed the QFAS-FB frame-

work to optimize QoE and fairness for HAS video delivery

in LTE networks, according to two strategies, named look-

ahead and overwrite strategies. By adding intelligence in the

network, i.e., through the use of a MANE, the proposed

approaches are able to control the rate provided to each HAS

user in order to obtain fair video quality among multiple HAS

clients and to asymptotically achieve a fair buffer fullness

level. This is achieved even when HAS users are requesting

programs with significant differences in video complexity and
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Fig. 8. Empirical CDF of the average FTP UE’s throughput.

buffer level, and are experiencing different channel conditions.

Numerical results have shown that, compared to other state-of-

the-art frameworks, our proposed QFAS-FB solution provides

a significant improvement of the overall quality delivered to

users demanding complex videos at the expense of a tolerable

degradation of the other low-complexity videos. Moreover,

The QFAS-FB overwrite strategy is able to significantly reduce

the quality fluctuations at the clients by also providing the best

results in terms of buffer fairness, when compared to other

content-agnostic HAS solutions. The proposed framework has

been built on the assumption that HAS clients request a profile

rate not larger than the transmission rate, thereby enforcing

video quality and buffer stability. However, the QoE might be

improved if HAS clients with a large buffer level were allowed

to occasionally increase their profile rate. An interesting topic

for further research is to jointly address the multi-client quality

fairness and the trade-off among video quality, buffer stability

and quality variations, following the ideas in [37].

APPENDIX

PROOF OF LEMMA 1

For the sake of conciseness, we use here symbols nk

and mk to denote the two time instants at which the re-

quest of chunk c∗k[n] occurs, and the download of chunk

c∗k[n] ends, respectively. It is straightforward to prove that

δBk(c1[n])
n→∞

−−−→ 0, ∀k ∈ V \ {1} is a sufficient condition

for (16). Therefore, after defining bk[nk] = Bk(c
∗
k[n]) and

bk[mk] = Bk(c
∗
k[n] + 1), we rewrite it as

δbk[nk] = |b1[n1]− bk[nk]|
n1→∞

−−−−→ 0. (26)

We prove that the choice of η(bk[nk]) = 1/(µkbk[nk]) satisfies

(26), if condition (20) holds. From eq. (6) and eq. (17) we have

R̂k[n] = r̃k[n]

(

1 +
1

µkbk[nk]
g(B[n])

)

=
r̃k[n]Tc

Tc −∆bk[mk]
(27)

where ∆bk[mk] = b[mk] − b[nk] is the buffer increment at

time mk, and

g(B[n]) =
Π[n]−

∑

i∈V wi[n]r̃i[n]
∑

i∈V

wi[n]r̃i[n]
µibi[ni]

. (28)

From the assumption in (20) we have Π[n] >
∑

i∈V wi[n]r̃i[n], thus g(B[n]) > 0 readily leads to
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Fig. 6. An example (one drop of simulation) of the chunk-by-chunk SSIM at the clients over time for the GBR-aware strategies.
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Fig. 7. An example (one drop of simulation) of the evolution of the buffer fullness at the clients for the GBR-aware strategies.

∆bk[mk] > 0. After some simple algebra manipulation of

(27) we obtain:

∆bk[mk] = Tc

g(B[n])

g(B[n]) + µkbk[nk]
> 0 (29)

which, as expected, leads to ∆bk[mk] < Tc. Without loss

of generality, we assume b1[n1] = maxv∈V bv[nv] and we

consider the non-trivial case bk[nk] < b1[n1], ∀k ∈ V \ {1}
leading to µ1 = 1, µk = 1/(1 + ǫ). We next prove that the

following three conditions hold, i.e.,

|δbk[mk]| ≤ |δbk[nk]|, ∀k ∈ V \ {1}, ∀n (30)

δbk[nk]δbk[mk] ≥ 0, ∀k ∈ V \ {1}, ∀n (31)

where the equalities hold if and only if b1[n1] = bk[nk], ∀k,

and

lim
n1→∞

δbk[mk]− δbk[nk] = 0 ⇔ lim
n1→∞

δbk[nk] = 0. (32)
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thereby proving the lemma. All conditions are verified by

noting that

δbk[mk]− δbk[nk] = ∆b1[m1]−∆bk[mk] (33a)

=Tc

g(B[n])

g(B[n]) + b1[n1]
− Tc

g(B[n])

g(B[n]) + µkbk[nk]
(33b)

=Tc

g(B[n])(µkbk[nk]− b1[n1])

(g(B[n]) + b1[n1])(g(B[n]) + µkbk[nk])
(33c)

<− Tc

g(B[n])δbk[nk]

(g(B[n]) + b1[n1])(g(B[n]) + µkbk[nk])
. (33d)

To summarize, we have:

δbk[mk] < δbk[nk](1− h(B[n])) (34)

where h(B[n]) = g(B[n])Tc

(g(B[n])+b1[n1])(g(B[n])+µkbk[nk])
> 0. More-

over, b1[n1] + µkbk[nk] > Tc easily follows from condition

bk[nk] > Tc, ∀k, which implies h(B[n]) < 1. By combin-

ing this last inequality with (34), both conditions (30) and

(31) are readily proved. From (34), it is also evident that

(δbk[mk] − δbk[nk]) < δbk[nk]h(B[n]) satisfies (32) thanks

to the strict lower bound of h(B[n]), thus ending the proof.
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Sergio Cicalò (S’10-M’14) received the B.S. De-
gree, the M.Sc. degree and the Ph.D. Degree from
the University of Ferrara, Italy, in 2006, in 2010,
and in 2014, respectively, all in Communication En-
gineering. He is currently a Research Engineer at the
Engineering Department of the University of Ferrara.
He authored 10+ peer-reviewed publications in in-
ternational Journal and Conference Proceedings and
serves as a reviewer for IEEE Transactions/Journals
and Conferences. His research interests are in the
wide area of wireless communication and video

delivery systems.

Nesrine Changuel is Program manager at Microsoft
in Stockholm managing projects on video streaming
for Skype and Lync. Previously, she worked as a
Research Engineer in Alcatel Lucent Bell Labs. She
received the B.S. degree in 2006 and M.S./Eng.
degree in electrical engineering in 2008 from the
Ecole Nationale Supérieure d’Electronique et de
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