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SUMMARY

Wepresent an integromic analysis of gene alterations
that modulate transforming growth factor b (TGF-b)-
Smad-mediated signaling in 9,125 tumor samples
across 33 cancer types in The Cancer Genome Atlas
(TCGA). Focusing on genes that encode mediators
and regulators of TGF-b signaling, we found at least
one genomic alteration (mutation, homozygous dele-
tion, or amplification) in 39%of samples, with highest
frequencies in gastrointestinal cancers.We identified
mutation hotspots in genes that encode TGF-b li-
422 Cell Systems 7, 422–437, October 24, 2018 ª 2018 The Authors.
This is an open access article under the CC BY-NC-ND license (http://
gands (BMP5), receptors (TGFBR2, AVCR2A, and
BMPR2), and Smads (SMAD2 and SMAD4). Alter-
ations in the TGF-b superfamily correlated positively
with expression of metastasis-associated genes
and with decreased survival. Correlation analyses
showed the contributions of mutation, amplification,
deletion, DNA methylation, and miRNA expression
to transcriptional activity of TGF-b signaling in each
cancer type. This study provides a broad molecular
perspective relevant for future functional and thera-
peutic studies of the diverse cancer pathways medi-
ated by the TGF-b superfamily.
Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. TGF-b Pathway and Its Genomic Alterations in Cancer

(A) The canonical TGF-b pathway. TGF-b superfamily member ligands bind to type II receptors, leading to recruitment and activation of type I receptors through

phosphorylation.Subsequently, theactivatedreceptorsphosphorylate intracellularR-SMADs, suchasSMAD2andSMAD3,whichbind to the receptor throughadaptor

molecules.TheR-SMAD/co-SMAD(SMAD2/3-SMAD4)complex is transported into thenucleus to induce transcriptionalprograms regulatedby theTGF-bsuperfamily.

(B) Landscape of genomic aberrations in the TGF-b superfamily genes in cancer. The frequency of alterations in TGF-b superfamily ligands, receptors and re-

ceptor-associated proteins, intracellular SMADs, and adaptor molecules are presented. Only samples with genomic alterations in the indicated genes are shown

in each oncoprint. Alteration rates per gene and gene family are displayed in the left and top labels, respectively.

See also STAR Methods; Figure S1; Tables S1 and S2.
INTRODUCTION

The transforming growth factor b (TGF-b) superfamily of ligands

activates Smad proteins to regulate transcription and control cell

proliferation and differentiation. The TGF-b pathways are

context-dependent signal transduction cascades that can

promote seemingly contradictory cell processes, including pro-

motion of differentiation and tumor growth, inhibition of cell pro-

liferation, suppression of immune response, and maintenance of

stem cell homeostasis (Akhurst, 2017; Colak and Ten Dijke,

2017; Seoane and Gomis, 2017; Christian and Heldin, 2017;

Moustakas and Heldin, 2016; Mishra et al., 2005; Wakefield

and Roberts, 2002). Animal models of mammary gland tumori-

genesis support a pro-tumorigenic role for signaling by the

TGF-b1-Smad2 pathway (Muraoka-Cook et al., 2004), whereas

mouse models of gastrointestinal (GI) cancers and hepatocellu-

lar cancers indicate a primarily tumor-suppressive role (Chen

et al., 2018; Chen et al., 2016b; David et al., 2016; Katz et al.,

2016). In pancreatic KRAS-mutant premalignant cells, TGF-b

signaling induces expression of metastasis-promoting genes

(David et al., 2016) and apoptosis-regulatory genes. Thus,

even within a single subfamily of ligands that act through the

same downstream Smad complexes, the net outcome can be

either tumor-suppressing or tumor-promoting depending on

the context. Hence, predicting appropriate TGF-b-based thera-

peutic interventions is challenging.

To dissect the context-specific roles of the TGF-b pathway

across multiple cancer types, we focused on 43 core genes that

regulate or mediate TGF-b signaling. We selected the core genes

through consensus of The Cancer Genome Atlas (TCGA) TGF-b

network members, although we acknowledge that the process of

identifying a core subset of genes is inherently subjective to some

degree. The ‘‘integromic’’ analysis (Weinstein, 2006) described
here reveals potential nodesof crosstalkwith other cancer-relevant

pathways, and it enables prediction of the activity of TGF-b-Smad

pathways in various cancer contexts. The data and analyses pro-

vide a rich resource for understanding TGF-b biology, with the po-

tential to identify context-dependent therapeutic targets.

RESULTS

We focus here on the genomic, epigenomic, and transcriptomic

landscapeof 43genes that encodeproteins thatmediate or regu-

late signaling by the TGF-b superfamily and 50 downstream

target genes of Smad-dependent signaling in 9,125 patients

across 33 TCGA tumor types (https://tcga-data.nci.nih.gov/

docs/publications/tcga/) (Table S1), referred to as the ‘‘Pan-Can-

cer cohort.’’ The analysis is limited to this set of TGF-b pathway-

related genes and yet represents a valuable starting point to

examine TGF-b signaling across multiple cancers. We analyzed

multiple data types: somatic copy number variation (CNV), point

mutation,DNAmethylation,mRNAexpression (frommRNA-seq),

miRNA expression (from miRNA-seq), and, for correlative ana-

lyses, protein expression (from reverse-phase protein arrays

[RPPA]). The datawere corrected for batch effects and other sys-

tematic biases prior to analysis (see STAR Methods).

Selection of Genes Associated with the TGF-b
Superfamily
The list of 43 ‘‘core’’ TGF-b genes includes 2 genes encoding

adaptor proteins (SPTBN1 and ZFYVE9) that are important in

TGF-b signaling and play roles in other cellular processes. The

other 41 genes encode components of each level of the ‘‘canon-

ical’’ TGF-b signaling pathway that activates Smads to regulate

gene expression (Figure 1A): 3 TGF-b ligands, 8 bonemorphoge-

netic protein (BMP) ligands, and 9 activin (ACV) ligands; 3 TGF-b
Cell Systems 7, 422–437, October 24, 2018 423
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Figure 2. Pan-Cancer Genomic Analysis of the 43 TGF-b Superfamily Pathway Genes in 33 Cancer Types

(A–C) Distribution of genomic alterations over cancer types. (A) Non-silent somatic mutations, (B) copy number amplifications, and (C) homozygous deletion

frequencies. SKCM, UCEC, STAD, and COAD show high overall mutation rates.

(legend continued on next page)
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receptors and 1 interacting protein (TGFBRAP1), 3 BMP recep-

tors, and 6 ACV receptors; and 8 Smads (Figure 1B). The list of

43 genes is available at cBioPortal (http://www.cbioportal.org)

as ‘‘General: TGF-b superfamily.’’ Noncanonical signaling (Fig-

ure S1A) is excluded from this analysis. Figure S1B shows pair-

wise correlation coefficients of the 43 genes.

To explore the effect of TGF-b pathway genomic alterations on

transcriptional output and to validate pathway activity, we

selected a panel of 50 downstream target genes that are regu-

lated by TGF-b-Smad signaling and have important roles in

epithelial-to-mesenchymal transition (EMT), metastasis, or tu-

mor suppression (Table S1).

Genomic Alterations in TGF-b Superfamily Genes
We performed mutation and CNV analyses of the 43 genes to

identify genomic aberrations across the Pan-Cancer cohort (Fig-

ure 1B and Table S2). Using the cBioPortal definitions (Cerami

et al., 2012), genomic alterations were classified as gene ampli-

fications, gains (low-level amplifications), deep deletions (equiv-

alent to homozygous deletions for non-aneuploidy cases),

shallow deletions (heterozygous loss), truncating mutations, in-

framemutations, or missensemutations. We use the term ‘‘alter-

ation’’ henceforth for mutations (truncating or missense) and

CNVs (deep deletion or amplification). Oncoprint representation

from cBioPortal revealed the distribution of TGF-b genomic al-

terations in the Pan-Cancer cohort (Figure 1B). Although alter-

ation frequencies were low, 39% of the tumors contained an

alteration in at least one of the 43 genes. SMAD4 (4%) and

SPTBN1 (4%) were the most frequently altered. Collectively,

BMP ligands had an alteration frequency of 13%. Six genes

(GDF1, GDF11, SMAD6, SMAD7, INHBE, and NODAL) had mu-

tation frequencies <0.5% (Table S2). When excluding those six,

cumulative mutation frequency (23%) in the TGF-b core path-

ways was significantly higher than expected for a randomly

selected set of 37 genes (Figures S1C and S1D). A set of genes

in the TGF-b superfamily had recurrent chromosomal deletions

of at least one allele (Figure S1E). Heterozygous deletions gener-

ally occur with high frequency in tumor suppressor genes and

may be accompanied by additional mutations in the remaining

allele, leading to complete loss of tumor suppressor function

(Haverty et al., 2009). All SMAD-encoding genes had heterozy-

gous deletion frequencies greater than 20%, with several

exceeding 30%. Tumors rarely had more than one mutationally

altered gene within a category.

