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Abstract

Gradient projection methods have given rise to effective tools for image de-
convolution in several relevant areas, such as microscopy, medical imaging
and astronomy. Due to the large scale of the optimization problems arising
in nowadays imaging applications and to the growing request of real-time
reconstructions, an interesting challenge to be faced consists in designing
new acceleration techniques for the gradient schemes, able to preserve the
simplicity and low computational cost of each iteration. In this work we
propose an acceleration strategy for a state of the art scaled gradient projec-
tion method for image deconvolution in microscopy. The acceleration idea
is derived by adapting a step-length selection rule, recently introduced for
limited-memory steepest descent methods in unconstrained optimization, to
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the special constrained optimization framework arising in image reconstruc-
tion. We describe how important issues related to the generalization of the
step-length rule to the imaging optimization problem have been faced and
we evaluate the improvements due to the acceleration strategy by numerical
experiments on large-scale image deconvolution problems.

Keywords: image deconvolution, constrained optimization, scaled gradient
projection method, Ritz values, GPU
2010 MSC: 65K05, 68U10, 65Y10, 65Y05

1. Introduction

Image deconvolution is a useful technique for improving the image qual-
ity of many types of microscope. Unfortunately, in case of large-scale imag-
ing problems, the deconvolution can require a too large computational time
which leads to undesirable delay in the reconstruction process. This is mainly
due to the slow convergence rate of the iterative deconvolution methods usu-
ally exploited on microscopy images, such as the well-known scaled gradient
minimization method called Richardson-Lucy (RL) algorithm [1, 2]. To over-
come this disadvantage, two strategies have been exploited in the last years:
the acceleration of the deconvolution algorithms and the implementation of
the algorithms on multiprocessor architectures, like the Graphics Processing
Units (GPU). The combination of the benefits from these strategies allowed
to achieve promising time reductions in the deconvolution process, providing
stimulus for further research in these fields. In this paper we focus on an
iterative deconvolution algorithm that aims at exploiting a new step-length
selection strategy for gradient descent methods to improve the convergence
rate of state of the art deconvolution approaches in microscopy. The con-
sidered step-length strategy has been recently proposed by R. Fletcher [3] in
the context of limited-memory steepest descent methods for unconstrained
minimization problems. In [3] numerical evidence has been also provided in-
dicating remarkable gain in the convergence rate over the classical Barzilai-
Borwein (BB) step-length rule [4]. Since in the last years promising image
reconstruction algorithms have been designed by exploiting BB-based rules
within gradient methods [5, 6, 7, 8, 9, 10, 11], it is worthwhile to investigate if
useful acceleration can be achieved with the new step-length selection idea. In
particular, we focus on the algorithm for image deconvolution in microscopy
provided by the Scaled Gradient Projection (SGP) method recently devel-
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oped in [12], that can be appropriately modified for managing the step-length
rule proposed in [3]. SGP is a very general algorithm for minimization prob-
lems with simple constraints, able to exploit both scaled gradient directions
and selection rules for the step-length parameter. By combining an efficient
step-length selection based on the adaptive alternation of the two BB rules
[13, 14] and a scaling strategy similar to that used by the RL algorithm, SGP
has shown significant convergence rate improvements in comparison with RL,
without excessive growth of the cost per iteration and loss of reconstruction
accuracy [5]. These abilities allowed the GPU version of SGP designed in
[12] to show interesting performance as real-time deconvolution algorithm.
In order to efficiently equip SGP with the new step-length rule presented in
[3], crucial aspects concerning with the presence of scaled gradient directions
and nonnegativity constraints need to be discussed. In this work we propose
how to generalize the step-length rule to the SGP framework and provide
numerical evidence of the gain achievable in comparison with the BB-based
step-length selection previously exploited by SGP.
The paper is organized as follows. In section 2, the optimization problem
arising in image deconvolution is stated and the RL and SGP iterative reg-
ularization algorithms are recalled; in section 3, the new step-length rule for
SGP is introduced and, in section 4, a computational study is presented for
validating on large-scale image deconvolution test problems the SGP version
equipped with the new rule. Finally, some conclusions and a discussion on
possible future work are reported in section 5.

2. The SGP method for image deconvolution

We shortly introduce the optimization problem arising from the maxi-
mum likelihood approach to image deconvolution in microscopy; for a deeper
discussion of the image deconvolution problem, we refer the reader to [15, 16].
Let us denote by y ∈ R

n the detected blurred and noisy image and assume
a linear model for describing the image acquisition process: Ax + b, where
x ∈ R

n is the unknown object, b ∈ R
n indicates the known positive back-

ground emission (bi > 0) and A is the n × n imaging matrix representing
the blurring phenomenon. The detected values yi are nonnegative and the
matrix A can be considered with nonnegative entries, generally dense and
such that

∑

j Aij > 0 ∀i and ATe = e, where e ∈ R
n is a vector whose

components are all equal to one. Furthermore, we may assume that periodic
boundary conditions are imposed for the discretization of the Fredholm inte-
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gral equation that models the image formation process, so that the matrix A
is block-circulant with circulant blocks and the matrix-vector products Ax
can be done quickly, with O(n log n) complexity, by using the Fast Fourier
Transform (FFT) [17]. If we assume that the detected values yi are real-
ization of independent Poisson random variables, with unknown expected
values (Ax + b)i, the Maximum-Likelihood (ML) approach to the deconvo-
lution problem leads to the minimization of a suitable data-fidelity function
called generalized Kullback-Leibler (KL) divergence (or Csiszár I-divergence)
[18, 19]:

f(x) =
n
∑

i=1

{

yi ln
yi

(Ax+ b)i
+ (Ax+ b)i − yi

}

, (1)

whose gradient and hessian are given by

∇f(x) = ATe− ATZ−1y (2)

