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Abstract: (1) Background: Chronic heart failure (CHF) contributes to the overall burden of
cardiovascular disease. Early identification of at-risk individuals may facilitate the targeting of
precision therapies. Plasma microRNAs are promising circulating biomarkers for their implications
with cardiac pathologies. In this pilot study, we investigate the possible exploitability of circulating
micro-RNAs (miRNAs) to track chronic heart failure (CHF) occurrence, and progression from
NYHA class I to IV. (2) Methods: We screened 367 microRNAs using TaqMan microRNA Arrays
in plasma samples from healthy controls (HC) and CHF NYHA-class I-to-IV patients (5/group).
Validation was performed by singleplex assays on 10 HC and 61 CHF subjects. Differences in the
expression of validated microRNAs were evaluated through analysis of covariance (ANCOVA).
Associations between N-terminal pro-BNP (NT-proBNP), left ventricular end-diastolic volume
(LVEDV) or peak oxygen uptake (VO2 peak) and plasma microRNA were assessed by multivariable
linear regression analysis. (3) Results: Twelve microRNAs showed higher expression in CHF patients
vs. HC. Seven microRNAs were associated with NT-proBNP concentration; of these, miR-423-5p
was also an independent predictor of LVEDV. Moreover, miR-499-5p was a predictor of the VO2
peak. Finally, a cluster of 5 miRNAs discriminated New York Heart Association (NYHA) class-I
from HC subjects. (4) Conclusions: Our data suggest that circulating miRNAs have the potential
to serve as pathophysiology-based markers of HF status and progression, and as indicators of
pre-symptomatic individuals.
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1. Introduction

Brain natriuretic peptide (BNP) and its non-active prohormone N-terminal pro-BNP (NT-proBNP)
are the gold-standard circulating biomarkers (CBM) for heart failure (HF) [1], and are already included
in current guidelines with Class I recommendation for diagnostic and prognostic purposes, as well as
with Class II standing for assessing the risk of patient re-hospitalization, or for screening to prevent
HF onset [2]. Both forms of HF, the form with reduced and the form with preserved ejection fraction
(HFrEF and HFpEF), are well classified by natriuretic peptides (NPs), although HFrEF patients are
those in which BNP and NT-proBNP show higher accuracy [3]. Nonetheless, although NPs represent
the benchmark against which novel biomarkers must be compared [4], their circulating levels can
be found altered in the presence of several conditions other than HF, including advancing age,
renal failure, inflammatory cardiomyopathies, coronary heart disease, atrial arrhythmias, cardiotoxic
drugs, and obesity [5,6].

Recent advances in the understanding of HF pathophysiology have better clarified the complex
nature of HF as a heterogeneous group of syndromes, in which the role of CBM is deemed increasingly
relevant not only to define disease state and rate but also to stand as a bridge between the different
structural HF phenotypes and corresponding pharmacologic or device-based treatments [7]. The list of
biologic processes involving HF has been enriched over time, including, so far, a plethora of pathologic
states such as mitochondrial/metabolic abnormalities, neurohormonal activation, oxidative stress,
extracellular matrix remodeling, inflammation, fibrosis, and apoptosis. The potential added value
of novel pathophysiology-based HF-CBM on top of NPs might thus be recognized to result in a
higher likelihood to identify, and possibly treat, specific subsets of patients according to the prevailing
structural phenotype involved [8].

Interestingly, micro-RNAs (miRNAs), short (22-24 nt) non-coding RNAs, which are stably
expressed in the systemic circulation of both animals and humans, have been introduced as potential
pathophysiology-linked CBM [9]. Although the mechanisms underlying their release into the
bloodstream are still poorly understood [10], circulating miRNAs have been proposed as diagnostic
CBM in different pathologic conditions [11] (e.g., cancer, liver injury, hepatitis), including heart
diseases [12]. We were among the first to report their potential as CBM in ST-elevated acute
myocardial infarction [13] and in arrhythmogenic cardiomyopathy [14,15]. Similar findings have been
described in other cardiac disease states, such as atrial fibrillation or coronary artery disease [16–18].
Notably, previous investigations have concordantly suggested that HF patients show dysregulation in
the expression of several circulating miRNAs [19,20]. A recent comprehensive meta-analysis has failed,
however, to confirm either single or pooled circulating miRNAs as diagnostic HF-CBM, except for
promising data about miR-423-5p [21].

It is noteworthy that a major shortcoming of previous investigations focusing on HF-miRNAs relies
upon the lack of comparative studies with NPs, which are instead warranted for better understanding
the actual potential of miRNAs to gain a position in clinical practice. Another critical issue is the
poor correlation of miRNAs’ blood levels with a thorough clinical characterization, including patients’
functional status and cardiac performance parameters.

In this study, we pave the way for large cohort-based studies by addressing the aforementioned
issues in a highly homogeneous patient population well representative of chronic HF (CHF) progression
along with NYHA classes and LV volumetric deterioration, to ascertain the ability of circulating miRNAs
to unveil CHF onset and progression when compared to NPs.

2. Experimental Section

2.1. Patients

Sixty-one patients with HFrEF were enrolled by the outpatient clinic and hospital at Azienda
Ospedaliero-Universitaria S. Anna. Diagnosis of ischemic and idiopathic dilated cardiomyopathy was
based on accepted criteria [2]. Diagnosis of CHF was based on a history of HF for at least a six-month
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duration, reduced exercise tolerance, left ventricular functional impairment, and raised levels of
NT-proBNP above the normal plasma level. Symptom-limited cardiopulmonary exercise testing was
performed on a bicycle ergometer with a ramp protocol of 10 W/min. Exercise and gas-exchange data
were collected continuously by using a computerized breath-by-breath gas-exchange analyzer. CHF
clinical staging was performed according to the New York Heart Association (NYHA) classification.
All patients received standard, evidence-based guided pharmacological treatment. The control group
consisted of 10 healthy individuals, without any cardiovascular risk factor and receiving no treatment.
Informed consent approved by the Regional Ethical Committee (code ef. 43/2009-211/2014/Em and
Protocol 58635, October 2013) was obtained from all patients and controls, according to the World
Medical Association Declaration of Helsinki.

2.2. Natriuretic Peptide

NT-proBNP was evaluated by direct ELISA in EDTA plasma (DRG Instruments GmbH, Marburg,
Germany). The minimum detection limit was 3 fmol/mL; the intra-assay (n = 16) and inter-assay
(n = 10) coefficients of variation ranged from 5% to 8% and from 7% to 10%, respectively.