Distribution of Gene Alterations across Cancer Types
The frequency and type of genomic alteration varied widely

across tumor types (Figures 2A and S2A), from no alterations

in testicular germ cell tumors (TGCT) to all three types of alter-

ations (mutation, deletion, and amplification) in urothelial bladder

cancers (bladder urothelial carcinomas [BLCAs]). There were

genomic alterations of TGF-b pathway genes in more than

50% of samples in 12 tumor types (Figure 2A and Tables S2,
(D–F) Statistical significance of alterations in the TGF-b superfamily pathway gen

based on MutSigCV results (D) and GISTIC2 (E and F) analyses. Only the genes

(G–I) Transcriptional output associated with alterations in the TGF-b superfamily p

TGF-b superfamily pathways, including mutations (G), amplifications (H), and de

See also Figure S2 and Tables S2, S3, and S4.
S3, and S4). Skin cutaneous melanoma (SKCM), colon adeno-

carcinoma (COAD), esophageal carcinoma (ESCA), stomach

adenocarcinoma (STAD), and uterine corpus endometrial carci-

noma (UCEC) had high background alteration burdens, including

microsatellite instability (MSI) or chromosomal instability (CIN)

(Cancer Genome Atlas Network, 2012; Cancer Genome Atlas

Network, 2015; Cancer Genome Atlas Research Network et al.,

2013). Without adjusting for background alteration burden,

among the 39% of TCGA cases that carried TGF-b pathway

gene alterations, SKCM (70%), COAD (65%), and ESCA (65%)

had the highest percentages of alterations; thyroid carcinoma

(THCA) (4%), kidney chromophobe (KICH) (6%), and TGCT

(9%) had the lowest (Table S3).

We observed non-silent SMAD4 mutations in 24% and

SMAD4 deletions in 13% of pancreatic adenocarcinoma

(PAAD) samples (Figures 2A and 2C and Table S4). Because

SMAD4 is the Co-Smad required for transducing the Smad

signal to downstream effectors, loss of SMAD4 in PAAD by mu-

tation or deletion suggests a tumor-suppressive role for TGF-b

signaling in PAAD, which is consistent with other reports (David

et al., 2016).

Among all cancer types, high-grade ovarian cancers (OVs)

(Figure 2B) had high amplification frequency, which could be

due to genomic instability (Cancer Genome Atlas Research

Network, 2011). Prostate adenocarcinoma (PRAD) had the

highest deletion frequency, marked by losses in the SMAD9

(encoding a Receptor-Smad [R-Smad]) and ACVR2A (encoding

a receptor) (Figures 2B and 2C). Rectal adenocarcinoma

(READ) had the greatest frequency of BMP7 amplification.

Diffuse large B-cell lymphoma (DLBC) had a high frequency of

deletions spanning different levels of the pathway—ligands

(TGFB2, INHBB, and GDF1), receptors or receptor-associated

proteins (BMPR1A, ACVR1, ACVR1C, ACVR2A, ACVR2B, and

TGFBRAP1), and Smads (SMAD9)—indicative of a tumor-sup-

pressive role for TGF-b signaling in these early-stage DLBC

cases in the TCGA cohort.

After adjusting for background alteration burden, we analyzed

MutSigCV- and GISTIC-precomputed results across all individ-

ual cancer types and the Pan-Cancer cohort to identify signifi-

cantly mutated genes (SMGs) and genes targeted by somatic

CNVs (Figures 2D–2F). The analysis revealed SMAD4, ACVR2A,

and TGFBR2 as themost common SMGswithin specific disease

types and across the Pan-Cancer cohort. SMAD4 had a highly

overlapping profile with TGFBR2; both were SMGs in the GI can-

cers PAAD, ESCA, and STAD. Among individual disease types,

COAD had the highest number of SMGs (SMAD4, SMAD3,

SMAD2, and ACVR2A). The number of genes targeted by so-

matic CNVs, particularly deletions, was higher than the number

of SMGs (Figures S1C, S2B, and S2C). A common type of

CNV was recurrent heterozygous loss (Figure S1E). SMAD4

was the only statistically significant deletion target in the Pan-

Cancer cohort; it was most significantly deleted in GI cancers

(PAAD, COAD, READ, STAD, and ESCA). PAAD had deletions
es. Genes that were significantly mutated or targets of copy-number alteration

altered significantly in at least one cancer type are included.

athway genes. Differential mRNA expression of key genes downstream of the

ep deletions (I).

Cell Systems 7, 422–437, October 24, 2018 425

http://www.cbioportal.org


A

B C

D

E

(legend on next page)

426 Cell Systems 7, 422–437, October 24, 2018



associated with 14 TGF-b core genes, suggesting synergistic ef-

fects from ligands (BMP family), receptors (BMPR, TGFBR), and

SMAD4. Colorectal cancers (COAD and READ) were marked by

SMAD4 and SMAD3 deletions. Deletions in genomic regions

covering all ACVR genes except ACVR2B were identified as sig-

nificant in DLBC.

Transcriptional Signatures of Genomic Alterations in
the TGF-b Pathways
To understand how gene alterations affect transcriptional output

of the pathways, we analyzed the mRNA expression of 50 down-

stream targets of Smad signaling with defined roles as tumor

promoters or tumor suppressors (Table S1). Unsupervised hier-

archical clustering analysis identified patterns of correlation

between target gene expression and each class of genomic

alteration (Figures 2G–2I). Point mutations were associated

with two predominant patterns of target gene signatures:

increased or decreased expression (Figure 2G). Surprisingly,

the directionality of target-gene change was consistent for all

mutations, even for mutations in the inhibitors SMAD6/7. An

explanation is that mutations in pathway activators, such as

TGFB1/2/3 and TGFBR1/2/3, may result in gain of function,

whereas mutations in the inhibitors SMAD6 and SMAD7 may

result in loss of inhibitory function.

Another explanation is thatSMAD2was generally co-amplified

with SMAD7 (Figure 1B); both genes are in the same cytogenetic

band (18q21.1). Similarly, SMAD3 was generally co-amplified

with SMAD6; both are in proximal cytogenetic bands,

15q22.33 and 15q22.31, respectively. Thus, the net effect of

those co-amplifications could be an overall increase in pathway

activity. In support of that hypothesis, both the amplification and

deletion profiles (rows in Figures 2H and 2I) of those gene pairs

were similar, and consequently, SMAD2 and SMAD7 are co-

clustered, whereas SMAD3 and SMAD6 are clustered close to

each other.

The effect of TGF-b pathway amplification events on target

gene mRNA expression was similar to that of mutations (Fig-

ure 2H), suggesting that most mutations in TGF-b pathway acti-

vators are gain-of-function. HMGA2 (encoding a chromatin

remodeling protein with oncogenic properties; Morishita et al.,

2013; Thuault et al., 2006) was overexpressed in samples with

either mutations or amplifications in the TGF-b pathway genes,

with the exception of tumors with amplifications in TGFB2,

TGFBR2, ACVR2B, SMAD4, SMAD5, or SMAD6. Those 6 genes

may deliver context-specific signals for regulating HMGA2

expression. Likewise, CDH2 clustered separately from other

genes, and its decreased expression was associated with

most point mutations and CNVs. CDH2 encodes a cadherin

important in cell adhesion and migration (Principe et al.,

2014; Xu et al., 2009). Another distinct cluster contained over-
Figure 3. Mutational Hotspots in the TGF-b Superfamily Pathways

(A) Recurrent hotspot sites. Hotspot mutations with >9 incidents are labeled. Mut

separated by slashes. Del, deletions; fs, frameshifts; asterisks, stop codons.

(B) Transcriptional output of pathway hotspot mutations in GI and Pan-Cance

quantified in relation to 6 hotspot mutations in the Pan-Cancer cohort (left) and G

(C) SMAD4 R361C/H/P/S. R361 is located on the SMAD4 homotrimer interaction

(D) ACVR2A K437E. K437 is marked on the structure of the ACVR2A C-terminal

(E) SMAD2. Position and putative effect of the C-terminal truncation mutation S4

See also Figure S3.
expressed metastasis-related genes, including collagens

(COL1A1/1A2/3A1), a metalloprotease (MMP9), and a transcrip-

tion factor (FOXP3).

SMAD5 amplification was associated with increased CDH2

expression; 36 other amplifications were associated with

decreased CDH2 expression. Similarly, HMGA2 expression

was increased with most amplification events but decreased

where SMAD5 was amplified (Figure 2H). Another exception

was reduced HMGA2 expression in samples with amplifications

of SMAD4 or TGFBR2, whereasHMGA2 expression increased in

samples with mutations in SMAD4 or TGFBR2 (Figure 2G).

Hotspot Mutations in Genes Associated with TGF-b
Superfamily Pathways
We focused on sites in the 43 genes that were mutated in at least

9 samples across the 33 tumor types (see Figure S3 for hotspot

mutations identified within at least 5 samples). The analysis iden-

tified 6 genes with hotspot mutations, representing all levels of

the TGF-b pathway (Figures 3A–3E). BMP5 and TGFBR2

included previously unreported hotspots.