∇2f(x) = ATY Z−2A, (3)

where Z = diag(Ax + b) is a diagonal matrix with the entries of (Ax + b)
on the main diagonal and Y = diag(y). We observe that the hessian matrix
is positive semidefinite in any point of the nonnegative orthant. Due to the
ill-posedness of the image restoration problem [16], the matrix A could be
very ill-conditioned and a solution of the convex optimization problem

min
x≥0

f(x) (4)

does not provide sensible reconstructions of the unknown image. Two al-
ternative strategies can be exploited to overcome this drawback. The first
approach consists in looking for suited regularized reconstructions by early
stopping iterative minimization methods applied to the problem (4). The
second strategy requires to solve a regularized minimization problem

min
x≥0

f(x) + βfR(x), (5)

where a regularization functional fR(x) is used for forcing some a priori infor-
mation on the unknown image and the parameter β > 0 is used to control the
trade-off between the data-fidelity term f(x) and the regularization term. In
this work we focus on the former approach, that in case of large-scale imaging
problems is usually the preferred choice: it allows to check the reconstruction
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quality during the iterative process, without requiring expensive computation
to set a suitable regularization parameter. Within the microscopy commu-
nity, the most famous iterative regularization method for the nonnegative
minimization of the KL divergence is the Richardson-Lucy (RL) algorithm
[1, 2] (often called Expectation Maximization (EM) algorithm), whose itera-
tion can be stated as follows:

x(k+1) = XkA
TZ−1

k y = x(k) −Xk∇f(x(k)), x(0) > 0, (6)

where Xk = diag(x(k)) and Zk = diag(Ax(k) + b). As can be observed from
equation (6), the RL algorithm is a special scaled gradient method where
the diagonal scaling matrix has the current iteration on the main diagonal
and the variables’ nonnegativity is ensured by the assumptions on A, b,
y and x(0). Convergence properties of the algorithm have been proved in
various situations in [20, 21, 22, 23, 24, 25, 26]. The simple and inexpensive
form of the iteration makes the algorithm very attractive, but it does not
yields a fast convergence: in general, several hundreds (or thousands) of
iterations are needed to obtain a suitably regularized reconstruction of the
unknown image. The slow convergence seriously limits the use of the RL
algorithm, especially in case of large-scale imaging problems, and the design
of accelerated iterative schemes have received growing interest in the last
years. For microscopy images deconvolution, a very promising accelerated
reconstruction approach has been recently proposed in [12], based on the
general constrained minimization scheme called Scaled Gradient Projection

(SGP) method introduced in [5]. The SGP scheme is a gradient method
able to exploit essentially four key elements: the scaled gradient directions, a
parameter for controlling the step-length along the scaled gradient directions,
a projection step for generating feasible descent directions and a line search
strategy for ensuring sufficient reduction of the objective function during the
iterations. All together, these elements make SGP a very flexible tool that, on
one hand, recovers standard constrained minimization approaches and, on the
other hand, can improve them by including most effective settings currently
available in literature for those key elements. To better explain how SGP
improves the RL algorithm, we shortly recall its iteration for problem (4).
The reader is referred to [5] for more technical details and the convergence
analysis of the general scheme. Given an initial feasible x(0),

x(k+1) = x(k) + λkz
(k); z(k) = P+(x

(k) − αkDkg
(k))− x(k) (7)

where

5



• Dk = diag
(

d
(k)
1 , . . . , d

(k)
n

)

is the diagonal scaling matrix satisfying

1

L
≤ d

(k)
i ≤ L, i = 1, . . . , n, ∀ k, L ≥ 1 ;

• αk is the step-length parameter that must satisfy

0 < αmin ≤ αk ≤ αmax, ∀ k ;

• P+(·) denotes the projection of a vector onto the nonnegative orthant,
used in (7) to obtain the feasible descent direction z(k);

• λk ∈ [0, 1] is the line search parameter used to reduce, if necessary, the
size of the step along the feasible descent direction z(k), in order to
guarantee a suitable improvement in the objective function; λk can be
computed by means of a line search technique, such as the standard
monotone Armijo rule [27] or the nonmonotone strategy introduced in
[28].

The main feature of the above iterative scheme is the weakness of the condi-
tions on both the diagonal scaling entries and the step-length parameter: they
must be simply bounded below and above by positive constants. This leaves
the user free to devise updating rules for these parameters, to achieve some
specific goal (generally, the convergence rate improvement), while the line
search step controlling the descent of the objective function ensures that ev-
ery limit point of the sequence generated by SGP is a constrained stationary
point of (4). When SGP is exploited for the nonnegative minimization of the
KL divergence, effective selection for the scaling matrix and the step-length
parameter have been proposed in [5]. For the scaling matrix, an updating
rule similar to that exploited by the RL algorithm is suggested:

d
(k)
i = diag

(

min

{

L,max

{

1

L
, x

(k)
i

}})

, i = 1, . . . , n ; (8)

while, for the step-length parameter, a selection strategy derived by an updat-
ing rule introduced in [14] is used (see also [13]). This step-length selection,
described in great detail in [5], is based on an adaptive alternation of the two
Barzilai-Borwein (BB) rules [4], which in case of scaled gradient directions
are defined by

αBB1
k =

s(k−1)TD−2
k s(k−1)

s(k−1)TD−1
k w(k−1)

and αBB2
k =

s(k−1)TDkw
(k−1)

w(k−1)TD2
kw

(k−1)
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where s(k−1) = x(k) −x(k−1) and w(k−1) = ∇f(x(k))−∇f(x(k−1)). With the
above settings for the scaling matrix and the step-length parameter, SGP
has been compared against the RL algorithm on many imaging problems,
providing a remarkable convergence rate acceleration without losing accuracy
in the reconstruction. In particular, in [12] a special SGP implementation for
GPU devices has been successfully exploited, providing a step ahead toward
real-time deconvolution of microscopy images. Thus, further improvements
of the SGP performance can be a crucial key for developing more effective
deconvolution tools. In the next section we introduce a new step-length
selection strategy, that can be exploited within SGP to achieve meaningful
convergence rate improvements compared with the BB-based updating rule
currently implemented.