2.3. Total RNA Purification

Total RNA was extracted from plasma using TRIzol (Life Technologies, Carlsbad, CA, USA)
following a modified protocol [13]. Briefly, 1 mL of TRIzol was added to each 400 µL of plasma,
followed by the addition of 0.2 mL of chloroform and phase separation. After centrifugation, the upper
aqueous phase was transferred to a new tube and 20 µg of glycogen (ThermoFisher Scientific, Carlsbad,
CA, USA) and 1 mL of 100% isopropanol were added. Then, tubes were centrifuged again and the
pellets washed with 70% ethanol, air-dried, resuspended in RNAse-free water, and stored at −80◦C
until use.

2.4. MicroRNA Screening

miRNA expression profiling was conducted using the TaqMan Human MicroRNA A Array v2.0
(Applied Biosystems, Carlsbad, CA, USA), following the manufacturer’s protocol. Reverse transcription
and pre-amplification were conducted using Megaplex Primer Human Pools A v2.1 and TaqMan
MicroRNA Reverse Transcription Kit. Data were analyzed using ExpressionSuite v1.1 software
(Life Technologies, Carlsbad, CA, USA), using the Global Normalization method, and all miRNAs
presenting Ct values > 35 in more than 50% of patients were considered as not expressed.

2.5. Single miRNA Assays

microRNA retro-transcription was conducted using TaqMan Advanced miRNA cDNA Synthesis
Kit (Life Technologies, Carlsbad, CA, USA) starting from 2 µL of total RNA extract. Selected miRNAs
were evaluated using single TaqMan Advanced miRNA assays (Life Technologies, Carlsbad, CA,
USA), following the manufacturer’s protocol. Expression data were normalized using miR-532-5p
as an internal reference not related to HF and presenting low variance throughout all study groups,
experimentally validated as in previous works [13,14,18,22]. Normalized data were log2 transformed
before statistical analysis.

2.6. Statistical Analysis

Categorical data were reported as counts and proportions, continuous data as mean ± SD.
The normality of the data distribution was assessed by the D’Agostino-Pearson omnibus test.
Categorical clinical variables were compared by the χ2 test or Fisher’s exact test. Between-group
comparisons for continuous data were performed by one-way ANOVA or two-tailed unpaired Student’s
t-test, as appropriate.



Biomedicines 2020, 8, 597 4 of 12

Data obtained from the miRNA screening were analyzed by the Kruskal-Wallis test, using
the Benjamini-Hochberg correction for multiple testing. A False Discovery Rate (FDR) < 0.05 was
considered statistically significant.

Differences in the expression of selected miRNA among the study groups were assessed by analysis
of covariance (ANCOVA) using the general linear model approach. The models included miRNA
expression values as dependent variables and NYHA class as the independent variable, and accounted
for the effects of six factors, i.e., age, sex, diabetes mellitus, hypertension, hypercholesterolemia, and
smoking habit. miRNAs with a p-value < 0.01 were considered statistically significant. Then, post-hoc
multiple comparisons were made by Tukey’s test.

Relationships between parameters of HF severity were evaluated by Spearman’s coefficient of
rank correlation (ρ) or Pearson correlation coefficient (r), when appropriate. Relationships between
HF-severity variables and miRNA expression values were assessed by linear regression analysis
adjusting for age, sex, personal history of diabetes mellitus, hypertension, hypercholesterolemia, and
smoking habit, and corrected for multiple testing using the Benjamini-Hochberg procedure. Adjusted
p-values < 0.05 were deemed statistically significant.

The mean decrease in the Gini index, calculated by an iterative Random Forests procedure
implemented in the “randomForest” (www.rdocumentation.org, v4.6) R package, was used to rank the
miRNAs based on their “importance” in discriminating controls vs. patients with early CHF stage.
This score is a measure of how important a variable is for estimating the value of the target variable
across all of the trees generated by a random forest classifier. The higher the mean decrease, the higher
the variable importance. Top-ranked miRNA clustering analysis was performed by multi-dimensional
scaling (MDS). The quality of clustering was evaluated by the average Silhouette Index (aSI) [23],
taking into account the class membership, using the “cluster” (v2.0.7) R package; this index ranges
from −1 to 1 and the higher the value, the better the discrimination power.

3. Results

3.1. Study Population Characteristics

All features of the study population are listed in Table 1. CHF patients enrolled in the study
(n = 61) were distributed fairly evenly among the NYHA classes (class I n = 14, II n = 17, III n = 16,
and IV n = 14) and most of them were males (67%). There were no substantial differences in risk factors
and major drugs among patients in different NYHA classes. Mean left ventricular ejection fraction
(LVEF) and peak oxygen uptake (VO2 peak) progressively and significantly declined in patients
with worse NYHA functional class. In parallel, mean left ventricular end-diastolic volume (LVEDV)
and NT-proBNP plasma concentration significantly increased as the NYHA class worsened. Finally,
there were no significant differences in age and sex prevalence between healthy controls (HC, n = 10)
and CHF patients.

3.2. Correlation between NYHA Class, LVEDV, and NT-proBNP Levels

To confirm that NYHA class progression was paralleled by increases in NT-proBNP and LVEDV,
we evaluated the correlations between NYHA class and these two HF severity indexes. Our analysis
showed highly positive correlations between NYHA class and NT-proBNP (Figure 1A; ρ = 0.732,
p < 0.001) or LVEDV (Figure 1B; ρ = 0.377, p < 0.005), indicating a proper CHF patient allocation
for disease severity and the expected relationships between functional status, NP levels, and LV
remodeling. Indeed, there was a significant correlation between LVEDV and NT-proBNP (Figure 1C;
r = 0.361, p < 0.01).

3.3. Circulating miRNAs Expression and in Relation with NYHA Class

We conducted a miRNA profiling on plasma samples obtained from patients of the four NYHA
classes and HC (5/group). The screening revealed 234 detectable miRNAs (Table S1). Several miRNAs
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showed a putative differential expression when comparing CHF patients vs. HC (data not shown).
For the validation step on all samples, we selected a restricted group of 17 candidate miRNAs showing
both high regulation and statistical significance. By singleplex assays and ANCOVA analysis (Table
S2), we found that 12 circulating miRNAs showed significantly higher expression in most CHF NYHA
classes than in the HC group: i.e., miR-1, -154, -21, -221, -376a, -379, -382, -409-5p, -423-5p, -499-5p,
-654-5p, and -744 (Figure 2). Of note, miR-423-5p and -499-5p were elevated in NYHA classes II-to-IV,
but not in class I, compared to HC. All other miRNAs, except miR-1, were found with a higher
expression in NYHA class I patients and at least one other NYHA class compared to HC. Only miR-379
expression levels showed a trend that mirrored the progression of CHF through class I to III, reaching
a plateau at classes III and IV.

Table 1. Demographic and clinical features of the study population.