Hotspot mutations of BMP5 occurred in 13 cases across 7

cancers. BMP5 is synthesized as a proprotein, and an R321

stop-codon mutation (4 cases) (Figure 3A) results in loss of the

functional secreted ligand. An R321 to Q (9 cases) mutation

may impact cleavage of the protein to the mature secreted

form. Frameshift mutations in ACVR2A at the K437 hotspot

generate the variants K437Efs*19 (7 cases in 2 cancers) and

K437Rfs*5 (69 cases in 5 cancers), resulting in premature stop

codons and deletion of 2 C-terminal helices of the 4-helix bundle

(Figures 3A and 3D), which likely disrupt ACV signaling (Rossi

et al., 2005). Type I receptors ACVR1B and ACVR1C have similar

C-terminal frameshift mutation hotspots at R485 (6 cases) and

R441 (5 cases), respectively (Figure S3). TGFBR2 R553 to C or

H mutations and BMPR2 N583 frameshift might disrupt interac-

tion with other receptor subunits or binding proteins (Chan et al.,

2007). Hotspots in SMAD4 at R361 and D537 (two conserved

sites in R-Smads) (Shi et al., 1997) normally stabilize homo- or

heterotrimer oligomerization (Figure 3C) (Fleming et al., 2013;

Shi et al., 1997). Those mutations could have widespread effects

because SMAD4 is a binding partner for all Smad-dependent

transcriptional regulation. Mutation at either R361 or D537 in

SMAD4 correlates with metastasis and decreased survival in

colon cancer (Mehrvarz Sarshekeh et al., 2017). SMAD2 ex-

hibited 13 truncating mutations at S464 (Figure 3A). S464 is

part of the essential phosphorylation motif SSXS (Ser464-

Ser465-X466-S467) of R-SMADs (Fleming et al., 2013) (Fig-

ure 3E). S464 is necessary for proper positioning of SMAD2 for

phosphorylation at S465 and S467, both of which mediate inter-

action of SMAD2 with SMAD4 (Macias et al., 2015) and dissoci-

ation of SMAD2 from TGFBR1 and the adaptor SARA (encoded
ations that result in substitutions are indicated by single-letter amino acid code

r cohorts. Differential mRNA expression of 50 TGF-b pathway target genes

I cancers (right).

interface, as shown on the SMAD4 structure (PDB ID: 1DD1).

kinase domain (PDB ID: 4ASX).

64* are shown.
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Figure 4. Comparison of TGF-b Superfamily Pathway Activity and Gene Aberrations
(A) The TGF-b superfamily pathway gene expression signature in GI cancers. Heatmap indicating the effects of non-silent somatic mutations in the 43 TGF-b

pathway genes on expression of downstream target genes for 1,511 samples of 5 GI cancer types. Color reflects the log ratio of median expression in samples

that carry the alteration versus samples that are wild-type (y axis).

(legend continued on next page)
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by ZFYVE9). Hence, S464mutations may prevent dissociation of

SMAD2 from the receptor-adaptor complex, blocking the down-

stream signal (Figure 3E).

GI Cancers Are Enriched with TGF-b Pathway Hotspot
Mutations
Of 176 mutations at hotspot sites across 6 genes, 115 (65%)

were in cancers of the GI system (Figure S3): 60 in ESCA, 51 in

COAD, 3 in PAAD, and 1 in liver hepatocellular carcinoma

(LIHC). The connection to GI cancers is also supported by other

studies (Park et al., 2010; Mehrvarz Sarshekeh et al., 2017). We

found the reported SMAD4 and BMPR2 hotspots (Park et al.,

2010; Mehrvarz Sarshekeh et al., 2017) and identified hotspots

in BMP5 and TGFBR2.

To determine if GI cancers possess a unique signature of

altered TGF-b pathway activity, we compared changes in the

expression of 50 downstream genes related to mutations at hot-

spot sites (Figure 3B). The expression signatures associatedwith

the BMP5 hotspot clustered separately from those associated

with other hotspots. Notably, CDH2 exhibited an overall reduc-

tion in expression, except in the context of the BMP5 hotspot

mutation. A cluster of genes (HMGA2, TERT, MMP9, COL1A1/

1A2/3A1,MYC, FOXP3, and IL6) exhibited increased expression

in the GI cancers containing at least one of the 6 hotspot muta-

tions. Unique to the GI tumors was a cluster of genes that

included strongly reduced expression of CDH2, ALDH1A1, and

IGF2 and a cluster with moderately reduced expression of

SERPINE1.

When compared with the Pan-Cancer cohort, the GI subset

showed an association of hotspot mutations with less expres-

sion of downstream genes (Figure 3B). That trend was generally

characterized by blunted upregulation of the upregulated genes

(HMGA2, collagen encoding genes, FOXP3, MMP9, and MYC)

and greater downregulation of the downregulated genes

(ALDH1A1 and CDH2).

Transcriptional Signatures of TGF-b Pathway
Alterations in GI Cancers
Guided by the enrichment of hotspotmutations inGI cancers, we

tested for enrichment of TGF-b pathway point mutations in GI

cancers. Non-silent mutations were significantly more common

in GI cancers (596 of 1,511) than in the non-GI cancers (1,606

of 7,614). Deep deletions and amplifications were also signifi-

cantly enriched in GI cancers. COAD, READ, and STAD had

recurrent aberrations in genes at each level of the pathway (li-

gands, receptors, and SMADs) and all axes (TGFBR, BMPR,

and ACVR), whereas PAAD had frequent mutations in only

SMAD4 and TGFBR2 (Figure S4A).
(B) The TGF-b superfamily pathway gene expression signature in non-GI cancer

(C) Comparison of disrupted TGF-b superfamily pathway activity in GI and other c

Fold changes (x axis) were calculated from themedian log ratio of mRNA expressi

wild-type for the 43 TGF-b pathway genes) associated with mutations in GI versus

changes in GI versus other cancers. Q-values were calculated by Wilcoxon signe

adjustment.

(D) Differential expression of TGF-b superfamily pathway target genes in GI and

(E) Comparison of global transcriptional output. The ratio of TGF-b target gene ex

highest absolute mRNA expression changes (top 20 increases and top 20 decre

See also Figure S4.
To compare the TGF-b pathway transcriptional signatures in

GI versus other cancers, we calculated the target gene expres-

sion signatures associated with TGF-b pathway mutations in

both groups (Figures 4A and 4B). The upregulation of TERT

and HMGA2 was less substantial in GI cancers than in the

Pan-Cancer cohort. Whereas IL6 mRNA was increased in most

non-GI cancers with TGF-b pathway mutations, IL6 upregulation

was significantly greater in GI cancers than non-GI cancers (Fig-

ure S4B), and within GI cancers, IL6 expression was greater in

samples with alterations in the TGF-b pathway genes than those

without alterations in the TGF-b pathway genes. Notably, in non-

GI cancers associated with GDF1mutations, IL6mRNA expres-

sion was markedly decreased, suggesting that GDF1 may play

different roles in GI and non-GI cancers. A similar analysis re-

vealed a profound difference in FOS expression between GI

and non-GI cancers (Figure S4C). In GI cancers, most TGF-b

pathway gene mutations were associated with increased FOS

expression; exceptions were TGFBRAP1, SMAD7, SMAD5,

GDF1, BMP5, and ACVRL1. In non-GI cancers, only mutations

in TGFBR2 were associated with increased FOS expression; all

other TGF-b pathway gene mutations were associated with

decreased FOS expression.

To compare the transcriptional output resulting frommutations

inGI and non-GI cancers, we calculated differences in expression

of the 50 target genes associated with mutations in the 43 genes

(Figure4C). Theanalysis revealedashift toward repressionof tran-

scriptional output in GI cancers, with the most significant shifts

occurring with mutations in ACVR2B, INHBA, SMAD3, or GDF2.

In GI cancers, mutations in GDF1 were associated with signifi-

cantly increased target gene transcription. We also analyzed

downregulation in each target gene (Figure 4D). Mutations in any

of the 43 genes were associated with reduced mRNA expression

in GI cancers compared with non-GI cancers for most target

genes with the largest reductions found for HMGA2 and TERT.

Compared to non-GI cancers, GI cancers had fewer genes with

increased expression resulting from pathway mutations. In GI

cancers, mutations in any of the 43 genes were associated with

a significantly increased expression of FOS, IL6, ZEB2, and

ZEB1 compared to expression changes of the same genes result-

ing from pathway mutations in non-GI cancers.

Finally, we probed for associations between transcriptional

output and TGF-b pathway gene alterations for all cancers and

the GI and non-GI subsets (Figure 4E). The top 20 and bottom

20 genes that were up- or downregulated in each case differed.

However, all 3 cases included genes associated withmetastasis,

cell adhesion, and EMT. Members of the CEACAM family,

which consists of proteins involved in pathogen sensing, innate

immunity, and metastasis (Chen et al., 2016a; Vitenshtein
s. Same analysis as (A) for 7,614 samples of 27 non-GI cancer types.

ancers. Volcano plots for 43 TGF-b pathway genes in GI versus other cancers.

on across 50 downstream target genes (normalized tomedian levels in samples

other cancers. Red Q-values (y axis) identify genes with statistically significant

d-rank test for each pathway gene, followed by Benjamini-Hochberg (BH) FDR

other cancers. The same as (C) but for TGF-b pathway target genes.

pression in samples with and without gene alterations. Genes listed include the

ases) in the presence of alterations of the 43 TGF-b superfamily genes.