3. A limited-memory step-length selection rule for SGP

The new rule that we propose to update the parameter αk in SGP is
derived from an idea recently introduced by R. Fletcher [3] for the choice of
the step-length in steepest descent methods for unconstrained minimization
problems. The step-length selection presented in [3] aims at capturing second
order information by exploiting a limited number of back gradients. Starting
from the unconstrained quadratic case

min
x∈Rn

1

2
xTAx (9)

where A is a symmetric positive definite matrix, a step-length selection for
the steepest descent methods

x(k+1) = x(k) − αkg
(k), g(k) = Ax(k), (10)

is introduced by using special approximations of the eigenvalues of A, called
Ritz values [29]. Given a positive integer m, on the k-th iteration, the Ritz
values on which the step-length rule is based are the eigenvalues θi, i =
1, . . . , m of the m×m symmetric tridiagonal matrix

T = QTAQ

where Q = [q1, q2, . . . , qm] is the n × m matrix whose columns qi are the
orthonormal vectors generated by the Lanczos iterative process [30], applied
to A, with starting vector q1 = g(k−m)/‖g(k−m)‖. These m Ritz values, in
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decreasing order, are then used to define the step-lengths for the next m
iterations:

αk+i−1 = θ−1
i , i = 1, . . . , m . (11)

To extend this idea to general non-quadratic functions and to make the se-
lection strategy more convenient from the computational point of view, im-
portant remarks are reported in [3] that allow one to rewrite the matrix T
in terms of g(k) and the most recent m back gradients,

G =
[

g(k−m) . . . g(k−2) g(k−1)
]

. (12)

without using Q and A. In fact, from (10) it follows that the columns of G
are in the Krylov sequence initiated by g(k−m)

{

g(k−m), Ag(k−m), A2g(k−m), . . . , Am−1g(k−m)
}

,

and, taking into account that the columns of Q are special orthonormal basis
vectors for the Krylov sequence, we may rewrite G as

G = QR

where R is upper triangular and nonsingular, if the columns of G are linearly
independent. This means that we have

T = QTAQ = R−TGTAGR−1

and since AG =
[

G g(k)
]

J , where

J =











α−1
k−m

−α−1
k−m

. . .

. . . α−1
k−1

−α−1
k−1











,

we obtain

T = R−T
[

GTG GTg(k)
]

JR−1 = R−T
[

RTR GTg(k)
]

JR−1.

Finally, by denoting with r the vector satisfying RTr = GTg(k), the matrix
T can be rewritten as

T =
[

R r
]

JR−1. (13)
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Equation (13) represents a clever and efficient way for generalizing the step-
length selection (11) based on the Ritz values to the non-quadratic case,
requiring essentially only an extra area of memory for the n ×m matrix G
and the computation of GTG for obtaining R via a Cholesky factorization.
The number m of back gradients is usually a very small positive integer due
to practical limits such as the memory requirements and the round-off error
in the computation of R. In the computational study reported in [3], the
value m = 5 is suggested and in the experiments described below we found
convenient even smaller values: m = 3 or m = 4. Thus, in case of large-
scale problem, the operations whose computational cost depends on m can
be considered inexpensive.

To exploit this step-length selection within the SGP scheme (7) for the
constrained optimization problem (4), some important questions must be
addressed, in particular concerning with the presence of the non-quadratic
objective function, the scaling matrix multiplying the gradient direction and
the nonnegative constraints.

In the general non-quadratic case the matrix T has an upper Hessen-
berg structure and, following the suggestion in [3], we construct a symmetric
tridiagonal matrix T̃ by substituting the strict upper triangle of T with the
transpose of its strict lower triangle; in this way, the eigenvalues of T̃ works
as Ritz-like values and reduce to the Ritz values in the quadratic case. Fur-
thermore, the matrix T̃ can have some negative eigenvalues that we keep out
from the set of available Ritz-like values, by providing SGP with m1 < m
step-lengths for the next iterations. After these iterations, a set of m1 gradi-
ent vectors are obtained that at first are exploited for defining step-lengths
by means of an n × m1 matrix G, and then will be used as back gradients
for filling a new matrix G up to m columns.

The presence of the diagonal scaling matrix can be taken into account by
observing its effect in the simple unconstrained quadratic case (9). In this
case, a scaled gradient step x(k+1) = x(k)−αkDkg

(k), can be viewed as a non-
scaled step on a transformed problem obtained with the linear transformation
of variables y = D

−1/2
k x. In fact, the transformed objective function becomes

f̃(y) = 1
2
yTD

1/2
k AD

1/2
k y and for the transformed gradient vector we have

g̃ = D
1/2
k AD

1/2
k y; then, by assuming y(k) = D

−1/2
k x(k), we can write

y(k+1) = y(k) − αkg̃
(k) = D

1/2
k x(k) − αkD

1/2
k AD

1/2
k y(k)

= D
−1/2
k

(

x(k) − αkDkg
(k)
)

= D
−1/2
k x(k+1).
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Thus, a natural way to extend the above step-length selection procedure to
the case of diagonally scaled gradient methods consists in defining the step-
lengths in the transformed variables, by storing inG the transformed gradient
vectors D

1/2
k−i∇f(x(k−i)) , i = 1, . . . , m , and by using D

1/2
k ∇f(x(k)) to define

the vector r in (13). A similar approach is suggested in [3], by looking at the
scaling matrix as arising from the application of preconditioning techniques
to the problem (9).