Characteristic NYHA I
(n = 14)

NYHA II
(n = 17)

NYHA III
(n = 16)

NYHA IV
(n = 14) p-Value HC

(n = 10) p-Value

Age, years 64 ± 6.4 70.8 ± 10.4 69.2 ± 10.4 68.4 ± 8.6 0.23 62.7 ± 2.3 0.08
Male sex, n (%) 11 (79%) 10 (59%) 11 (69%) 9 (64%) 0.71 9 (90%) 0.47

NT-proBNP, fmol/mL 27.5 ± 19.5 66.2 ± 51.4 60.3 ± 41 221.6 ± 153.3 <0.001 18.3 ± 35.9 <0.001
Current smoker, n (%) 8 (57%) 8 (47%) 11 (69%) 8 (57%) 0.72 0 (0%)
CAD familiarity, n (%) 6 (43%) 9 (53%) 8 (50%) 5 (36%) 0.8 0 (0%)

Ischemic aetiology, n (%) 10 (71%) 10 (63%) 12 (75%) 9 (64%) 0.9 0 (0%)
Hypertension, n (%) 7 (50%) 10 (59%) 12 (75%) 5 (36%) 0.18 0 (0%)

Hypercholesterolemia, n (%) 11 (79%) 12 (71%) 11 (69%) 5 (36%) 0.1 0 (0%)
Diabetes, n (%) 4 (29%) 4 (24%) 5 (31%) 8 (57%) 0.26 0 (0%)

LVEDV, mL 163.2 ± 45.2 174.9 ± 58.7 189.9 ± 65.9 242.9 ± 99.4 0.02 NA
LVEDD, mm 59.3 ± 5.3 61.9 ± 8.8 62.3 ± 9.2 64.8 ± 8.8 0.4 NA

LVEF, % 38.2 ± 4.4 35.6 ± 8.6 32.1 ± 7.4 24.4 ± 7.3 <0.001 NA
PAP, mmHg 31.2 ± 5.8 35.9 ± 15.6 32.4 ± 5.7 42.1 ± 13.2 0.23 NA

VO2 peak, mL/kg/min 16.4 ± 6.9 15.2 ± 3.3 9.9 ± 0.9 7.9 ± 1 <0.001 NA
ACEIs, n (%) 11 (79%) 12 (71%) 12 (75%) 7 (50%) 0.37 0 (0%)
ARAs, n (%) 3 (25%) 6 (50%) 4 (25%) 8 (57%) 0.2 0 (0%)
ARBs, n (%) 9 (%) 12 (53%) 12 (69%) 7 (43%) 0.54 0 (0%)

Beta blockers, n (%) 13 (93%) 16 (94%) 13 (81%) 13 (93%) 0.67 0 (0%)
Calcium antagonists, n (%) 3 (21%) 1 (6%) 1 (6%) 0 (0%) 0.25 0 (0%)

Digitalis, n (%) 2 (14%) 4 (24%) 7 (44%) 5 (36%) 0.32 0 (0%)
Diuretics, n (%) 9 (64%) 15 (88%) 14 (88%) 14 (100%) 0.06 0 (0%)
Nitrates, n (%) 2 (14%) 3 (17%) 6 (38%) 2 (14%) 0.39 0 (0%)
PUFAs, n (%) 9 (64%) 7 (41%) 7 (44%) 5 (36%) 0.48 0 (0%)
Statins, n (%) 8 (57%) 9 (53%) 11 (69%) 6 (43%) 0.59 0 (0%)

Values are expressed as mean± SD for continuous variables and count and percentage (round brackets) for categorical
variables. NYHA, New York Heart Association; HC, healthy control; NT-proBNP, N-terminal pro-brain natriuretic
peptide; CAD, coronary artery disease; LVEDV, left ventricular end-diastolic volume; LVEDD, left ventricular
end-diastolic diameter; LVEF left ventricular ejection fraction; PAP, pulmonary artery pressure; VO2 peak,
peak oxygen uptake; NA, not available; ACEIs, angiotensin-converting-enzyme inhibitors; ARAs, aldosterone
receptor antagonists; ARBs, angiotensin II receptor blockers; PUFAs, polyunsaturated fatty acids.
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Figure 1. Correlation between heart failure severity indexes. Two markers of chronic heart failure
(CHF) severity, NT-proBNP, and LVEDV, were analyzed for their correlation with NYHA classes.
(A) NT-proBNP levels showed a positive correlation with disease stage (C, healthy controls, and I to
IV, NYHA class). (B) LVEDV also showed a positive correlation with HF NYHA classes. (C) LVEDV
showed a positive correlation with NT-proBNP levels in NYHA patients. Trendlines are depicted.
C n = 10, NYHA I n = 14, NYHA II n = 17, NYHA III n = 16, NYHA IV n = 14.
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Figure 2. Plasma miRNAs regulated in Heart Failure. Twelve circulating miRNAs showed increased
levels in patients belonging to NYHA class I to IV vs. healthy controls (C), even after adjustment for age,
sex, personal history of diabetes mellitus, hypertension, and/or hypercholesterolemia, and smoking
habit. These miRNAs were all significant at the analysis of covariance (ANCOVA) for p < 0.01.
The expression of each miRNA is represented by box and whiskers plots. C n = 10, NYHA I n = 14,
NYHA II n = 17, NYHA III n = 16, NYHA IV n = 14. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001
at Tukey’s multiple comparison test.

3.4. Correlation between Plasma miRNA Levels and NT-proBNP, LVEDV, and VO2 Peak

We then investigated the relationships between miRNA expression and NT-proBNP levels in HC
and NYHA subjects, as well as LVEDV and VO2 peak changes in NYHA patients. Linear regression
analyses showed that miR-21, -154, -221, -299-5p, and -409-5p were positively associated with
NT-proBNP levels (with β coefficients ranging from 0.330 to 0.422, adjusted p < 0.05; Figure 3 and
Table 2), suggesting that their increase may well predict the progressive rise in NPs. Conversely,
miR-451 was negatively correlated with NT-proBNP (β = −0.414, adjusted p = 0.0115). Furthermore,
and most importantly, miR-423-5p showed significant positive associations with both NT-proBNP
(β = 0.518, adjusted p = 0.0005), and LVEDV (β = 0.549, adjusted p = 0.0015; Figure 4), hinting at its
potential ability to track both HF severity and LV remodeling. No other miRNA was a predictor of
LVEDV levels (Table S3). Lastly, miR-499-5p was the only miRNA presenting a (negative) association
with VO2 peak levels (β = −0.502, adjusted p = 0.0073; Figure 5 and Table S4).