Cell Systems 7, 422–437, October 24, 2018 429



B

A

Figure 5. mRNA Analysis of TGF-b Superfamily Pathway Genes

(A) TGF-b superfamily pathwayactivityacrossPan-Cancer tumor types.Boxplot showing thedistributionof sample-specificpathwayscoresacross eachcancer type.

Scores were computed using mRNA transcript levels of genes in the superfamily. The median and interquartile range (boxes) and outliers (whiskers) are shown.

(B) Supervised clustering of mRNA expression. mRNA expression values for the 43 genes, clustered from left to right by tumor type, then by TGF-b superfamily

pathway score.

See also STAR Methods.
et al., 2016), were consistently upregulated. TMPRSS4 and

ADAMTS19, encoding cell surface proteases, were upregulated

in the Pan-Cancer and GI cohorts, respectively. Genes that

encode immune-related proteins were also upregulated:PRAME

in the Pan-Cancer cohort and GPR31 in GI tumors.

Gene Expression Levels Quantify TGF-b Signaling
Pathway Activity
To explore TGF-b signaling pathway variation across the 33 can-

cers in the Pan-Cancer cohort, we computed a ‘‘pathway activity

score’’ based on mRNA expression of the 43 genes. We verified
430 Cell Systems 7, 422–437, October 24, 2018
that none of the genes were universally inhibitory in every cancer

context. We validated the pathway score by correlating it with

the median expression of the 50 TGF-b target genes and, sepa-

rately, with the median expression of 50 random genes (Fig-

ure S5) (see STAR Methods).

Patterns emerged when we grouped activity scores by tumor

type (Figure 5A). The two hematologic TCGA cancers, DLBC and

acute myeloid leukemia (LAML), had the lowest median pathway

activity scores. Uterine carcinosarcoma (UCS) had the highest

median pathway activity score (Figure 5A). Five cancers—lung

squamous cell carcinoma (LUSC), cervical squamous cell



carcinoma and endocervical adenocarcinoma (CESC), meso-

thelioma (MESO), TGCT, and kidney renal clear cell carcinoma

(KIRC)—had significant differences in overall survival between

patients with high and low pathway activity (Figure S6).

Supervised clustering of the 43 genes revealed that INHBC

and INHBE were highly expressed in LIHC, whereas BMP3 and

BMP5 were highly expressed in lung adenocarcinoma (LUAD)

(Figure 5B). GDF1 expression was high in brain cancers (glio-

blastoma multiforme [GBM] and brain lower grade glioma

[LGG]), rare cancers (UCS and pheochromocytoma and para-

ganglioma [PCPG]), and in SKCM. NODAL expression was

high in TGCT. The heatmap indicates the wide range of expres-

sion for the 43 genes in different tumor contexts and reveals po-

tential targets for further study.

Unsupervised clustering of the 43 genes produced 11 clusters

(Figure S7 and Table S5) that were dominated by cancer type.

Cluster C3 was enriched with LAML, LUSC, CESC, squamous

ESCA, head and neck squamous cell carcinoma (HNSC), and

squamous BLCA. Cluster C3 was characterized by high expres-

sion of BMP3, BMP7, SMAD3, and ACVR1C, coupled with low

expression of BMPR1B, suggesting that BMPR1B signaling

may be tumor suppressive, whereas signals involving BMP3,

BMP7, SMAD3, and ACVR1C may be tumor promoting in can-

cers enriched in that cluster. Cluster C4 was enriched with GI

cancers ESCA, STAD, COAD, and READ. Cluster C4 was char-

acterized by high expression of ACVR1C, BMP4, BMP5, and

INHBA, coupled with low expression of INHA, BMPR1B,

GDF1, INHBB, TGFB2, and TGFB3. Those observations suggest

tumor-promoting roles for the highly expressed set of genes and

tumor-suppressive roles for the set with low expression in cancer

types enriched in that cluster.

Cluster C7, which contained most of the breast cancer sam-

ples, included two subclusters that did not correspond to clinical

breast cancer subtypes (luminal A, luminal B, HER2, basal, or

normal-like). Instead, the subclusters separatedmainlyon theba-

sis of low and high levels ofBMPR1B expression. Thus, BMPR1B

signaling may have a tumor-promoting role and could be a viable

therapeutic target for at least a subset of breast cancers.

Figure 6A shows a clustered heatmap of pairwise Pearson’s

correlations between expression of the 43 TGF-b pathway genes

and expression of the 50 downstream target genes. Surprisingly,

expression of none of the 43 TGF-b pathway genes was strongly

negatively correlatedwith the activity score, including expression

of the pathway inhibitorsSMAD6/7.We attribute this observation

to co-occurring amplifications or deletions of SMAD7 and

SMAD2 and co-occurring amplifications of SMAD6 and SMAD3

(Figure 1B). Expression of ligand-encoding INHBE had the stron-

gest negative correlation with pathway activity. Within the down-

stream targets, expressionofTERT andFOXK2had the strongest

negative correlations with activity score, suggesting that their

suppression may contribute to the pathway’s tumor-suppressor

role. By contrast, expression of the EMT genes ZEB1 and ZEB2

positively correlated with pathway score, providing a possible

mechanism for the tumor-promoting effects of the pathway.

TGF-b Pathway Activity Correlates with Activity of Other
Cancer-Related Pathways
With proteomic data and a published method (Akbani et al.,

2014), we computed activity scores for 10 other oncogenic path-
ways: apoptosis, breast reactive, cell cycle, hormone receptor,

hormone signaling, PI3K/AKT, RAS/MAPK, RTK, TSC/mTOR,

and DNA damage response (DDR). We assigned activity scores

for EMT and leukocyte infiltration (an index of immune function)

using mRNA and DNA methylation data, respectively (Cancer

Genome Atlas Research Network, 2017). A clustered heatmap

representation (Figure 6B) shows that the Pan-Cancer cohort ex-

hibited a negative correlation between the TGF-b superfamily

pathway score and the activity scores for the cell cycle pathway

and apoptosis pathway. In contrast, positive correlations

occurred for the EMT pathway, breast reactive pathway, RAS/

MAPK, and the RTK pathway. Table S6 shows correlations

within individual tumor types and the EMT and cell cycle

pathways.

Downstream Target Genes HMGA2, COL1A1/COL1A2/

COL3A1, and MMP9 Are Associated with Patient
Survival
We analyzed the combined impact of TGF-b target gene expres-

sion and the 43 core gene alterations on patient survival across

the Pan-Cancer cohort. We compared the survival of patients

with 3 different cancer profiles: those with high expression of

HMGA2 and alterations in any one of the 43 TGF-b pathway

genes (Figure 6C; high HMGA2/TGF-b mutant), those with high

HMGA2 expression and no alterations in any of the 43 genes (Fig-

ure 6C; high HMGA2/TGF-b wild-type), and those with low

expression of HMGA2 without considering alterations in TGF-b

pathway genes (Figure 6C; low HMGA2 expression). Patients

with low HMGA2 expression had the best outcome, followed by

patients with high expression of HMGA2 and no mutations in

the 43 genes. A similar trend was observed for genes encoding

MMP9, collagens, and to a lesser extent for FOXP3. TERT over-

expression had no impact on survival. We saw the opposite for

cancers with downregulated CDH2; the worst outcome was

associated with lowCDH2 expression andmutations in 43 genes

(Figure S6B). Thus, the expression profile of specific target genes

and alterations in the TGF-b superfamily genes cooperated to in-

crease tumor aggressiveness. The impact on survival was most

significant for overexpression of collagen-encoding genes,

HMGA2, andMMP9 (Figures 6C–6E). Because of the association

of collagen overexpression and alterations in TGF-b pathway

genes with poor survival, we hypothesize that altered signaling

through the TGF-b superfamily pathways remodels the extracel-

lular matrix to drive metastasis in multiple cancer contexts.

We analyzed survival in GI and non-GI cancers (Figure S6D). In

the GI cohort, only ZEB2 combined with TGF-b pathway gene

alteration yielded a significant difference, with low ZEB2 expres-

sion corresponding to a survival benefit. In non-GI patients, high

expression of the TGF-b pathway target genes IL6, HMGA2,

ZEB2, and FOS was associated with reduced survival, particu-

larly when combined with TGF-b pathway mutations. Thus,

although TGF-b pathway mutations may not occur as commonly

in non-GI cancers, they may be important contributors to

mortality.

Epigenetics and miRNAs Modulate TGF-b Pathway
Activity
To explore regulation of TGF-b pathway activity, we evaluated

DNA methylation (Table S6) and miRNA expression (Table S7);
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Figure 6. Correlation of TGF-b Superfamily Genes with Other Cancer-Related Pathways and Genes

(A) Clustered heatmap of pairwise correlations between TGF-b pathway gene expression and that of 50 downstream target genes. Unsupervised hierarchical

clustering was conducted with 1-Pearson’s correlation distance metric and Ward’s linkage. The covariate bar on each axis shows median expression values.