Finally, we extend the step-length selection rule to the nonnegatively
constrained case by observing that in the solution x∗ of (4) the components of
the gradient corresponding to the free variables (x∗

i > 0) must be zero. This
means that, during the minimization iterative process, those components
must be reduced to zero (in a fashion similar to the unconstrained case)
and then we try to define the step-lengths by giving more importance to
those components of the gradient. We follow this idea by substituting in the
step-length rule the gradients of the objective function with the vectors

∇nzf(x
(k−i)) =

{

0 if x
(k−i)
j = 0

(

∇f(x(k−i))
)

j
if x

(k−i)
j > 0

i = 0, 1, . . . , m .

In short, the matrix G that we exploit to define the Ritz-like values within
SGP is the following:

G =
[

D
1/2
k−m∇nzf(x

(k−m)) . . . D
1/2
k−2∇nzf(x

(k−2)) D
1/2
k−1∇nzf(x

(k−1))
]

.

4. Numerical experiments

In this section we report the results of the numerical tests we performed to
assess the effectiveness of the new SGP steplength selection rule on a mean-
ingful application, namely the deconvolution of confocal microscopy images.
Given that we are interested in evaluating the advantages of the algorithm in
terms of iterations and computational time, while maintaining a sufficiently
good reconstruction (that is to say, an image/volume reconstruction hav-
ing an error level comparable to the one of other reference methods for the
application field), we use synthetic phantoms. Even if they are randomly
generated, these phantoms are properly designed to correctly simulate real-
world situations and have already been tested and validated by experts in
the field [12]. Seeking completeness, the next subsection summarizes the
generation process. The subsection 4.2 describes the numerical behaviour
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of the SGP algorithm equipped with the rule based on the Ritz-like val-
ues, called SGP-Ritz, compared against the classical RL method (6) as well
as the standard SGP algorithm, which has a step-length selection based on
the adaptive alternation of the two BB rules described in [5, 12]. The aim of
this experimentation is to highlight how the new limited-memory step-length
approach presented in this work allows SGP to improve its performance in
terms of convergence rate and, consequently, reconstruction time. Even if
the reported results are still limited to a particular application, they provide
a meaningful indication, which is also confirmed by additional experiences
we performed (not reported here, because they go beyond the scope of this
work). Finally, the interesting additional time reduction due to a suited
GPU implementation of the iterative deconvolution algorithms is discussed
in subsection 4.3.

4.1. Synthetic data sets

As it is well known, in addition to their theoretical properties, deconvo-
lution algorithms have usually to be assessed also with respect to practical
application fields where potentially they will be used. For this purpose, one
should use test sets as close as possible to the realistic environment of those
applications. This is a crucial issue to consider, particularly when algorithm’s
robustness is concerned.

In this paper we focus our attention on microscopy imaging applications:
namely, on the reconstruction of micro-tubule network inside the cell. To this
end, a routine has been implemented which is able to pseudo-randomly gener-
ate phantoms which mimic the micro-tubule cytoskeleton of a real cell. This
routine randomly selects the starting positions of a given and fixed number of
filaments. Then, a stochastic process is used for iteratively choosing the di-
rections of filaments’ growth. By selecting either a bi- or a three-dimensional
growth one obtains 2D or 3D phantoms, respectively. Those filaments are
assumed to have a tubular structure with radius of 30nm. To further improve
the data realism, at each growth step of each filament we associate a value in
the range [0, 1], which accounts for the heterogeneity of protein concentration
between different filaments. In the present case, three values are used: 0.5,
0.75 and 1. At the end of this generation process we get a clean 2D or 3D
network structure that represents the cell’s inner micro-tubule network, that
is to say the real object one would like to recover.

The next step is to generate the ideal object (not noisy, blurred only): we
convolve the phantom x̃ with the system’s point spread function (PSF), i.e.,
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H ∗ x̃. Clearly the PSF depends on the acquisition system technology. In our
experiments we consider a confocal microscopy and for mimicking its spatial
resolution we model the PSF by a radially symmetric Gaussian function [31]:

hCLSM(r, z) = exp
(

−r2/(2σ2
r)
)

exp
(

−z2/(2σ2
z)
)

, (14)

which reduces to hCLSM(r) = exp
(

−r2/(2σ2
r)
)

in the 2D case. Here, σ is re-

lated to the full-width at half-maximum (FWHM) by FWHM = 2σ
√

2 ln(2) .
Estimates for both σr and σz in (14) can be recovered from real detections
(see for instance [12]). In the present case we use FWHMr = 220nm, σr =
93nm and, for the 3D cases, FWHMz = 600nm, σz = 255nm. After the con-
volution, to obtain the ideal object in terms of average detected photons, the
convolved object is multiplied by a number τ > 0 which depends on several
factors (the emission rate of the fluorophore, the collection efficiency of the
system and the pixel dwell-time). This completes the blurring process and
gives the ideal object, that is what the acquisition system would get, if no
noise existed.

However, a completely un-noisy detection is far from reality. Here a
reasonable assumption is that photon counting noise represents the major
source of noise for the detection process, together with a constant background
b that further degrades the acquired observation. Thus, the final step consists
in corrupting the i-th pixel/voxel with a Poisson process with mean τ(H ∗
x̃)i + bi. This in turn makes possible to control the signal-to-noise ratio
(SNR): by increasing τ , the average number of detected photons increases
and hence the SNR increases. More precisely, SNR and τ are linked as
follows:

SNRdb = 10 log

(

max
i

τ(H ∗ x)i
√

τ(H ∗ x)i + bi

)

. (15)

At the end of this process we get the phantom, that is what would be the
observed object. Notice that, even if the background b can be different at
different pixels/voxels, it is most often assumed uniformely constant, that is
to say bi = b, ∀i.

The degrading process just described provides us with sufficiently realistic
phantoms to use as test sets for the algorithms deconvolution assessment. In
particular, given that in simulation the object x̃ used to generate the observed
object is known, during algorithms execution we are able to quantitatively
monitor at each k-th iteration the quality of the deconvolved objects.
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Moreover, it is worth noticing that we deconvolved the synthetic objects
by means of the very same PSFs used for their generation (it is the so-called
inverse crime). Thereby no fundamental biased affects the results due to the
choice of the PSF.