3.5. Identification of a miRNA Signature of Early-Stage CHF

We finally sought to identify which miRNAs had the highest ability to discriminate between HC
and early HF stage, as defined by NYHA class I, comparing their “performance” with NT-proBNP
standard measurement. As shown in Figure 6A, miR-221 had the highest mean decrease in the Gini
index, which means that this miRNA was the most informative variable to distinguish HC from NYHA
class I. Furthermore, exploiting MDS cluster analysis, we found that the top 5 miRNAs in the Gini
index ranking (i.e., miR-221, -21, -409-5p, -376a, and -154) could reach the highest discrimination power,
as assessed by the average Silhouette Index (aSI=0.58, Figure 6B). For comparison, we assessed the
performance of this miRNA cluster on top of NT-proBNP (Figure 6C). Indeed, when NT-proBNP was
added to the set of 5 miRNAs, the aSI dropped to 0.29, lowering the discrimination capacity of the
miRNA signature. NT-proBNP alone showed the worst performance, with an aSI of 0.18 (Figure 6D).
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Table 2. Associations between microRNAs and NT-proBNP concentration.

microRNA B SE 95% CI for B β 95% CI for β p-Value padj

Mir-1 11.810 5.35 1.089, 22.53 0.264 0.024, 0.504 0.03149 0.05353
Mir-124a −3.040 5.22 −13.508, 7.44 −0.073 −0.325, 0.179 0.56355 0.59635
Mir-154 14.120 5.80 2.504, 25.74 0.355 0.063, 0.646 0.01813 0.04403
Mir-21 22.630 8.31 5.96, 39.29 0.330 0.087, 0.572 0.00874 0.02533

Mir-221 20.732 7.54 5.61, 35.85 0.389 0.105, 0.672 0.00815 0.02533
Mir-299-5p 21.906 5.97 9.934, 33.88 0.422 0.191, 0.652 0.00056 0.00476
Mir-331-5p −5.860 11.00 −27.949, 16.23 −0.080 −0.381, 0.221 0.59635 0.59635

Mir-375 −17.890 8.04 −34.003, −1.77 −0.261 −0.496, −0.026 0.03025 0.05353
Mir-376a 10.810 4.78 1.216, 20.4 0.284 0.032, 0.536 0.02796 0.05353
Mir-379 12.700 6.09 0.49, 24.91 0.295 0.011, 0.578 0.04178 0.05464
Mir-382 11.750 5.45 0.757, 22.74 0.387 0.025, 0.748 0.03676 0.05464

Mir-409-5p 20.970 7.70 5.492, 36.44 0.366 0.096, 0.636 0.00894 0.02533
Mir-423-5p 40.190 8.69 22.74, 57.63 0.518 0.293, 0.743 0.00003 0.00051

Mir-451 −20.150 6.20 −32.59, −7.71 −0.414 −0.669, −0.158 0.00203 0.01150
Mir-499-5p 5.520 9.62 −13.788, 24.82 0.070 −0.176, 0.316 0.56890 0.59635
Mir-654-5p 15.130 7.17 0.759, 29.5 0.318 0.016, 0.621 0.03945 0.05464

Mir-744 6.140 7.25 −8.504, 20.78 0.148 −0.205, 0.501 0.40244 0.48868

Analyses were adjusted for age, sex, personal history of diabetes mellitus, hypertension, hypercholesterolemia,
and smoking habit. B = unstandardized regression coefficient; SE = standard error; 95% CI = 95% confidence
interval of regression coefficients; β = standardized regression coefficient; padj = Benjamini-Hochberg adjusted
p-value. Biomedicines 2020, 8, 597 7 of 13 
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Figure 4. Expression levels of plasma miR-423-5p are associated with both NT-proBNP and
LVEDV. HF-regulated miR-423-5p showed positive associations with both NT-proBNP (A) and
LVEDV (B). Analyses were adjusted for age, sex, personal history of diabetes mellitus, hypertension,
and/or hypercholesterolemia, and smoking habit. Trendlines are depicted along with the 95% confidence
interval (light gray). padj = p-values corrected for multiple comparisons; n = 61.



Biomedicines 2020, 8, 597 8 of 12

Biomedicines 2020, 8, 597 8 of 13 

 

Figure 4. Expression levels of plasma miR-423-5p are associated with both NT-proBNP and LVEDV. 

HF-regulated miR-423-5p showed positive associations with both NT-proBNP (A) and LVEDV (B). 

Analyses were adjusted for age, sex, personal history of diabetes mellitus, hypertension, and/or 

hypercholesterolemia, and smoking habit. Trendlines are depicted along with the 95% confidence 

interval (light gray). padj = p-values corrected for multiple comparisons; n = 61. 

 

Figure 5. Expression levels of plasma miR-499-5p are associated with the VO2 peak. HF-regulated 

miR-499-5p showed a negative association with VO2 peak levels. Analyses were adjusted for age, sex, 

personal history of diabetes mellitus, hypertension, and/or hypercholesterolemia, and smoking habit. 

Trendlines are depicted along with the 95% confidence interval (light gray). padj = p-values corrected 

for multiple comparisons; n = 61. 

3.5. Identification of a miRNA Signature of Early-Stage CHF 

We finally sought to identify which miRNAs had the highest ability to discriminate between HC 

and early HF stage, as defined by NYHA class I, comparing their “performance” with NT-proBNP 

standard measurement. As shown in Figure 6A, miR-221 had the highest mean decrease in the Gini 

index, which means that this miRNA was the most informative variable to distinguish HC from 

NYHA class I. Furthermore, exploiting MDS cluster analysis, we found that the top 5 miRNAs in the 

Gini index ranking (i.e., miR-221, -21, -409-5p, -376a, and -154) could reach the highest discrimination 

power, as assessed by the average Silhouette Index (aSI=0.58, Figure 6B). For comparison, we assessed 

the performance of this miRNA cluster on top of NT-proBNP (Figure 6C). Indeed, when NT-proBNP 

was added to the set of 5 miRNAs, the aSI dropped to 0.29, lowering the discrimination capacity of 

the miRNA signature. NT-proBNP alone showed the worst performance, with an aSI of 0.18 (Figure 

6D). 

Figure 5. Expression levels of plasma miR-499-5p are associated with the VO2 peak. HF-regulated
miR-499-5p showed a negative association with VO2 peak levels. Analyses were adjusted for age, sex,
personal history of diabetes mellitus, hypertension, and/or hypercholesterolemia, and smoking habit.
Trendlines are depicted along with the 95% confidence interval (light gray). padj = p-values corrected
for multiple comparisons; n = 61.