(B) Clustered heatmap of correlations between TGF-b pathway activity score and 12 other cancer-associated pathways. Oncogenic pathway activity scores

(y axis) were computed from protein data, except for EMT (mRNA) and immune scores (DNA methylation).

(C) Impact of TGF-b pathway-associated HMGA2 mRNA expression on patient survival. 10-year survival of patients with TGF-b pathway mutations (TGF-b

mutant) and highHMGA2 expression (High HMGA2), no mutations in the TGF-b pathway genes (TGF-bwild-type) and highHMGA2 expression, and lowHMGA2

expression (regardless of mutation status of 43 genes) was compared in a Kaplan-Meier analysis. Statistical significance was assessed by log-rank test (see

STAR Methods and Figure S6 for selection of high and low expression level thresholds).

(D) Impact of collagen-encoding gene (COL1A1, COL1A2, COL3A1) mRNA expression on patient survival. The same analysis as in (C) was performed for

aggregated mRNA expression of three collagen genes that showed increased expression in cancers with TGF-b pathway gene mutations.

(E) Impact of MMP9mRNA expression on patient survival. The same analysis as in (C) was performed for the impact ofMMP9 expression on patient survival by

comparing high MMP9/TGF-b pathway mutations, high MMP9/wild-type TGF-b pathway, and low MMP9.

See also Figures S5 and S6 and Table S6.
both processes are associated with cancer (Dawson and Kou-

zarides, 2012; Jones and Baylin, 2007; Shen and Laird, 2013).

Methylation levels across the 41 genes for each sample grouped

by tumor type revealed a high variability (Figure 7A). Despite this

variability, when ordered by TGF-b pathway activity, DLBCs with
432 Cell Systems 7, 422–437, October 24, 2018
the lowest TGF-b pathway activity score had the highest median

and range of DNA methylation scores, and LAML with low

pathway activity had a low median DNA methylation score (Fig-

ure 7A). Hence, epigenetic silencing appeared to contribute to

low pathway activity in DLBC but not LAML. UCSs with the



Figure 7. Epigenetic Control of the TGF-b Superfamily Pathways

(A) Methylation levels. Boxes quantify the degree of methylation across the 43 TGF-b genes in a given tumor type. The methylation score is calculated from the

median for each gene in a given sample. Scores are grouped by tumor type. The median and interquartile range (boxes) and outliers (whiskers) are shown.

(B) Supervised cluster analysis of methylation patterns. Methylation patterns were clustered as in Figure 6A. Methylation levels were quantified as M-values by

firstmappingmethylation array probes to individual genes. Amedian beta value for each genewas then calculated as themedian beta value across all samples for

a given cancer type.

(C)microRNA levels. Boxplot showing themeanmiRNA expression levels for the 32miRNAs that regulate the indicated genes in the TGF-b superfamily pathways.

The median and interquartile range (boxes) and outliers (whiskers) are shown.

(D) microRNA regulation. Inferred miR-mRNA targeting for 15 TGF-b superfamily pathway genes by the 32 miRNAs.

(E) Abundance of miRNAs predicted to target the TGF-b superfamily pathway genes. The heatmap illustrates miRNA abundance for 8,930 tumor samples from 32

of the 33 TCGA tumors (GBM excluded, no miRNA data in TCGA).

(F) Contribution of data type to TGF-b superfamily pathways score. Tumor types (columns) ordered from lowest (left) to highest (right) TGF-b superfamily pathway

score. MeanmiRNA expression levels normalized between 0 and 1 yielded the highest overall correlation with pathway score (R =�0.68). Mean DNAmethylation

beta values normalized between 0 and 1 had the next highest correlation (R = �0.46). Amplifications (R = 0.24), deletions (R = 0.09), and mutations (R = -0.05)

represent proportions of samples with the given type of aberration in at least one of the 43 TGF-b genes.

See also Figure S7 and Tables S5, S6, and S7.
highest TGF-b pathway activity score had a low median methyl-

ation score, suggesting that other mechanisms contribute to the

differences in activity scores.

We clustered DNA methylation levels (supervised by cancer

type) (Figure 7B) and compared the results with supervised clus-

tering of the expression of the 43 TGF-b pathway genes (Fig-

ure 5B). The epigenetic cluster analysis divided the genes into

two main groups: those with little or no DNA methylation in any

cancer and those with DNA methylation in some or all cancers.

The cluster with high DNA methylation scores included

SMAD9, SPTBN1, ACVRL1, GDF2, INHBC, INHBE, INHBA,
and TGFB3. The presence of ACV ligands suggested that those

ligands are tumor suppressive in many cancers. Adaptor

SPTBN1 had a high DNA methylation score in all cancer sam-

ples, supporting a tumor-suppressive role.

We focused on miRNAs that, according to miRBase (Kozo-

mara and Griffiths-Jones, 2014), are associated with the 43

TGF-b pathway genes. We selected the top 32 miRNAs anti-

correlated with transcript abundance (Table S7). Those miRNAs

exhibited variable expression across the 32 tumor types (Fig-

ure 7C; GBM had no miRNA data). LAMLs with low TGF-b

pathway activity had the highest level of miRNA expression,
Cell Systems 7, 422–437, October 24, 2018 433



suggesting that miRNAs regulate pathway activity in this blood

cancer.

We predicted that 15 of the 43 genes were targets of at least 1

miRNA; BMPR2, TGFBR2, and SMAD4 were each targeted by 5

or more miRNAs (Figure 7D). An miRNA/mRNA topology map for

the GI cancers (COAD, READ, STAD, ESCA, LIHC, and PAAD)

(Figure S7B) revealed thatBMP3was targeted only in GI cancers

and that SMAD4 was targeted only in the Pan-Cancer cohort,

suggesting that miRNA/mRNA topologies depend on tumor

context.

Cluster analysis (supervised by cancer type) yielded an inter-

esting pattern for miRNA 92a-3p, which is predicted to target

the 3 core genes BMPR2, TGFBR2, and SMAD7. miRNA 92a-

3p was overexpressed in breast, ovarian, liver, and head and

neck cancers. We also identified BMPR2 and TGFBR2 as genes

with hotspot sites of mutations that were common in STAD and

COAD. The cancers with high frequencies of hotspot mutations

in those two genes did not have high expression of miRNA

92a-3p, suggesting that there is little selective pressure for

both mutation and downregulation by that miRNA. To examine

the contribution of mutations, amplifications, deletions, DNA

methylation, and miRNAs to the pathway activity score across

tumor types, we computed Pearson’s correlations between the

pathway activity score and (1) levels of DNA methylation or

miRNA expression and (2) percentages of mutations or CNVs

in each tumor type and plotted the results in order of increasing

pathway activity scores (Figure 7F). The results suggested that

miRNAs play a dominant role in LAML, DLBC, uveal melanoma

(UVM), and THYM, all of which had low TGF-b pathway activity

scores. DNA methylation was dominant in DLBC, STAD, breast

invasive carcinoma (BRCA), andCOAD. Amplifications positively

correlated with the activity score and played a dominant role in

UCS, sarcoma (SARC), ESCA, cholangiocarcinoma (CHOL),

and ovarian serous cystadenocarcinoma (OV). However, OV

has a high background CNV burden, making it difficult to distin-

guish functionally important effects from passenger alterations.

Overall, deletions exhibited a low positive correlation with the

pathway activity score, and mutations showed the weakest

correlation.

DISCUSSION

Because TGF-b superfamily signaling plays context-dependent

roles as both a tumor suppressor and tumor promoter, TGF-b

biological function is notably ambiguous. However, given its

prominent role in cancer, understanding its function in diverse

settings will be necessary to design therapy for tumors with

aberrant TGF-b signaling. Hence, this study focused on

elucidating salient characteristics of TGF-b-associated genes

across a large cohort of different types of cancers. Some of

the key findings of the study were that (1) 39% of the cancers

carried TGF-b pathway gene alterations; (2) the genomic alter-

ations appeared to affect expression of metastatic and EMT

genes; (3) 6 hotspot mutations were identified in 6 genes; (4)

the pathway was most frequently aberrant in GI cancers, which

exhibited 115 of the 176 hotspot mutations identified; (5) high

expression of downstream target genes coupled with mutations

in the TGF-b pathway genes was associated with poor

outcome, suggesting a net tumor-promoting role of the super-
434 Cell Systems 7, 422–437, October 24, 2018
family across the Pan-Cancer cohort; (6) apparent gene

silencing by DNA methylation and deletion of TGF-b pathway

genes were observed most frequently in DLBC, whereas miRNA

silencing was seen most often in LAML. DLBC and LAML also

had the lowest TGF-b pathway activity scores, suggesting a

possible tumor-suppressive role of the TGF-b superfamily in he-

matologic cancers.

Although 39% of the cancers had genomic alterations in at

least one of the TGF-b pathway genes, GI cancers were particu-

larly enriched for them. GI cancers were most influenced by

recurrent hotspot mutations in 6 genes, SMAD4, SMAD2,

BMPR2, BMP5, TGFBR2, and ACVR2A. The hotspot mutations

in BMP5 and TGFBR2 had not been identified previously, and

their function in GI cancer should be explored.

UCS showed the highest TGF-b superfamily pathway activity.