4.2. Numerical results

For a first intensive validation of SGP-Ritz in comparison with RL and
the standard SGP, all the methods are implemented in Matlab 8.1.0 and the
experiments are performed on a computer equipped with an Intel Xeon X5690
SixCore CPUs at 3.47GHz. As concerning the step-length parameters, we
use the setting suggested in [5] for the standard SGP while in SGP-Ritz we
fixm = 3. The parameters defining the monotone line search, chosen by both
SGP and SGP-Ritz to determine λk, and the constant L, employed to bound
the diagonal entries of Dk, have been set as described in the Supplementary
Informations of [12].

To evaluate the performances of the discussed algorithms, we carried out
several numerical experiments on synthetic microscopy test problems with
different features, generated as described in the previous subsection. For
the bi-dimensional case we considered square images of increasing size n,
namely 1282, 2562, 5122, 10242. For the three-dimensional case, we studied
the algorithms performances on some volumes: a small (128×128×64 voxels),
a medium (256 × 256 × 32 voxels) and a large (512 × 512 × 64 voxels) test
set. For each one of those data sets we took into account two different noise
values: the corresponding test problems are indicated with “low noise” and
“high noise”. Figure 1 shows the true object and the blurred and noisy data
for the bi-dimensional test problems. We only report the corrupted images
for the high noise level because the differences against the images affected by
low noise are not remarkable from the visual point of view.

The methods’ effectiveness in approximating the original image has been
assessed through the relative reconstruction error, defined as ‖x(k)−x̃‖ / ‖x̃‖,
where x̃ is the original image and x(k) is the reconstruction after k iterations.
Tables 1 and 2 report the minimum relative reconstruction error (Opt. err.),
the number of iterations (Opt. it.) and the computational time in seconds
(Sec.) required to get the minimum error for the bi-dimensional and the
three-dimensional test problems, respectively. In Table 2, we marked with
an asterisk the case where a method reached the prefixed maximum number
of iterations without achieving the minimum reconstruction error and we re-
ported the error and the computational time corresponding to that maximum
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number of iterations.

Table 1: Numbers of iterations, reconstruction time and minimum error reached in solving
the 2D deblurring problems.

high noise low noise
Opt. it. Sec. Opt. err. Opt. it. Sec. Opt. err.

128× 128

RL 988 1.7 0.48 2280 3.8 0.46
SGP 180 0.6 0.46 377 1.1 0.45
SGP-Ritz 107 0.4 0.46 190 0.6 0.45

256× 256

RL 1320 6.1 0.48 1689 8.0 0.47
SGP 206 1.9 0.46 209 2.0 0.45
SGP-Ritz 131 1.4 0.46 144 1.5 0.45

512× 512

RL 1027 17.4 0.46 1548 26.7 0.45
SGP 165 5.1 0.44 210 6.4 0.42
SGP-Ritz 104 3.8 0.44 174 6.3 0.42

1024× 1024

RL 1002 69.9 0.46 1481 100.9 0.45
SGP 113 15.3 0.44 163 19.6 0.43
SGP-Ritz 95 13.8 0.45 110 15.4 0.43

We can observe from Tables 1 and 2 that both the versions of the SGP
method are able to reach a minimum reconstruction error lower than the one
provided by the RL algorithm. Since for the 3D test problems the Matlab im-
plementations require a long reconstruction time, we decide to also consider
the performances of SGP and SGP-Ritz in simply achieving the RL minimum
error. Table 3 shows the number of iterations (It.) and the computational
time (Sec.) needed by SGP and SGP-Ritz to obtain the RL accuracy (Err.).

The main conclusion that can be drawn from these experiments is that
the limited-memory updating rule for the step-length selection allows the
scaled gradient projection method to reach better performances, in terms of
computational time and number of iterations, than the original choice of αk

proposed in [5], while still preserving the same reconstruction accuracy. This
is shown also by Figure 2, where the relative reconstruction error and the
decrease of the objective function are plotted as a function of the number of
iterations. Only two data sets are profiled as an example in the figure, be-
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Table 2: Numbers of iterations, reconstruction time and minimum error reached in solving
the 3D deblurring problems.

high noise low noise
Opt. it. Sec. Opt. err. Opt. it. Sec. Opt. err.

128× 128× 64

RL 524 43.4 0.61 470 34.9 0.61
SGP 411 53.6 0.60 380 45.0 0.60
SGP-Ritz 207 31.4 0.60 218 30.1 0.60

256× 256× 64

RL 868 311.3 0.52 837 300.8 0.52
SGP 446 280.9 0.51 617 372.3 0.50
SGP-Ritz 294 208.0 0.51 329 229.1 0.50

512× 512× 64

RL 1568 2158.9 0.49 2500* 3400.0* 0.56*
SGP 750 1773.1 0.48 1319 3164.6 0.52
SGP-Ritz 372 1013.1 0.48 897 2438.7 0.52

cause an analogous behavior is observed in every other test problem. In short,
SGP-Ritz exhibits an improved convergence rate, without degrading neither
the simplicity, nor the low computational cost per iteration of the standard
SGP. Furthermore, in comparison with the RL algorithm, a remarkable gain
in the reconstruction time is achieved.

For illustrative purpose, in Figures 3 and 4 we show the bi-dimensional
reconstructions of the 512 × 512 and the 1024 × 1024 images returned by
the different methods. Figures 5–10 report the restoration of the transversal,
sagittal and coronal central sections for two 3D data sets, provided by the
three methods stopped at RL minimum error. It is useful to notice in Figure
8 how different is the observed transversal slice with respect to the one of the
original object. This is exactly due to the blurring effect, which thicken the
filaments and makes them overflow in adjacent layers. Thus, the deblurring
algorithm is successful if it is able to remove that overflow to the maximum
extent. The reconstruction panels show that the overflow is greatly reduced.