Biomedicines 2020, 8, 597 9 of 13 

 

Figure 6. Discriminating potential of miRNAs and NT-proBNP when comparing HC and NYHA I 

class subjects. (A) Variables ranking based on the mean decrease in the Gini index classifying healthy 

controls HC vs. NYHA class I samples. (B) 3D scatterplot based on miR-221, -21, -409-5p, -376a, and -

154, shows a complete separation between HC and NYHA I class subjects. (C) 3D scatterplot depicting 

the decrease in discrimination power when NT-proBNP was added to the miRNA signature. (D) 

Scatterplot showing the performance of NT-proBNP in distinguishing HC from NYHA class I 

patients. (A to D): HC: n = 10; NYHA class I samples: n = 14. (B–C): Red dots: healthy controls. Blue 

dots NYHA class I patients. aSI, average Silhouette Index. 

4. Discussion 

The main findings of this study are: (i) a cluster of 12 circulating miRNAs that were found 

dysregulated in a well-characterized CHF population split along NYHA classes; (ii) a group of 6 

miRNAs (miR-21, -154, -221, -299-5p, -409-5p, and -423-5p) that well-matched NT-proBNP rise along 

NYHA classes, with miR-423-5p also accurately tracking LV-adverse dilation; (iii) one miRNA (miR-

499-5p), that was able to predict the declining capacity of oxygen uptake as the NYHA class worsens; 

(iv) a signature composed of miR-221, -21, -409-5p, -376a, and -154 that well discriminate early-stage 

asymptomatic CHF patients (NYHA class I) from healthy controls. We believe this work integrates 

previous information about the capability of circulating miRNAs to detect CHF onset and monitor 

its progression on top of NPs, providing at the same time novel perspectives in the field of circulating 

miRNAs as promising biomarkers in heart failure for diagnostic purposes.  

To better embrace the spectral nature of CHF, an emerging need for more personalized and 

mechanistic approaches has been proposed, in which clinical studies with smaller but more 

homogeneous patient populations are required [24]. We have taken advantage of stringent and state-

of-the-art criteria of patient selection based on clinical history, functional class, and LV performance 

Figure 6. Discriminating potential of miRNAs and NT-proBNP when comparing HC and NYHA I
class subjects. (A) Variables ranking based on the mean decrease in the Gini index classifying healthy
controls HC vs. NYHA class I samples. (B) 3D scatterplot based on miR-221, -21, -409-5p, -376a,
and -154, shows a complete separation between HC and NYHA I class subjects. (C) 3D scatterplot
depicting the decrease in discrimination power when NT-proBNP was added to the miRNA signature.
(D) Scatterplot showing the performance of NT-proBNP in distinguishing HC from NYHA class I
patients. (A–D): HC: n = 10; NYHA class I samples: n = 14. (B,C): Red dots: healthy controls. Blue dots
NYHA class I patients. aSI, average Silhouette Index.
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4. Discussion

The main findings of this study are: (i) a cluster of 12 circulating miRNAs that were found
dysregulated in a well-characterized CHF population split along NYHA classes; (ii) a group of
6 miRNAs (miR-21, -154, -221, -299-5p, -409-5p, and -423-5p) that well-matched NT-proBNP rise
along NYHA classes, with miR-423-5p also accurately tracking LV-adverse dilation; (iii) one miRNA
(miR-499-5p), that was able to predict the declining capacity of oxygen uptake as the NYHA class
worsens; (iv) a signature composed of miR-221, -21, -409-5p, -376a, and -154 that well discriminate
early-stage asymptomatic CHF patients (NYHA class I) from healthy controls. We believe this work
integrates previous information about the capability of circulating miRNAs to detect CHF onset and
monitor its progression on top of NPs, providing at the same time novel perspectives in the field of
circulating miRNAs as promising biomarkers in heart failure for diagnostic purposes.

To better embrace the spectral nature of CHF, an emerging need for more personalized
and mechanistic approaches has been proposed, in which clinical studies with smaller but more
homogeneous patient populations are required [24]. We have taken advantage of stringent and
state-of-the-art criteria of patient selection based on clinical history, functional class, and LV performance
as well as NP circulating levels to achieve a relatively small but homogeneous patient sample that
represents HF status along with NYHA classes and progressive LV adverse dilation. The check for a
positive correlation between NYHA class, LVEDV progression, and NT-proBNP levels reassured us
about our ability to properly target such an accurately identified CHF population.

There is currently emerging consensus that the search for reliable biomarkers is justified on
the basis of the evidence that CHF is a mixture of different structural phenotypes [8] that need to
be addressed by a novel approach considering CBM as a bridge between a given phenotype and
potential treatment strategies. In this regard, plasma miRNAs can be theoretically viewed as good
CBM candidates in CHF.

Nevertheless, a recent meta-analysis taking into account 10 prospective studies evaluating miRNAs’
performance in CHF diagnosis has identified only miR-423-5p with the potential to be a biomarker
for CHF diagnosis [21]. This result is surprising, considering the high number of candidate miRNAs
(>30). There is, however, considerable heterogeneity among studies, in terms of assessment of golden
standard criteria (only 1 study has matched clinical, echocardiographic, and NP data) as well as in
the comparison of miRNAs expression with both BNP levels and clinical profile (2 studies only have
evaluated an NYHA class).

The present work was aimed at evaluating miRNAs’ exploitability as diagnostic and staging CBM
for CHF, and we believe that the main emerging findings are worth scrutiny. First, among 12 circulating
miRNAs found increased in patients with CHF, a small cluster composed of miR-1, -423-5p, and -499-5p
was found to well match the symptomatic stage of the disease (from NYHA class II to IV). All of these
3 miRNAs have been previously described as deeply involved in cardiac pathophysiology. Both miR-1
and -499-5p are involved in processes typical of HF: the former regulates hypertrophy [25], and the
latter is associated with cell senescence and terminal differentiation [26]. Finally, miRNA-423-5p
correlated with BNP levels and was found increased in patients with systolic HF, as well as in dilated
cardiomyopathy [27,28]. Even more interesting, miR-423-5p showed a significant positive correlation
with both NT-proBNP and LVEDV. To the best of our knowledge, this is the first time that the potential
of miRNAs to simultaneously track both HF severity and LV remodeling trend has been reported.
It is worth noting that cardiac injury has been shown to increase the expression of miR-423-5p in
cardiomyocytes in a time- and concentration-dependent manner and that its silencing significantly
protected cardiomyocytes from apoptosis [29].

