Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives

Tommaso Mauri, Takeshi Yoshida, Giacomo Bellani, Ewan C. Goligher, Guillaume Carteaux, Nuttapol Rittayamai, Francesco Mojoli, Davide Chiumello, Lise Piquilloud, Salvatore Grasso, Amal Jubran, Franco Laghi, Sheldon Magder, Antonio Pesenti, Stephen Loring, Luciano Gattinoni, Daniel Talmor, Lluis Blanch, Marcelo Amato, Lu Chen, Laurent Brochard, Jordi Mancebo; PLeUral pressure working Group (PLUG - Acute Respiratory Failure section of the European Society of Intensive Care Medicine).

ONLINE DATA SUPPLEMENT

PLeUral pressure working Group - PLUG: aims and members

The PLeUral pressure working Group or "PLUG" is part of the Acute Respiratory Failure Section of the European Society of Intensive Care Medicine (ESICM) and it's active since 2012. The PLUG working group is chaired by Prof. Laurent Brochard from Toronto, Canada with the help of Prof. Jordi Mancebo from Barcelona, Spain, and of Dr. Tommaso Mauri from Milan, Italy. The aims of the working group include:

- Dissemination of knowledge regarding the utility and methodologies for esophageal pressure monitoring;

- Organization of dedicated scientific meetings during the ISICEM (Brussels, Belgium), SMART

(Milan, Italy) and ESICM congresses every year to promote discussion of original data and

clinical cases including esophageal pressure monitoring among members of the group;

- Promotion of original research on the role of applied physiology approaches to lung

ventilator management, including esophageal pressure monitoring;

- Proposal of thematic sessions on esophageal pressure and respiratory monitoring at major international conferences.

First name	Last name	City	Country
Fekri	Abroug	Monastir	Tunisia
Evangelia	Akoumianaki	Heraklion	Greece
Marcelo	Amato	Sao Paulo	Brazil
Massimo	Antonelli	Rome	Italy
Jean Michel	Arnal	Toulon	France
Antonio	Artigas	Sabadell	Spain
Dimitrios	Bampalis	Larissa	Greece
Tobias	Becher	Kiehl	Germany
Alessandro	Beda	Belo Horizonte	Brazil
Gaetan	Beduneau	Rouen	France
Thomas	Bein	Regensburg	Germany
Giacomo	Bellani	Monza	Italy
Francois	Beloncle	Angers	France
David	Berger	Bern	Switzerland
Lluis	Blanch	Sabadell	Spain

PLUG Working Group members include (as of February 24th, 2016):

Laurent	Brochard	Toronto	Canada
Alfio	Bronco	Monza	Italy
Luigi	Camporota	London	United Kingdom
Gilles	Capellier	Besancon	France
Guillaume	Carteaux	Creteil	France
Alysson Roncally	Carvalho	Rio de Janeiro	Brazil
Lu	Chen	Toronto	Canada
Davide	Chiumello	Milan	Italy
Ricardo Luiz	Cordioli	Sao Paulo	Brazil
Lorenzo	Del Sorbo	Toronto	Canada
Alexandre	Demoule	Paris	France
Jean Luc	Diehl	Paris	France
Eddy	Fan	Toronto	Canada
Niall	Ferguson	Toronto	Canada
Giuseppe	Foti	Monza	Italy
Inez	Frerichs	Kiehl	Germany
Stefano	Gatti	Monza	Italy
Luciano	Gattinoni	Gottingen	Germany
Dimitris	Georgopoulos	Heraklion	Greece
Alberto	Goffi	Toronto	Canada
Ewan	Goligher	Toronto	Canada
Giacomo	Grasselli	Milan	Italy
Salvatore	Grasso	Bari	Italy
Claude	Guerin	Lyon	France
Christophe	Guervilly	Marseille	France
Leo	Heunks	Nijmegen	The Netherlands
Robert	Huhle	Dresden	Germany
Giorgio	Iotti	Pavia	Italy
Sebastien	Jochmans	Melun	France
Björn	Jonson	Lund	Sweden
Amal	Jubran	Chicago	USA
Brian	Kavanagh	Toronto	Canada
Joseph	Keenan	St Paul	USA
Martin	Kneyber	Groningen	The Netherlands
John	Laffey	Toronto	Canada
Franco	Laghi	Chicago	USA
Stephen	Loring	Boston	USA
Umberto	Lucangelo	Trieste	Italy
Stefan	Lundin	Gothenburg	Sweden
Aissam	Lyazidi	Rabbat	Morocco
Sheldon	Magder	Monteal	Canada
Salvatore	Maggiore	Chieti	Italy
Jordi	Mancebo	Barcelona	Spain
Dimitri	Matamis	Salonique	Greece
Tommaso	Mauri	Milan	Italy
Alain	Mercat	Angers	France
Francesco	Mojoli	Pavia	Italy