4.3. GPU implementation for real-time deconvolution

In this subsection we describe the hardware issues and the implemen-
tation strategies that allow to greatly accelerate the computations involved
by the SGP schemes described above, thus making large-scale multidimen-
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Table 3: Numbers of iterations, reconstruction time and error reached in solving the 3D
deblurring problems with the RL-accuracy.

high noise low noise
It. Sec. Err. It. Sec. Err.

128× 128× 64

RL 524 43.4 0.61 470 34.9 0.61
SGP 323 41.2 0.61 177 22.7 0.61
SGP-Ritz 140 20.9 0.61 132 19.6 0.61

256× 256× 64

RL 868 311.3 0.52 837 300.8 0.52
SGP 216 134.5 0.52 225 140.6 0.52
SGP-Ritz 170 120.4 0.52 153 108.9 0.52

512× 512× 64

RL 1568 2158.9 0.49 2500* 3400.0* 0.56*
SGP 351 839.5 0.49 526 1248.2 0.56
SGP-Ritz 219 590.0 0.49 416 1130.7 0.56

sional deconvolution problems faceable almost in real-time. We first provide
the technical details of the GPU testing platform and then we report some
numerical results to assess the improvements achievable thanks to the GPU
implementation of an SGP-based deconvolution algorithm.

4.3.1. GPU testing platform

Nowaday GPUs are very common devices, generally targeted to graphics
applications. Their computing-power range is very wide, but we limit our
interest to top-powerful models.

As it is well known, modern GPUs are multicore architecture designed to
perform a large number of integer/floating-point operations at the same time,
follwing a Single-Instrucion Multiple-Threading (SIMT) parallel paradigm.
This is an evolution of the classical Single-Instruction Multiple-Data (SIMD)
paradigm, which adds to the latter the ability of running multiple processes
at the same time on each computing core.

Last-generation Nvidia Fermi GPUs support double precision arithmetic
and exploit the powerful 16x PCI-Express (PCIe) connection to the hosting
board, which grants up to 16 GB/sec transfer rate.

A Fermi GPU [32] consists of up to 512 CUDA cores. These 512 cores
are split across 16 Streaming Multiprocessors (SM), each SM consisting of
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32 CUDA cores. The GPU has six 64-bit memory partitions supporting up
to 6GB of GDDR5 DRAM memory. Each CUDA core consists of an integer
arithmetic logic unit (ALU) and a floating point unit (FPU). In order to
support hardware double precision, two cores are jointly used. A Multipro-
cessor is then equipped with 16 load/store units, thus providing resources
for evaluating sixteen source and destination addresses per clock. More-
over, hardware resources are reserved for multiply-add (MAD) instruction,
trigonometric function, reciprocal and square root.

Functions that will run on GPU, are both written and launched using
CUDA paradigm: for clarity, such kind of functions will be denoted as kernels
in the following lines. Each kernel function is executed in a grid of threads.
This grid is divided into blocks also known as thread blocks and each block
is further divided into threads. This two levels of parallelization are the core
approach of both CUDA and any other language aiming at exploiting highly
data parallel approach, see for example OpenCL. Programmers can focus
on writing kernels that will be run by a single thread, while the hardware
scheduler will dispatch millions of them. On the other side, little support is
provided for task based parallelism.

Each kernel function, written in order to be run on the GPU, can have
access to the system’s main global memory where, usually, the problem data
are stored. The main memory and the cores are connected by a high-speed
144GB/sec bus. All together, these features provide over 2.5Tflops of sys-
tem’s peak performance for double precision arithmetic.

Given that the GPU-to-GPU communications run through the high-speed
channel, while CPU-to-GPU ones go through the PCIe bus, it’s easly seen
that the latter are almost 10 times slower than the former. This is the rea-
son why to best exploit the GPU computing power one must reduce as most
as possible the CPU-to-GPU memory communications. Since 3.0 release,
CUDA approach offers a way to overcome the bootleneck that may occur
when implementing algorithms that need a continuous data movement be-
tween host and device. By reserving a buffer of pinned memory on the CPU,
this storage can be targeted for copy to/from GPU in roughly half the time
of a standard transfer. On the other side, this approach poses strong require-
ments on the memory handling (paging, virtual address translation, etc.) by
the host OS, and then must be used carefully.

Pinned memory is also a requirement when one has to overlap memory
transfer and kernel execution: boards with compute capability above 1.3
can overlap CPU-GPU data exchange and GPU kernel execution. More-
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over, since kernel launch is an asynchronous operation, CUDA approach can
provide up to 3 different and concurring tasks: device-host transfer, GPU
elaboration, and CPU evaluation. In order to exploit these features, all code
must be carefully partitioned in independent sections, and data transfer and
kernel launch must be issued in different queues, called streams on Nvidia
approach. This makes available to the programmer the capacity to overcome
the limitations, currently present in GPU architectures, on both task based
parallelism and data transfer, but the drawback is the need to manual resolve
all synchronization issues that can arise.

The test platform we used for the experiments in this paper is a work-
station equipped with 2 Intel Xeon SixCore CPUs at 3.47GHz, 188GB of
RAM and 4 GPUs Nvidia Tesla C2070 connected thorugh PCIe channels.
The system is operated by a CentOS Linux distribution. Each one of the
four GPUs is highly parallel: it embeds 14 streaming multiprocessors, for a
total of 448 32-bit computing cores, or 224 double precision cores.