High activity was associated with amplifications or low DNA

methylation. In general, epigenetics appeared to play a strong

role in regulating the activity of the TGF-b superfamily pathways

in DLBC, COAD, BRCA, STAD, and LUAD, whereas miRNAs

played a strong role in LAML, UVM, and THYM. Such cancer

type-dependent differences in the regulation of the TGF-b

pathway could prove important to the development of therapies

that target the pathway.

TGF-b signaling pathway activity correlated positively with

other cancer-relevant pathways, including EMT, breast reac-

tive, RAS/MAPK, and RTK pathways. Conversely, activity of

the TGF-b pathways was anti-correlated with the cell cycle

and apoptosis pathways. Overall, this study provides a molec-

ular portrait of genetics, epigenetics, and miRNA-mediated

regulation of signaling mediated by the TGF-b superfamily.

We expect that this body of organized data and information

will be mined by other researchers over time to formulate,

test, or validate a variety of additional hypotheses that have

not yet come into focus.
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Subject Details
Human Data, Tumor Data and TGF-b Pathway Gene Selection

Molecular data were obtained from patients that had not received prior treatment for their disease (ablation, chemotherapy, or radi-

ation therapy) and had provided informed consent as part of The Cancer Genome Atlas Project (TCGA). Local Institutional Review

Boards (IRBs) at the tissue source sites reviewed protocols to approve submission of cases.

We selected samples from 33 TCGA projects to analyze the genomic, epigenomic and transcriptomic alterations in the TGF-b

pathway.

TCGA Project Management collected necessary human subjects documentation to ensure the project complies with 45-CFR-46

(the ‘‘Common Rule’’). The program has obtained documentation from every contributing clinical site to verify that IRB approval has

been obtained to participate in TCGA. Such documented approval may include one or more of the following:

d An IRB-approved protocol with Informed Consent specific to TCGA or a substantially similar program. In the latter case, if the

protocol was not TCGA-specific, the clinical site PI provided a further finding from the IRB that the already-approved protocol is

sufficient to participate in TCGA.

d A TCGA-specific IRB waiver has been granted.

d A TCGA-specific letter that the IRB considers one of the exemptions in 45-CFR-46 applicable. The two most common exemp-

tions cited were that the research falls under 46.102(f)(2) or 46.101(b)(4). Both exempt requirements for informed consent,

because the received data and material do not contain directly identifiable private information.

d A TCGA-specific letter that the IRB does not consider the use of these data and materials to be human subjects research. This

was most common for collections in which the donors were deceased.
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METHOD DETAILS

Sample Processing
Cases were staged according to the American Joint Committee on Cancer (AJCC). Each frozen primary tumor specimen had a com-

panion normal tissue specimen (blood or blood components, including DNA extracted at the tissue source site). Adjacent tissue was

submitted for some cases. Specimens were shipped overnight using a cryoport that maintained an average temperature of less

than �180�C.
RNA and DNA were extracted from tumor and adjacent normal tissue specimens using a modification of the DNA/RNA AllPrep kit

(Qiagen). The flow-through from the Qiagen DNA column was processed using a mirVana miRNA Isolation Kit (Ambion). This latter

step generated RNA preparations that included RNA <200 nt suitable for miRNA analysis. DNA was extracted from blood using the

QiaAmp blood midi kit (Qiagen). Each specimen was quantified by measuring Abs260 with a UV spectrophotometer or by PicoGreen

assay. DNA specimens were resolved by 1% agarose gel electrophoresis to confirm high molecular weight fragments. A custom

Sequenom SNP panel or the AmpFISTR Identifier (Applied Biosystems) was utilized to verify tumor DNA and germline DNA were

derived from the same patient. Five hundred nanograms of each tumor and normal DNA were sent to Qiagen for REPLI-g whole

genome amplification using a 100 mg reaction scale. Only specimens yielding a minimum of 6.9 mg of tumor DNA, 5.15 mg RNA,

and 4.9 mg of germline DNA were included in this study. RNA was analyzed via the RNA6000 nano assay (Agilent) for determination

of an RNA Integrity Number (RIN), and only the cases with RIN >7.0 were included in this study. Reasons for rejection are described at

https://tcga-data.nci.nih.gov/datareports.

Selection of 43 Core Genes Associated with the TGF-b Superfamily
We selected the list of core TGF-b superfamily genes used in the paper by searching for the keyword ‘‘TGF-b’’ in 4 databases: (i)

BIOCARTA_TGFB_PATHWAY from GSEA (http://software.broadinstitute.org/gsea/msigdb/cards/BIOCARTA_TGFB_PATHWAY),

(ii) KEGG_TGF_BETA_SIGNALING_PATHWAY from GSEA (http://software.broadinstitute.org/gsea/msigdb/cards/KEGG_TGF_

BETA_SIGNALING_PATHWAY), (iii) GO_0007179 full gene set from BioMart, and (iv) subset of GO_0007179 (filtered by "experi-

mental evidence") from AmiGo. The union of the resulting lists comprised 181 genes. We then filtered the list down to 43 genes using

the following three criteria. (i) Based on the databases’ annotations and prior literature, the genes were divided into two categories:

those belonging to the signaling cascades and those that encoded targets of the signaling cascades.We retained genes in the former

category. (ii) We then performed extensive literature searches and kept only those genes that satisfied any of the following conditions:

(a) the gene had previously been implicated in cancer, or (b) the gene was involved in direct binding to and regulation of Smad func-

tion, or (c) the genewas phenotypically associated with the TGF-b superfamily, wheremutations or deletions of the gene had resulted

in phenotypes similar to those from loss of function of the TGF-b superfamily pathways. (iii) Finally, we discussed the complete list of

181 genes and the results of our literature searches with subject matter experts in the TCGA consortium and, after recommendations,

reached a consensus for manual curation.

That selection process resulted in 43 ‘‘core’’ genes, including 2 genes encoding adaptor proteins (SPTNB1 and ZFYVE9) that are

important in TGF-b signaling and genetically associated by phenotype (Table S1A). However, those two genes are not exclusive to

the TGF-b superfamily and they play roles in other cellular processes as well. The other 41 core genes encode components of each

level of the ‘‘canonical’’ TGF-b signaling pathway that activates Smads to regulate gene expression (Figure 1A). Other genes that are

not members of the canonical pathway (the ‘‘noncanonical’’ TGF-b signaling pathway) are not included in the set of 43 genes, but

noncanonical signaling is represented in Figure S1A for the sake of completeness. The 43 genes used in the study encode 3 ligands

in the TGF-b subfamily, 8 ligands in the BMP (bone morphogenetic protein) subfamily, and 9 ligands in the ACV (activin) subfamily;

3 receptors for the TGF-b subfamily and 1 interacting protein (TGFBRAP1), 3 receptors for the BMP family, and 6 receptors for the

ACV family; and 8 Smads (receptor-activated R-Smads, inhibitor I-Smads, and the commonCo-Smad). The list of 43 genes has been

made available at cBioPortal (http://www.cbioportal.org) under the category, ‘‘General: TGF-b superfamily,’’ so users can explore

them further and/or add their own selected genes to study alongside the gene set we used.

Similarly, 50 downstream genes were selected to study transcriptional output of TGF-b pathway activity. These genes included

proteins that function in association with TGF-b pathways (2), proteins that regulate the extracellular matrix (2), extracellular matrix

proteins (3), transcription factors (13), apoptosis regulators (9), EMT regulators (10), fibrosis inducers (4), tumor promoters (4), E3 li-

gases (2), and stemness markers (1) (Table S1B).

QUANTIFICATION AND STATISTICAL ANALYSIS

Mitigation of Batch Effects and Systematic Biases
We investigated batch effects first within individual disease types, and then across tumor types. Specifically, we investigated the ef-

fects of multiple confounding factors, including differences in: (i) batches in which the samples were processed, (ii) tissue source sites

from where the samples were obtained, (iii) the date on which the samples were shipped to the data generation centers, (iv) the in-

strument on which the samples were processed, (v) the centers that generated the data. The results from individual tumor type an-

alyses can be found online at: (http://bioinformatics.mdanderson.org/tcgambatch/). We assessed the magnitude of batch effects

using the following algorithms, (i) clustered heat maps, (ii) PCA plots, and (iii) box plots. Whenever batch effects were observed,

we corrected them using (i) ComBat (Johnson et al., 2007), or an enhanced version of it, (ii) Replicates Based Normalization
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(RBN) (Akbani et al., 2014), or (iii) removal of bad gene/probe data. Using those methods, we corrected the mRNA, miRNA, DNA

methylation and protein expression data. The mutations and copy number data were already discretized and corrected for back-

ground loads.