Of note, we found that miR-499-5p expression was higher in NYHA class II-to-IV HF patients
and, at the same time, negatively associated with VO2 peak levels. To our knowledge, this is a novel
observation, suggesting a possible role for miR-499-5p as a marker of reduced peak aerobic power and
exercise capacity.
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Finally, we found that a cluster composed of 5 miRNAs (miR-221, -21, -409-5p, -376a, and -154)
could reach the highest discrimination power between healthy control subjects and early CHF stage
(NYHA class I) when compared to NT-proBNP. This is another interesting unprecedented finding,
given the undisputed need to recognize LV-dysfunction patients in the early asymptomatic stage. Four
of these miRNAs are known to be associated with cardiovascular diseases. In particular, miRNA-221
was associated with left ventricular stiffness in pressure-overload HF and myocardial fibrosis [30],
similar to miRNA-21 [31]. The latter was also found to be linked to pressure-overload aortic stenosis,
correlating with collagen expression in the heart [32]. The expression of miR-376 was found to be
associated with myocardial injury in a pig model of coronary microembolization [33]. Finally, miR-154
plays a key role in activating cardiac fibroblasts’ transdifferentiation into myofibroblasts [34]. MiR-409
was never associated with heart conditions but was reported to induce epithelial-to-mesenchymal
transition in tumor-stromal interaction [35].

The main limitation of this work is the small patient sample size. Thus, it should be considered as
a pilot study to pave the way for further large cohort-based investigations. However, we believe that
the stringent selection criteria applied for patient selection throughout the full spectrum of NYHA
classes may partially overcome such shortcomings. Our miRNA screening was conducted on a limited
number of miRNAs, namely those that were present on the commercially available array. Despite not
being a genome-wide scan, the sensitivity and accuracy of the TaqMan assays allowed us to evaluate
the expression of a very consistent number of plasma miRNAs.

5. Conclusions

In conclusion, this is the first work showing the potential of circulating miRNAs as both markers
of CHF presence and progression and signs of CHF onset in the absence of a pathological phenotype,
as in the case of NYHA class I patients. Further investigations are warranted to confirm these results
and to improve and translate the miRNA signatures identified to the clinical setting. This work
highlights the potential of circulating miRNAs as markers of the presence and progression of HF.
Interestingly, miRNAs’ signatures identified here show biologic implications with the multicomponent
HF pathogenesis, onset, and progression. The added value on top of NPs of these markers relies
upon a more precise identification of HF phenotypes, which may allow to more accurately design
personalized therapies. Previous works showed that circulating miRNAs can be useful indicators of
response to treatments aimed at ameliorating the cardiac function of HF patients [36,37]. If confirmed
by further clinical investigations, the miRNA signatures identified in this work may be adopted as
pathophysiology-based markers in the clinical setting. In particular, their ability to work as indicators
of a pre-symptomatic HF stage (NYHA class I patients) could be translated into the early treatment of
a disease that has a tremendous impact on patients’ life quality and expectancy.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9059/8/12/597/s1,
Table S1: Expression data of miRNA Screening. Table S2: Results of the ANCOVA analysis for the class membership
(healthy and NYHA class I to IV). Table S3: Linear regression analysis of microRNA associations with LVEDV,
Table S4: Linear regression analysis of microRNA associations with VO2 peak.

Author Contributions: “Conceptualization, Y.D., M.C.C., A.P.B., P.R., A.F., U.L., A.A., G.P. and G.I.C.; Data
curation, Y.D., M.C., M.C.C., A.P.B., M.B., V.R., A.F., U.L., A.A. and G.I.C.; Formal analysis, Y.D., M.C., A.P.B.,
P.R., M.B., U.L., A.A., G.P. and G.I.C.; Funding acquisition, Y.D., V.R., G.P. and G.I.C.; Investigation, Y.D., P.R.,
Roberto Ferrari and A.F.; Methodology, Y.D., M.C., M.C.C., A.P.B., P.R., M.B., V.R., A.F., U.L., A.A., G.P. and
G.I.C.; Resources, A.A. and G.P.; Supervision, R.F.; Validation, Y.D., M.C., M.C.C., A.P.B., M.B., V.R., A.F. and A.A.;
Visualization, M.C.; Writing—original draft, Y.D., M.C., M.C.C., A.P.B., P.R., M.B., V.R., R.F., A.F., U.L., A.A., G.P.
and G.I.C.; Writing—review & editing, Y.D., M.C., M.C.C., A.P.B., P.R., M.B., V.R., R.F., A.F., U.L., A.A., G.P. and
G.I.C.” All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by Institutional Research Funds (Italian Ministry of Health, Funds 5‰ 2015
to YD and RC-2010-BIO 64-ID-1489855 to GP).

Conflicts of Interest: The authors declare no conflict of interest.

http://www.mdpi.com/2227-9059/8/12/597/s1


Biomedicines 2020, 8, 597 11 of 12

References

1. Maalouf, R.; Bailey, S. A review on B-type natriuretic peptide monitoring: Assays and biosensors. Heart Fail.
Rev. 2016, 21, 567–578. [CrossRef]

2. Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.;
González-Juanatey, J.R.; Harjola, V.-P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis
and treatment of acute and chronic heart failureThe Task Force for the diagnosis and treatment of acute and
chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of
the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [CrossRef] [PubMed]

3. Brunner-La Rocca, H.-P.; Sanders-van Wijk, S. Natriuretic Peptides in Chronic Heart Failure. Card. Fail. Rev.
2019, 5, 44–49. [CrossRef] [PubMed]

4. Maisel, A.; Mueller, C.; Adams, K.; Anker, S.D.; Aspromonte, N.; Cleland, J.G.F.; Cohen-Solal, A.;
Dahlstrom, U.; DeMaria, A.; Di Somma, S.; et al. State of the art: Using natriuretic peptide levels in
clinical practice. Eur. J. Heart Fail. 2008, 10, 824–839. [CrossRef] [PubMed]

5. Gaggin, H.K.; Januzzi, J.L. Biomarkers and diagnostics in heart failure. Biochim. Biophys. Acta 2013, 1832,
2442–2450. [CrossRef] [PubMed]

6. Miller, W.L.; Jaffe, A.S. Biomarkers in heart failure: The importance of inconvenient details. ESC Heart Fail.
2016, 3, 3–10. [CrossRef] [PubMed]

7. D’Elia, E.; Vaduganathan, M.; Gori, M.; Gavazzi, A.; Butler, J.; Senni, M. Role of biomarkers in cardiac
structure phenotyping in heart failure with preserved ejection fraction: Critical appraisal and practical use.
Eur. J. Heart Fail. 2015, 17, 1231–1239. [CrossRef]

8. Correale, M.; Monaco, I.; Brunetti, N.D.; Di Biase, M.; Metra, M.; Nodari, S.; Butler, J.; Gheorghiade, M.
Master Program Students on Drug Development for Heart Failure Redefining biomarkers in heart failure.
Heart Fail. Rev. 2018, 23, 237–253. [CrossRef]

9. Cortez, M.A.; Bueso-Ramos, C.; Ferdin, J.; Lopez-Berestein, G.; Sood, A.K.; Calin, G.A. MicroRNAs in body
fluids–the mix of hormones and biomarkers. Nat. Rev. Clin. Oncol. 2011, 8, 467–477. [CrossRef]