Stefano	Nava	Bologna	Italy
Dominik	Novotni	Bonaduz	Switzerland
Laurent	Papazian	Marseille	France
Nicolo'	Patroniti	Monza	Italy
Paolo	Pelosi	Genova	Italy
Gaetano	Perchiazzi	Bari	Italy
Antonio	Pesenti	Milan	Italy
Lise	Piquilloud	Lausanne	Switzerland
Thomas	Piraino	Hamilton	Canada
Michael	Quintel	Gottingen	Germany
Marco	Ranieri	Rome	Italy
Jean Christophe	Richard	Annecy	France
Nuttapol	Rittayamai	Bangkok	Thailand
Angeles	Serrano Garcia	Barcelona	Spain
Arthur	Slutsky	Toronto	Canada
Savino	Spadaro	Ferrara	Italy
Ola	Stenqvist	Gothenburg	Sweden
Yuda	Sutherasan	Bangkok	Thailand
Daniel	Talmor	Boston	USA
Martin	Tobin	Chicago	USA
Franco	Valenza	Milan	Italy
Carlo Alberto	Volta	Ferrara	Italy
Norbert	Weiler	Kiehl	Germany
Takeshi	Yoshida	Osaka	Japan
Alberto	Zanella	Milan	Italy

ONLINE FIGURE LEGENDS

Figure 1 online. Δ**Transpulmonary pressure to guide mechanical ventilation.** Percent change of total lung capacity as a function of the changes of transpulmonary pressure. The curve is derived from Mead and Agostoni [ref. 1-2 online]. The status of the collagen (strings), and elastin (spring) in the extracellular matrix when transpulmonary pressure increases is derived from Weibel [ref. 3 online]. The specific elastance values were derived from Chiumello [ref. 4 online]. As shown, V₀ (the functional residual capacity) in the Handbook of Physiology is 35% of the Total lung capacity when the collagen is completely unfolded. The specific lung elastance is around 12 cmH₂O indicating that, at this level of transpulmonary pressure the lung volume doubles. Note that in the Mead cartoon the transpulmonary pressure is expressed as absolute values, while we used the Δvalues. Furthermore, in this cartoon, the total lung capacity is made equal to $3 \times V_0$, while experimentally we found, during anesthesia and paralysis, that it equals $2.5 \times V_0$. The overall picture is made to present the concept. In the reality, each of the given numbers presents a wide variability.

Figure 2 online. Respiratory effort indices derived from the esophageal pressure analysis during weaning. Esophageal pressure (Pes)–volume loops in a patient at the start (*left panel*) and end of a failed weaning trial (*right panel*). Blue dashed line represent dynamic lung compliance (CL,dyn); green dashed lie represents the chest wall compliance (Ccw). The resistive work is represented as the area (*light blue shading*) to the left of dynamic lung compliance (CL,dyn) line; the elastic work is represented as the area (*blue shading*) between the dynamic lung compliance line and the chest wall compliance line. Total inspiratory work of breathing is the sum of elastic and resistive work. The area (*light brown shading*) to the right of the chest wall compliance line represents expiratory work. Over the course of the trial, patient developed an increase in total inspiratory work of breathing. When partitioned, the increase in inspiratory work was mostly due to an increase in the elastic component. The

5

increase in elastic work made the clinician suspicious for subclinical pulmonary edema. Accordingly, the patient had a coronary angiography that showed critical obstructions involving the left anterior descending and circumflex coronary arteries. Next, he underwent a balloon angioplasty and stent placement. Two days later, the patient was successfully weaned from the ventilator.

ONLINE REFERENCES

1 online. Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28:596–608.

2 online. Agostoni E, Hyatt R (1986) Static behavior of the respiratory system. In: Handb.Physiol., 2nd ed. American Physiological Society, Bethesda, MD, pp 113–30.

3 online. Weibel ER (1984) The pathway for oxygen: structure and function in the mammalian respiratory system. Harvard University Press, Cambridge, MA.

4 online. Chiumello D, Carlesso E, Cadringher P, et al. (2008) Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 178:346–55.

ONLINE FIGURES

Figure 1 online.

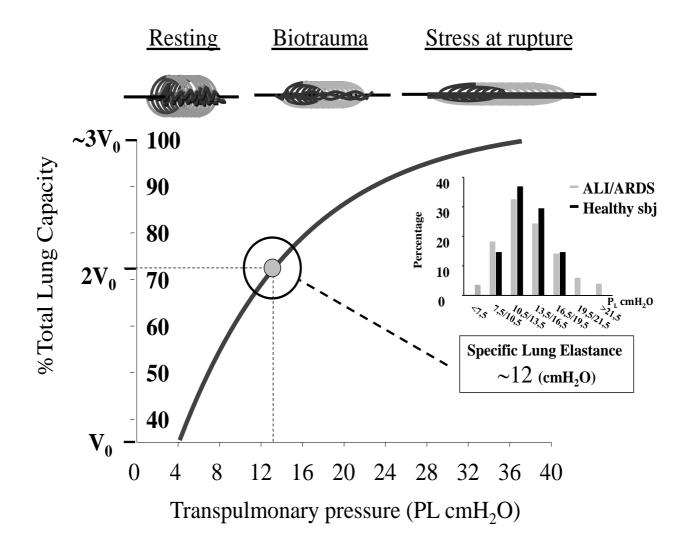
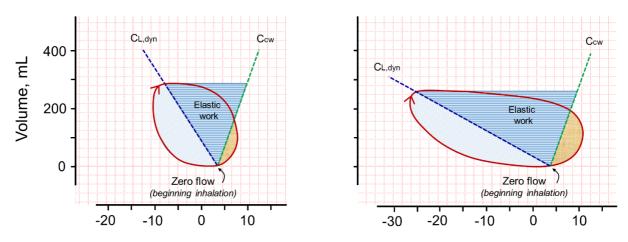



Figure 2 online.

Pes, cm H₂O