Differences in tumor purity were adjusted for in genomic and epigenomic data. Tumor purity differences in the expression plat-

forms, however, was completely confounded with tumor type differences. More than 5 normal samples were available for only 15

of the 33 tumor types, so application of deconvolution algorithms to the entire cohort was not possible. We acknowledge that differ-

ences in tumor purity is a limitation of TCGA expression data, however, TCGA had ensured that all their samples had high tumor con-

tent in the sample acquisition phase. The mutation calls used in all of our analyses were somatic mutations only, not germline, so

tumor purity differences had minimal impact on that data type. Copy-number alterations (CNA) were assessed as deviations in

the tumor sample from the paired normal tissue sample, so they only reflected somatic changes. However, the amplitude of CNA

signals can be suppressed in tumor samples with normal cell contamination. We thus utilized ABSOLUTE-derived tumor purity

and ploidy estimates for In Silico Admixture Removal (ISAR) of the segmentation data (Zack et al., 2013) in order to correct for

any signal dampening that may have occurred before proceeding to analyze somatic copy number alterations. To minimize the in-

fluence of normal tissue contamination and leukocytes infiltration in DNA methylation data, we chose probes not methylated in all

relevant normal tissues and blood cells, to get rid of methylation signals from possible confounding factors.

DNA Sequencing Data
Exome capture was performed using Agilent SureSelect Human All Exon 50Mb according to themanufacturer’s instructions. Briefly,

0.5–3 micrograms of DNA from each sample were used to prepare the sequencing library through shearing of the DNA followed by

ligation of sequencing adaptors. All whole exome (WES) and whole genome (WGS) sequencing was performed on the Illumina HiSeq

platform. Paired-end sequencing (2 x 101 bp forWGS and 2 x 76 bp forWE) was carried out using HiSeq sequencing instruments; the

resulting data was analyzed with the current Illumina pipeline. Basic alignment and sequence QC was done on the Picard and Fire-

hose pipelines at the Broad Institute. Sequencing data were processed using two consecutive pipelines:

(1) Sequencing data processing pipeline (‘‘Picard pipeline’’)

Picard (http://picard.sourceforge.net/) uses the reads and qualities produced by the Illumina software for all lanes and libraries

generated for a single sample (either tumor or normal) and produces a single BAM file (http://samtools.sourceforge.net/SAM1.

pdf) representing the sample. The final BAM file stores all reads and calibrated qualities along with their alignments to the genome.

(2) Cancer genome analysis pipeline (‘‘Firehose pipeline’’)

Firehose (http://www.broadinstitute.org/cancer/cga/Firehose) takes the BAM files for the tumor and patient- matched normal

samples and performs analyses including quality control, local realignment, mutation calling, small insertion and deletion identifica-

tion, rearrangement detection, coverage calculations and others as described briefly below. The pipeline represents a set of tools for

analyzing massively parallel sequencing data for both tumor DNA samples and their patient-matched normal DNA samples. Firehose

uses GenePattern (Reich et al., 2006) as its execution engine for pipelines and modules based on input files specified by Firehose.

The pipeline contains the following steps:

a. Quality control

This step confirms identity of individual tumor and normal to avoidmix-ups between tumor and normal data for the same individual.

b. Local realignment of reads

This step realigns reads at sites that potentially harbor small insertions or deletions in either the tumor or the matched normal, to

decrease the number of false positive single nucleotide variations caused by misaligned reads.

c. Identification of somatic single nucleotide variations (SSNVs)

This step detects candidate SSNVs using a statistical analysis of the bases and qualities in the tumor and normal BAMs, using

Mutect (Cibulskis et al., 2013).

d. Identification of somatic small insertions and deletions

In this step, putative somatic events were first identified within the tumor BAM file and then filtered out using the corresponding

normal data, using Indellocator (Ratan et al., 2015).

Mutation Analysis
The non-silent mutation frequencies for each gene in the individual cancer and Pan-Cancer settings are determined through mining

the MC3 TCGA MAF file (covering n=9125 patients of the Pan-Cancer pathway analysis consortium manuscript freeze sample set)

from 33 cancer types. To include only the non-silent mutations, the variant classes, ‘‘Silent,’’ "Intron,’’ "3’UTR," "3’Flank," ‘‘5’UTR,’’
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‘‘5’Flank,’’ "IGR,’’ and "RNA" are excluded from the analyses. The oncoprints are generated using the cBioPortal oncoprinter suite.

Each oncoprint visualizes and quantifies the somatic mutation and copy number events in 9,125 patients with 33 cancer types for

each gene family in the pathway (Figure 1B). The hotspot mutations are extracted from MC3 MAF file first programmatically for

any hotspot site with more than nine counts and validated through a systematic mining in cBioPortal (Figure 3). The hotspots are

visualized using the mutationMapper tool in cBioPortal. For ACVR2A and SMAD4 hotspot mutations are mapped onto the respective

protein structures (PDB IDs: 4ASX for ACVR2A and 1DD1 for SMAD4) using the UCSF chimera software. The driver mutations in the

pathway are detected using MutSigCV for all cancer types in the Pan-Cancer set (Figures 2, 4, and 7F). Although MutSigCV is a well-

established method for detecting driver genomic aberrations in cancer, it does have the following limitations. MutSigCV is insensitive

to some genomic events, such as the co-occurrence of mutations in genomic proximity and or mutations that are associated with

transcription-coupled repair. MutSigCV identifies genomic heterogeneity across patient cohorts. Another challenge that cannot

be addressed by MutSigCV is intratumor heterogeneity and detection of driver mutations within subclones of a single tumor. Finally,

success of MutSigCV depends on the statistical properties and size of the patient population under study as the algorithm fails to

classify rare variants seen within small to mid-sized patient cohorts. Differential mRNA expression of 50 TGF-b pathway target genes

is also quantified in relation to 6 hotspot mutations in the Pan-Cancer cohort and GI cancers (Figure 3B). Rows and columns were

clustered using the complete-linkage algorithm with Euclidean distance, and dendrogram branches were ordered to minimize the

differences between the cube of the mean of adjacent rows and columns.

Copy Number Analysis
Tumor sample DNAwas extracted and hybridized to Affymetrix SNP6.0 arrays by theGenomeAnalysis Platform at the Broad Institute

as previously described (McCarroll et al., 2008). The calculated array probe intensities were normalized and combined using

SNPFileCreator (Li and Hung Wong, 2001) and then processed with Birdseed (Korn et al., 2008) to yield preliminary copy-number

estimates. Segmented relative copy-number profiles were produced by refining and partitioning the preliminary copy-number esti-

mates with tangent normalization and Circular Binary Segmentation (Olshen et al., 2004). The segmented relative copy-number pro-

files for 9,125 samples were selected for further analysis. For each disease type, GISTIC2.0 (Mermel et al., 2011) was ran on the cor-

responding copy-number profiles to identify regions undergoing significant focal-level and broad-level somatic copy-number

aberrations and to obtain gene-level estimates of copy-number. The significant genomic amplification lesions and genomic deletion

lesions identified by GISTIC2.0 were examined to determine if any TGF-b network genes were being targeted as potential oncogenic

or anti-oncogenic drivers, and the frequency of amplifications and deletions across the TGF-b network genes were computed from

the gene-level thresholded copy-number estimates (-2, -1, 0, +1, +2). Genes assigned positive values of +1 and +2 were considered

amplified, with +1 representing low-level amplification events and +2 representing high-level amplification events, and genes with

negative values of -1 and -2 were considered deleted, with -1 representing shallow deletion events and -2 representing deep deletion

events.

GISTIC2.0 is a tool for detecting independently targeted regions of SCNA, based on data-driven estimation of the background

rates of SCNA. GISTIC2.0 used data from SNP arrays, thus the successful application of GISTIC2.0 to detect low frequency differ-

ences depends on the resolution of array or sequencing platform and the population size.

GISTIC identifies somatic alterations that occur significantly more frequently than those predicted to occur at random, based on

the background rate of copy number changes. The issue with this and all significance methods is that the ability to detect rare but

meaningful driver events depends on the frequencies of their occurrence and on the number of the tumors profiled. Tumor types for

which few tumors have been profiled and that have infrequently occurring copy number alterations, GISTIC may fail to identify rare

but important somatic events. As more copy number profiles become available through large-scale tumor sequencing efforts, the

ability to detect these rare but significant events will increase.

Pathway Analysis
A pathway topology is generated to link the 43 core TGF-b pathways based on database searches in KEGG and Pathway Commons,

expert curation and literature searches. The pathway diagram is visualized and optimized for layout using the Pathway Mapper

program (Figure S4A). The genomic alteration frequencies for copy number gains or losses and mutations are extracted from the

cBioPortal and programmatically form the MC3 MAF file. The alterations are mapped to each gene in the pathway diagram. In the

GI-focused pathway analysis, only genes with >3% alteration for either copy number or mutation alterations are included in the

pathway diagram to capture only those pathways that are substantially altered (Figure S4A).

Expression Signatures of Genomic Alterations
The gene expression signatures of TGF-b pathway alterations are analyzed with a clustering algorithm. The samples with alterations

in each core gene and wild type for all TGF-b pathway genes are extracted from theMC3MAF file. The transcriptional output is quan-

tified using expression of 50 downstream genes (Figures 2G–2I). Themedian fold change of transcriptional changes are calculated as

the ratio of expression of downstream genes among all core pathway gene mutated, amplified and deleted samples to expression

levels in TGF-b pathway wild type samples. The transcriptional changes in each downstream gene vs each altered pathway gene is

analyzed and visualized with a two-way hierarchical clustered heat map (Figures 4A–4B). The hierarchical clustering is performed

using a Euclidean distance and complete linkage. The shift in the transcriptional output shift in different subsets such as Pan-Cancer

and GI cancers are visualized with a volcano plot with BH based FDR adjusted P values calculated with a Wilcoxon signed rank test
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(null hypothesis is the transcriptional output shift in the two subsets are equal to each other) and log fold change of the fold changes in

Pan-Cancer vs. GI cancers (Figure 4C). The global transcriptional output is calculated by comparing fold changes due to TGF-b

pathway alterations in all transcripts measured (Figure 4E).