10. Iguchi, H.; Kosaka, N.; Ochiya, T. Secretory microRNAs as a versatile communication tool. Commun. Integr.
Biol. 2010, 3, 478–481. [CrossRef]

11. Wang, J.; Chen, J.; Sen, S. MicroRNA as Biomarkers and Diagnostics. J. Cell. Physiol. 2016, 231, 25–30.
[CrossRef] [PubMed]

12. Fichtlscherer, S.; Zeiher, A.M.; Dimmeler, S. Circulating microRNAs: Biomarkers or mediators of
cardiovascular diseases? Arterioscler. Thromb. Vasc. Biol. 2011, 31, 2383–2390. [CrossRef] [PubMed]

13. D’Alessandra, Y.; Devanna, P.; Limana, F.; Straino, S.; Di Carlo, A.; Brambilla, P.G.; Rubino, M.; Carena, M.C.;
Spazzafumo, L.; De Simone, M.; et al. Circulating microRNAs are new and sensitive biomarkers of myocardial
infarction. Eur. Heart J. 2010, 31, 2765–2773. [CrossRef] [PubMed]

14. Sommariva, E.; D’Alessandra, Y.; Farina, F.M.; Casella, M.; Cattaneo, F.; Catto, V.; Chiesa, M.; Stadiotti, I.;
Brambilla, S.; Dello Russo, A.; et al. MiR-320a as a Potential Novel Circulating Biomarker of Arrhythmogenic
CardioMyopathy. Sci. Rep. 2017, 7, 4802. [CrossRef] [PubMed]

15. Stadiotti, I.; Pompilio, G.; Maione, A.S.; Pilato, C.A.; D’Alessandra, Y.; Sommariva, E. Arrhythmogenic
cardiomyopathy: What blood can reveal? Heart Rhythm. 2019, 16, 470–477. [CrossRef]

16. Tijsen, A.J.; Pinto, Y.M.; Creemers, E.E. Circulating microRNAs as diagnostic biomarkers for cardiovascular
diseases. Am. J. Physiol. Heart Circ. Physiol. 2012, 303, H1085–H1095. [CrossRef]

17. McManus, D.D.; Lin, H.; Tanriverdi, K.; Quercio, M.; Yin, X.; Larson, M.G.; Ellinor, P.T.; Levy, D.; Freedman, J.E.;
Benjamin, E.J. Relations between circulating microRNAs and atrial fibrillation: Data from the Framingham
Offspring Study. Heart Rhythm. 2014, 11, 663–669. [CrossRef]

18. Olivieri, F.; Antonicelli, R.; Lorenzi, M.; D’Alessandra, Y.; Lazzarini, R.; Santini, G.; Spazzafumo, L.; Lisa, R.;
La Sala, L.; Galeazzi, R.; et al. Diagnostic potential of circulating miR-499-5p in elderly patients with acute
non ST-elevation myocardial infarction. Int. J. Cardiol. 2013, 167, 531–536. [CrossRef]

19. Tijsen, A.J.; Creemers, E.E.; Moerland, P.D.; de Windt, L.J.; van der Wal, A.C.; Kok, W.E.; Pinto, Y.M.
MiR423-5p as a circulating biomarker for heart failure. Circ. Res. 2010, 106, 1035–1039. [CrossRef]

20. Masson, S.; Batkai, S.; Beermann, J.; Bär, C.; Pfanne, A.; Thum, S.; Magnoli, M.; Balconi, G.; Nicolosi, G.L.;
Tavazzi, L.; et al. Circulating microRNA-132 levels improve risk prediction for heart failure hospitalization
in patients with chronic heart failure. Eur. J. Heart Fail. 2018, 20, 78–85. [CrossRef]

http://dx.doi.org/10.1007/s10741-016-9544-9
http://dx.doi.org/10.1093/eurheartj/ehw128
http://www.ncbi.nlm.nih.gov/pubmed/27206819
http://dx.doi.org/10.15420/cfr.2018.26.1
http://www.ncbi.nlm.nih.gov/pubmed/30847245
http://dx.doi.org/10.1016/j.ejheart.2008.07.014
http://www.ncbi.nlm.nih.gov/pubmed/18760965
http://dx.doi.org/10.1016/j.bbadis.2012.12.014
http://www.ncbi.nlm.nih.gov/pubmed/23313577
http://dx.doi.org/10.1002/ehf2.12071
http://www.ncbi.nlm.nih.gov/pubmed/27774262
http://dx.doi.org/10.1002/ejhf.430
http://dx.doi.org/10.1007/s10741-018-9683-2
http://dx.doi.org/10.1038/nrclinonc.2011.76
http://dx.doi.org/10.4161/cib.3.5.12693
http://dx.doi.org/10.1002/jcp.25056
http://www.ncbi.nlm.nih.gov/pubmed/26031493
http://dx.doi.org/10.1161/ATVBAHA.111.226696
http://www.ncbi.nlm.nih.gov/pubmed/22011751
http://dx.doi.org/10.1093/eurheartj/ehq167
http://www.ncbi.nlm.nih.gov/pubmed/20534597
http://dx.doi.org/10.1038/s41598-017-05001-z
http://www.ncbi.nlm.nih.gov/pubmed/28684747
http://dx.doi.org/10.1016/j.hrthm.2018.09.023
http://dx.doi.org/10.1152/ajpheart.00191.2012
http://dx.doi.org/10.1016/j.hrthm.2014.01.018
http://dx.doi.org/10.1016/j.ijcard.2012.01.075
http://dx.doi.org/10.1161/CIRCRESAHA.110.218297
http://dx.doi.org/10.1002/ejhf.961


Biomedicines 2020, 8, 597 12 of 12

21. Yan, H.; Ma, F.; Zhang, Y.; Wang, C.; Qiu, D.; Zhou, K.; Hua, Y.; Li, Y. miRNAs as biomarkers for diagnosis
of heart failure: A systematic review and meta-analysis. Medicine (Baltimore) 2017, 96, e6825. [CrossRef]
[PubMed]

22. D’Alessandra, Y.; Carena, M.C.; Spazzafumo, L.; Martinelli, F.; Bassetti, B.; Devanna, P.; Rubino, M.;
Marenzi, G.; Colombo, G.I.; Achilli, F.; et al. Diagnostic potential of plasmatic MicroRNA signatures in stable
and unstable angina. PLoS ONE 2013, 8, e80345. [CrossRef] [PubMed]

23. Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput.
Appl. Math. 1987, 20, 53–65. [CrossRef]

24. Triposkiadis, F.; Butler, J.; Abboud, F.M.; Armstrong, P.W.; Adamopoulos, S.; Atherton, J.J.; Backs, J.;
Bauersachs, J.; Burkhoff, D.; Bonow, R.O.; et al. The continuous heart failure spectrum: Moving beyond an
ejection fraction classification. Eur. Heart J. 2019, 40, 2155–2163. [CrossRef] [PubMed]