4.3.2. GPU tests

In order to show the remarkable advantages of exploiting the computa-
tional power of these architectures in SGP-based deconvolution algorithms,
we report the results of several experiments on increasingly large 2D synthetic
data sets, generated as described in subsection 4.1. The GPU implementa-
tion of the algorithms is obtained by performing on the parallel device the
main computational tasks (FFT computations and vector-vector operations)
of each iteration. In this way, by running the same number of iterations with
the serial and the parallel versions of the deconvolution algorithms, essen-
tially the same reconstruction accuracy is obtained [12, 33, 34]. For each
image size, the results reported in Table 4 and 5 are obtained as average
values of ten test problems corresponding to different noise realizations. The
column denoted by k̃ (std) shows the average number of iterations required by
the reconstruction methods to obtain the minimum of the Kullback-Leibler
divergence of x(k) from the known image x̃ that is to say

k̃ = argmin
k≥0

D(k) =
1

n

n
∑

i=1

{

x̃i ln

(

x̃i

x
(k)
i

)

+ x
(k)
i − x̃i

}

;

the standard deviation is reported in brackets. The average values of the min-
imum Kullback-Leibler divergence and the corresponding standard deviation
are shown in the column D(k̃) (std).
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The standard SGP version, with step-length selection based on the adap-
tive alternation of the BB rules, and its GPU implementation presented in
[12] are used for these experiments. It is easily seen from Table 4 that for
SGP the speed-up (Sp. column) in using the GPU version against the CPU
version ranges between 3.5 and 22 times. For comparison purpose only, we
report in Table 5 the results for the two versions of the RL method. In
this case, due to the easier iteration exploited by RL, the time gain ranges
between about 7.2 and 16.5; however, despite this fact, the absolute com-
putational time remains considerably larger than that of the SGP method.
In particular, the more the image size increases, the more the GPU version
of SGP seems preferable, by making reconstructed images available in few
seconds also in case of large deconvolution problems. In [12], a 3D decon-
volution problem on a true test case with an acquired volume consisting of
1024×1024×33 voxels is faced with the GPU-based implementation of SGP,
obtaining a sensible reconstruction after just 20 iterations, running for about
35 seconds on the architecture described above. Such a result can be consid-
ered very promising, given that the collection time for this data set amounts
to 180 seconds. Thus, the further convergence rate improvements arising
from equipping SGP with the new step-length rule introduced in this work
represent a worthwhile contribution toward an effective real-time deconvo-
lution in microcopy. In fact, the convergence rate improvements shown in
section 4.2 are obtained by means of the Ritz-like values computation with
a small parameter m (m = 3), which yields a number of operations (in par-
ticular, vector-vector operations) not significantly larger than the number
of operations required in the case of the BB-based step-length rule. This
is confirmed by the similar average cost per iteration provided by SGP and
SGP-Ritz (see Tables 1 and 2). The similar complexity of the two rules
allows one to expect that the better convergence rate ensured by the new
step-length selection can be fully exploited also on the GPU architecture, for
achieving a remarkable gain in the overall reconstruction time.

5. Conclusions and future work

In this paper we introduced a new version of the SGP method equipped
with a steplength selection rule based on special Ritz-like values. This rule,
recently suggested by R. Fletcher in the context of unconstrained optimiza-
tion, is here applied in the context of a scaled gradient projection method for
(simply) constrained optimization. To this end, we propose a generalization
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Table 4: SGP reconstruction time (in seconds) and relative speed-up of the GPU imple-
mentation compared with the CPU version.

size k̃ [av (std)] D(k̃) [av (std)] CPU GPU Sp.
128× 128 98.6 (19.6) 234.4 (27.0) 0.38 0.11 3.5
256× 256 87.6 (18.3) 888.2 (128.9) 0.88 0.14 6.3
512× 512 79.0 (17.2) 3102.9 (114.7) 2.71 0.27 10.0
1024× 1024 57.6 (14.1) 12111.7 (429.8) 9.11 0.59 15.4
2048× 2048 63.5 (12.9) 43391.7 (1928.6) 52.58 2.42 21.7
4096× 4096 54.9 ( 6.6) 179775.4 (4116.9) 191.68 8.71 22.0

Table 5: RL reconstruction time (in seconds) and relative speed-up of the GPU imple-
mentation compared with the CPU version.

size k̃ [av (std)] D(k̃) [av (std)] CPU GPU Sp.
128× 128 686.7 (129.0) 254.7 (21.1) 1.01 0.14 7.2
256× 256 562.7 (103.2) 1015.9 (137.0) 2.44 0.21 11.6
512× 512 521.9 (161.9) 3579.5 (111.0) 8.32 0.69 12.1
1024× 1024 506.1 (121.8) 13545.2 (337.8) 41.96 2.40 17.5
2048× 2048 458.3 (368.6) 48441.6 (2064.2) 221.45 9.07 24.4
4096× 4096 487.9 (189.9) 201250.4 (5267.9) 686.36 41.62 16.5

of the step-length rule able to take into account the presence of scaled gradi-
ent directions and nonnegativity constraints. The new rule is able to exploits
a cleaver limited-memory implementation, that allows to lower both the com-
putational time and the storage requirements. To asses the advantages of the
proposed scheme, we tested it on deconvolution problems coming from 2D
and 3D microscopy imaging synthetic data. These experiments show that,
compared to the classical BB-based SGP version as well as to the widely used
RL method, the new SGP scheme provides meaningful benefits in terms of
both number of iterations and computational time, while still getting the
same (and sometimes a better) reconstruction error.

Furthermore, we additionally describe how, through a state of the art
implementation on today’s widely available powerful GPU multicore archi-
tectures, the considered schemes allow to speed-up the deconvolution task
for large-scale real-world 3D volumes up to very few tens of seconds, which
makes the goal of real-time microscopy imaging reconstruction essentially
reached.

However, further improvements are still possible from both the theoret-
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ical and practical point of view. The strategy exploited in this work to
adapt the step-length rule to the presence of nonnegativity constraints is
efficient but other ideas can be exploited; in our opinion this topic merits
further theoretical investigations and can be worthwhile also in more general
constrained optimization framework [35]. From the implementation point
of view, the scheme’s flexibility and the very appealing features of the new
limited-memory rule leave space for additional ways to exploit the power of
modern parallel architectures in terms of fast channels communications and
cores’ multithreading capabilities. We are already working at these aspects,
that will be the subject of future works.
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with poisson data: from cells to galaxies, Inverse Problems 25.