Gastrointestinal Cancers
The cancer types, Colon Adenocarcinoma (COAD, N=341), Esophageal carcinoma (ESCA, N=169), Liver hepatocellular carcinoma

(LIHC, N=348), Pancreatic adenocarcinoma (PAAD, N=152), Rectum adenocarcinoma (READ, N=118), Stomach adenocarcinoma

(STAD, N=383) are included as the gastrointestinal (GI) samples. The enrichment of TGF-b pathway genomic alterations in the GI

cancers was statistically assessed using a one tailed Fisher’s exact test, where the null hypothesis was the odds ratio of alterations

in GI vs other cancers was not greater than 1. The total number of GI samples was 1511. The transcriptional outcome of GI cancers

with TGF-b pathway disruptions were quantified using the samemethod and downstream target gene list as we did in the analysis of

transcriptional output from all cancers (Figures 3B and 4). The pathway analysis was performed as in the case of the Pan-Cancer

cohort for each GI cancer type separately (Figure S4). In the pathway analysis, the core genes with that >3% alteration frequency

for any of the alteration types (mutations, copy number amplification or deletion) were included into the pathway diagrams while

the rest was eliminated.

mRNA Expression Analysis and Pathway Activity Scores
We corrected for batch effects the TCGA mRNA data available from TCGA’s web portal (https://portal.gdc.cancer.gov/). The log2
transformed data were used for all the mRNA analysis in this project. Pathway scores were generated by first Z-normalizing the

values for the 43 core genes across all of the samples (Figures 5, 6, and 7). The mean across the 43 genes was then calculated

for each sample to yield the pathway activity score per sample. Unsupervised clustering used 1-Pearson’s correlation for the dis-

tance metric with Ward’s linkage. One limitation of the pathway activity score is that it gives equal weight to all the genes in the

pathway, meaning that the abundance of each transcript contributes an equal positive value to the score. This is not reflective of

the biology, for example, some genes encode inhibitors of pathway activity, and some components interact with multiple partners

and thus may be limiting. Another limitation is that the score uses expression of the genes as a surrogate for functional protein abun-

dance, which does not account for loss or gain of function due to mutations. Thus, the pathway activity score represents a relative

estimate not an absolute value of pathway function.

microRNA Analysis
We corrected the TCGA miRNA data available from TCGA’s web portal (https://portal.gdc.cancer.gov/) for batch effects. For 9310

primary tumor samples, we used MatrixEQTL v2.1.1 or v2.2 (Shabalin, 2012 Pubmed: 22492648) in R 3.4.1 or 3.4.4 to calculate

Spearman correlations between batch-corrected, normalized expression data for miRNA mature strands and gene-level mRNA

data for 43 pathway genes. We then filtered by records in miRTarBase v6.0 (Chou et al., 2016), retaining both stronger and weaker

functional interactions. We further filtered by requiring correlations to have a coefficient <-0.25 and an FDR <10-6, which resulted in

the retention of 40 miR-mRNA pairs involving 32 miRNA mature strands. For heat maps, we removed eight mature strands, because

they were too weakly expressed (<10 RPM) in all or most tumor types, retaining 24 mature strands. For the main heat map of batch-

correctedmiRNA-seq data, we identified 8930 samples from 32 of 33 tumor types that were from primary tumors, metastatic tumors,

or blood cancers. These samples were represented in the ordered heat map for messenger RNAs from the pathway (Figure 7E). We

ordered the samples to match the sample order in the messenger RNA heat map (i.e. with cancer types ordered to have increasing

mean pathway scores, and samples within a cancer type ordered to have increasing pathway scores). We generated a heat map

using the pheatmap v1.0.2 package, in R 3.4.1. We generated a similar heat map for the 1507 primary tumors present in LIHC,

COAD, READ, STAD, ESCA, and PAAD data sets. Box plots were generated using the boxplot() function in R (Figure 7C). The

data consisted of the mean miRNA value across the 24 miRNAs. A limitation of this approach is that the results are not based on

rigorous and objective thresholds for the metrics (like correlations or p values). Rather the thresholds were chosen to yield a reason-

ably small set of the most statistically significant miRNAs that were easy to evaluate and visualize for human interpretation. Other-

wise, the results would appear like the proverbial ‘‘hair ball.’’

DNA Methylation Profiles
We mapped the Illumina methylation array probes to individual genes using the Illumina Human Methylation 27k R annotation data

package. Forty-one of forty-three TGF-b pathway genes had at least one probe mapping to their promoter region. For genes with

multiple probes, median beta values were used. We then calculated median beta value for these 41 genes in each sample, and

plotted them using the boxplot function in R, grouped by cancer type (Figure 7A). For the heat maps, we calculated beta values

for each of the 41 genes of TGF-b pathway and the 33 tumor types by taking median across all samples for a given tumor. We

then plotted this data as a heat map using the Clustergram function in Matlab (Figure 7B). For the analysis of the GI methylation

data, probes were mapped to TGF-b pathway genes for GI cancers (COAD+READ, STAD, ESCA, PAAD and LIHC). Beta values

for each gene-sample pair was visualized as a heat map using the ComplexHeatmaps package, with TGF-b pathway genes clustered

using Euclidean distances andWard’s linkage. Box plots were generated using the boxplot() function in R. The data consisted of the

mean beta value across the 41 genes. This method assumes the mean beta value is reflective of the overall methylation level of the

entire pathway, which may not always hold and is a limitation of the approach.
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Correlations of Pathway Score Vs. Bootstrapped Genes
Following the calculation of TGF-b pathway scores, the absolute value of the Pearson correlation between gene expression values

and pathway scores was calculated for all 20,310 genes where this calculation was possible. Next, 43 correlation values were

sampled with replacement from the correlation values of the 43 TGF-b pathway genes a total of 10,000 times, and each time the me-

dian sampled correlation was calculated. The same sampling procedure was also performed for the TGF-b target genes, where 50

correlation values were sampled with replacement from the correlation values of the 50 target genes, and for all genes, where 50

correlation values were sampled with replacement from the correlation values of all 20,310 genes. The distribution of the 10,000 me-

dian correlations for each of the three gene sets is shown in Figure S5. A p-value was also calculated for each group as the proportion

of median correlations for the ‘‘all genes’’ group that are greater than or equal to the median of each group.

Survival Analysis
Kaplan-Meier Survival Curves are generated for each patient sub cohort using the Survival and Survminer R packages (Figures 6C–

6E and S6B–S6D). The statistical significance of survival differences between multiple subcohorts were determined using the log-

rank test to capture relations. In order to segment the cohorts into subgroups characterized by expression levels of the TGF-b target

genes, we analyzed the distribution of target gene expression across the Pan-Cancer cohort. We particularly focused on mRNA

expression distribution of HMGA2,MMP9, collagens (COL1A1, COL1A2, COL3A1), TERT, FOXP3, CDH2 as the expression of these

genes varied significantly between TGF-b pathway mutated vs. wild type samples. For this purpose, we used the batch normalized

mRNA expression data. For each gene, the cut-off to separate low and high expressing cohorts was determined empirically based on

the distribution. For expression profiles with a unimodal distribution, we used the approximate median values. For bimodal cases, we

selected the threshold as the midpoint that separates each peak on the bimodal distribution. The mRNA expression threshold to

separate the cohorts with low vs. high target expression groups were HMGA2=5, MMP9=10, mean of collagens (COL1A1,

COL1A2, andCOL1A3) = 14, TERT=2, FOXP3=6, CDH2=8. The collagen genes are analyzed as a single entity because they showed

very strong correlation of mRNA expression with each other. The resulting thresholds divided the cohorts into three groups as TGF-b

expression, TGF-b mutant/high target expression, TGF-b wt/high target expression and low target gene expression. We merged

the TGF-b mutant/low target expression and TGF-b wt/low expression cohorts as discriminating between these sets do not inform

on the combined effect of TGF-b mutations and target expression. The survival differences between each sub cohort are analyzed

using the Survival and Survminer R packages.

DATA AND SOFTWARE AVAILABILITY

The raw data, processed data and clinical data can be found at the legacy archive of the GDC (https://portal.gdc.cancer.gov/

legacyarchive/search/f) and the PanCanAtlas publication page (https://gdc.cancer.gov/about-data/publications/pancanatlas). The

mutation data can be found here (https://gdc.cancer.gov/about-data/publications/mc3-2017). TCGA data can also be explored

through the Broad Institute FireBrowse portal (http://gdac.broadinstitute.org) and the Memorial Sloan Kettering Cancer Center

cBioPortal (http://www.cbioportal.org). Details for software availability are in the Key Resources Table.
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