25. Carè, A.; Catalucci, D.; Felicetti, F.; Bonci, D.; Addario, A.; Gallo, P.; Bang, M.-L.; Segnalini, P.; Gu, Y.;
Dalton, N.D.; et al. MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 2007, 13, 613–618. [CrossRef]
[PubMed]

26. Lafferty-Whyte, K.; Cairney, C.J.; Jamieson, N.B.; Oien, K.A.; Keith, W.N. Pathway analysis of
senescence-associated miRNA targets reveals common processes to different senescence induction
mechanisms. Biochim. Biophys. Acta 2009, 1792, 341–352. [CrossRef] [PubMed]

27. Goren, Y.; Kushnir, M.; Zafrir, B.; Tabak, S.; Lewis, B.S.; Amir, O. Serum levels of microRNAs in patients with
heart failure. Eur. J. Heart Fail. 2012, 14, 147–154. [CrossRef]

28. Goldraich, L.A.; Martinelli, N.C.; Matte, U.; Cohen, C.; Andrades, M.; Pimentel, M.; Biolo, A.; Clausell, N.;
Rohde, L.E. Transcoronary gradient of plasma microRNA 423-5p in heart failure: Evidence of altered
myocardial expression. Biomarkers 2014, 19, 135–141. [CrossRef]

29. Luo, P.; Zhang, W. MicroRNA-423-5p mediates H2O2-induced apoptosis in cardiomyocytes through
O-GlcNAc transferase. Mol. Med. Rep. 2016, 14, 857–864. [CrossRef]

30. Verjans, R.; Peters, T.; Beaumont, F.J.; van Leeuwen, R.; van Herwaarden, T.; Verhesen, W.; Munts, C.;
Bijnen, M.; Henkens, M.; Diez, J.; et al. MicroRNA-221/222 Family Counteracts Myocardial Fibrosis in
Pressure Overload-Induced Heart Failure. Hypertension 2018, 71, 280–288. [CrossRef]

31. Liang, H.; Zhang, C.; Ban, T.; Liu, Y.; Mei, L.; Piao, X.; Zhao, D.; Lu, Y.; Chu, W.; Yang, B. A novel reciprocal
loop between microRNA-21 and TGFβRIII is involved in cardiac fibrosis. Int. J. Biochem. Cell Biol. 2012, 44,
2152–2160. [CrossRef] [PubMed]

32. Villar, A.V.; García, R.; Merino, D.; Llano, M.; Cobo, M.; Montalvo, C.; Martín-Durán, R.; Hurlé, M.A.;
Nistal, J.F. Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis
patients. Int. J. Cardiol. 2013, 167, 2875–2881. [CrossRef] [PubMed]

33. Su, Q.; Li, L.; Zhao, J.; Sun, Y.; Yang, H. MiRNA Expression Profile of the Myocardial Tissue of Pigs with
Coronary Microembolization. Cell. Physiol. Biochem. 2017, 43, 1012–1024. [CrossRef] [PubMed]

34. Sun, L.-Y.; Bie, Z.-D.; Zhang, C.-H.; Li, H.; Li, L.-D.; Yang, J. MiR-154 directly suppresses DKK2 to activate
Wnt signaling pathway and enhance activation of cardiac fibroblasts. Cell Biol. Int. 2016, 40, 1271–1279.
[CrossRef] [PubMed]

35. Josson, S.; Gururajan, M.; Sung, S.Y.; Hu, P.; Shao, C.; Zhau, H.E.; Liu, C.; Lichterman, J.; Duan, P.; Li, Q.;
et al. Stromal fibroblast-derived miR-409 promotes epithelial-to-mesenchymal transition and prostate
tumorigenesis. Oncogene 2015, 34, 2690–2699. [CrossRef]

36. Marfella, R.; Di Filippo, C.; Potenza, N.; Sardu, C.; Rizzo, M.R.; Siniscalchi, M.; Musacchio, E.; Barbieri, M.;
Mauro, C.; Mosca, N.; et al. Circulating microRNA changes in heart failure patients treated with cardiac
resynchronization therapy: Responders vs. non-responders. Eur. J. Heart Fail. 2013, 15, 1277–1288. [CrossRef]

37. Sardu, C.; Barbieri, M.; Rizzo, M.R.; Paolisso, P.; Paolisso, G.; Marfella, R. Cardiac Resynchronization Therapy
Outcomes in Type 2 Diabetic Patients: Role of MicroRNA Changes. J. Diabetes Res. 2016, 7292564. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1097/MD.0000000000006825
http://www.ncbi.nlm.nih.gov/pubmed/28562533
http://dx.doi.org/10.1371/journal.pone.0080345
http://www.ncbi.nlm.nih.gov/pubmed/24260372
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1093/eurheartj/ehz158
http://www.ncbi.nlm.nih.gov/pubmed/30957868
http://dx.doi.org/10.1038/nm1582
http://www.ncbi.nlm.nih.gov/pubmed/17468766
http://dx.doi.org/10.1016/j.bbadis.2009.02.003
http://www.ncbi.nlm.nih.gov/pubmed/19419692
http://dx.doi.org/10.1093/eurjhf/hfr155
http://dx.doi.org/10.3109/1354750X.2013.870605
http://dx.doi.org/10.3892/mmr.2016.5344
http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.10094
http://dx.doi.org/10.1016/j.biocel.2012.08.019
http://www.ncbi.nlm.nih.gov/pubmed/22960625
http://dx.doi.org/10.1016/j.ijcard.2012.07.021
http://www.ncbi.nlm.nih.gov/pubmed/22882958
http://dx.doi.org/10.1159/000481699
http://www.ncbi.nlm.nih.gov/pubmed/28968594
http://dx.doi.org/10.1002/cbin.10655
http://www.ncbi.nlm.nih.gov/pubmed/27542661
http://dx.doi.org/10.1038/onc.2014.212
http://dx.doi.org/10.1093/eurjhf/hft088
http://dx.doi.org/10.1155/2016/7292564
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experimental Section 
	Patients 
	Natriuretic Peptide 
	Total RNA Purification 
	MicroRNA Screening 
	Single miRNA Assays 
	Statistical Analysis 

	Results 
	Study Population Characteristics 
	Correlation between NYHA Class, LVEDV, and NT-proBNP Levels 
	Circulating miRNAs Expression and in Relation with NYHA Class 
	Correlation between Plasma miRNA Levels and NT-proBNP, LVEDV, and VO2 Peak 
	Identification of a miRNA Signature of Early-Stage CHF 

	Discussion 
	Conclusions 
	References