[20] K. Lange, R. Carson, EM reconstruction algorithms for emission and
transmission tomography, J. Comp. Assisted Tomography 8 (1984) 306–
316.

22



[21] Y. Vardi, L. A. Shepp, L. Kaufman, A statistical model for positron
emission tomography, J. Am. Stat. Assoc. 80 (1985) 8–37.

[22] H. N. Mülthei, B. Schorr, On properties of the iterative maximum likeli-
hood reconstruction method, Math. Meth. Appl. Sci. 11 (1989) 331–342.

[23] A. N. Iusem, Convergence analysis for a multiplicatively relaxed EM
algorithm, Math. Meth. Appl. Sci. 14 (1991) 573–593.

[24] A. N. Iusem, A short convergence proof of the EM algorithm for a specific
Poisson model, REBRAPE 6 (1992) 57–67.

[25] P. Tseng, An analysis of the EM algorithm and entropy–like proximal
point methods, Math. Oper. Res. 29 (2004) 27–44.

[26] E. Resmerita, H. Engl, A. Iusem, The expectation-maximization algo-
rithm for ill-posed integral equations: a convergence analysis, Inverse
Problems 23 (6) (2007) 2575–2588.

[27] D. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont,
1999.

[28] L. Grippo, F. Lampariello, S. Lucidi, A nonmonotone line-search tech-
nique for Newton’s method, SIAM J. Numer. Anal. 23 (1986) 707–716.

[29] G. Golub, C. Van Loan, Matrix Computations. 3rd edn., The Johns
Hopkins Press, Baltimore, 1996.

[30] C. Lanczos, An iteration method for the solution of the eigenvalue prob-
lem of linear differential and integral operators, J. Res. Nat. Bur. Stand.
45 (1950) 255–282.

[31] B. Zhang, J. Zerubia, J.-C. Olivo-Marin, Gaussian approximations of flu-
orescence microscope point-spread function models, Appl. Opt. 46 (10)
(2007) 1819–1829. doi:10.1364/AO.46.001819.

[32] NVIDIA Corp., NVIDIA’s next generation CUDA compute architec-
ture: Fermi, Whitepaper.
URL \url{http://www.nvidia.com/content/PDF/fermi_white_

papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf}

23



[33] V. Ruggiero, T. Serafini, R. Zanella, L. Zanni, Iterative regularization
algorithms for constrained image deblurring on graphics processors, J.
Glob. Optim. 48 (2010) 145–157.

[34] M. Prato, R. Cavicchioli, L. Zanni, P. Boccacci, M. Bertero, Efficient
deconvolution methods for astronomical imaging: algorithms and IDL-
GPU codes, Astronomy & Astrophysics 539 (2012) A133.

[35] R. Fletcher, A sequential linear constraint programming algorithm for
nlp, SIAM Journal on Optimization 22(3) (2012) 772–794.

24



 

 

0

100

200

300

400

500

600

 

 

0

100

200

300

400

500

600

128× 128

 

 

0

100

200

300

400

500

600

 

 

0

100

200

300

400

500

600

256× 256

 

 

100

200

300

400

500

600

 

 

100

200

300

400

500

600

512× 512

 

 

100

200

300

400

500

600

 

 

100

200

300

400

500

600

1024× 1024

Figure 1: Left panel: original images. Right panel: blurred and noisy data (with high
noise level).

25



256× 256
high noise low noise

10
0

10
1

10
2

10
30.4

0.5

0.6

0.7

0.8

0.9

1

 

 

RL
SGP
SGP Ritz

10
0

10
1

10
2

10
30.4

0.5

0.6

0.7

0.8

0.9

1

 

 

RL
SGP
SGP Ritz

Relative error

10
0

10
1

10
2

10
3

10
2

10
3

 

 

RL
SGP
SGP Ritz

10
0

10
1

10
2

10
3

10
2

10
3

 

 

RL
SGP
SGP Ritz

Objective function

128× 128× 64

high noise low noise

10
0

10
1

10
2

10
3

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 

 

RL
SGP
SGP Ritz

10
0

10
1

10
2

10
30.5

0.6

0.7

0.8

0.9

1

 

 

RL
SGP
SGP Ritz

Relative error

10
0

10
1

10
2

10
3

10
4

 

 

RL
SGP
SGP Ritz

10
0

10
1

10
2

10
3

10
4

 

 

RL
SGP
SGP Ritz

Objective function

Figure 2: Relative error and decrease of the objective function with respect to the number
of iterations.
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Figure 3: Reconstructions for the high noise level 512× 512 test problem.
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Figure 4: Reconstructions for the low noise level 1024× 1024 test problem.

27



 

 

0

100

200

300

400

 

 

0

100

200

300

400

Original Observed data

 

 

0

100

200

300

400

 

 

0

100

200

300

400

 

 

0

100

200

300

400

RL SGP SGP-Ritz

Figure 5: Transverse section reconstruction for the 128× 128× 64 image with low noise.
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Figure 6: Sagittal section reconstruction for the 128× 128× 64 image with low noise.
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Figure 7: Coronal section reconstruction for the 128× 128× 64 image with low noise.
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Figure 8: Transversal section reconstruction for the 512× 512× 64 image with high noise.

29



 

 

0

50

100

150

200

250

300

 

 

0

50

100

150

200

250

300

Original Observed data

 

 

0

50

100

150

200

250

300

 

 

0

50

100

150

200

250

300

 

 

0

50

100

150

200

250

300

RL SGP SGP-Ritz

Figure 9: Sagittal section reconstruction for the 512× 512× 64 image with high noise.
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Figure 10: Coronal section reconstruction for the 512× 512× 64 image with high noise.

30


