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Abstract
Background aims. Numerous cellular models have been developed to investigate calcification for regenerative medicine ap-
plications and for the identification of therapeutic targets in various complications associated with age-related diseases. However,
results have often been contradictory due to specific culture conditions, cell type ontogeny and aging status. Human plate-
let lysate (hPL) has been recently investigated as valuable alternative to fetal bovine serum (FBS) in cell culture and bone
regeneration. A parallel comparison of how all these multiple factors may converge to influence mineralization has yet to
be reported. Methods. To compare mineralization of human mesenchymal cell types known to differ in extracellular matrix
calcification potency, bone marrow–derived mesenchymal stromal cells and dermal fibroblasts from neonatal and adult donors,
at both low and high passages, were investigated in an ex vivo experimental model by supplementing the osteogenic induc-
tion medium with FBS or with hPL. Four commercial hPL preparations were profiled by liquid chromatography/
electrospray ionization quadrupole time-of-flight spectrometry, and mineralization was visualized by von Kossa staining and
quantified by morphometric evaluations after 9, 14 and 21 days of culture. Results. Data demonstrate that (i) commercial
hPL preparations differ according to mass spectra profiles, (ii) hPL variously influences mineral deposition depending on
cell line and possibly on platelet product preparation methods, (iii) donor age modifies mineral deposition in the presence
of the same hPL and (iv) reduced in vitro proliferative capacity affects osteogenic induction and response to hPL. Conclu-
sion. Despite the standardized procedures applied to obtain commercial hPL, this study highlights the divergent effects of
different preparations and emphasizes the importance of cellular ontology, donor age and cell proliferative capacity to op-
timize the osteogenic induction capabilities of mesenchymal stromal cells and design more effective cell-based therapeutic
protocols.
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Mineralization is a physiological process in hard
connective tissues but can also be considered patho-
logical when occurring in soft connective tissues.
Although extensively characterized in ex vivo–expanded
populations of mesenchymal stromal cells (MSCs),
many facets related to osteogenic induction remain
elusive [1,2]. Despite the ability to differentiate into
calcifying osteoblasts in vivo, MSCs fail to differen-
tiate and mineralize the extracellular matrix (ECM)
in standard medium supplemented with fetal bovine
serum (FBS).Therefore, to induce a temporal cascade
of maturational stages toward the osteoblast pheno-
type that allows ECM mineralization [3], cells must
be cultured in osteogenic induction medium (OIM,

which contains β-glycerophosphate, ascorbic acid and
dexamethasone) [4]. More recently, because plate-
lets contribute to mineralization in both physiological
and pathological microenvironments, influencing sites
for mineral nucleation [5] and providing growth factors
[6] as well as exosomal mediators [7], it has been
shown that platelet-rich plasma can efficiently promote
healing of hard and soft connective tissues, improv-
ing, for instance, bone regeneration in clinical trails
[8].Therefore, the fractured platelet derivative human
platelet lysate (hPL) is increasingly favored as an FBS
replacement for regenerative medicine clinical appli-
cations [9]. However, hPL sources and platelet product
preparation methods can influence platelet number,
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growth factor concentration and, consequently, os-
teogenic induction/differentiation outcomes [10–12].
Moreover, because individual hPL effectiveness can
differ according to donor-specific variability (i.e., age,
gender), anticoagulant (i.e., heparin) and storage
[11,13], commercial platelet lysates derived from
pooled donors are frequently used to improve con-
sistency and lower batch variability [14,15];
nevertheless, divergent results may be observed.

Therefore, we have investigated the effect of dif-
ferent commercial platelet lysates on ex vivo
mineralization comparing various mesenchymal cell
types (human bone marrow [hBM]-MSCs versus
human dermal fibroblasts), each with contrasting ECM
mineralization propensities. In particular, human MSCs
are multipotent progenitors with enormous poten-
tial for repair and regeneration of bone and cartilage.
Although these cells can be isolated from a variety of
tissues, those from bone marrow, being the most widely
investigated and characterized [16], were used in the
present study as representative of cells positively as-
sociated with efficient mineralization. Conversely,
human dermal fibroblasts (HDFs) are mesenchymal
cells derived from tissues that typically mineralize in
pathologic conditions [17].

Moreover, calcification can be also influenced by
functional changes related to donor age or reduced
cell proliferation capability. For instance, replicative
senescence in hBM-MSC cultures can impair bone
progenitor osteogenic differentiation and, consequent-
ly, matrix mineralization [18].Yet replicative senescence
can enhance ECM calcification in soft connective tissue
mesenchymal cells (i.e., smooth muscle cells, fibro-
blasts) by increasing the response to pro-mineralization
stimuli. By contrast, studies on HDFs isolated from
neonatal donors demonstrated that these cells are sig-
nificantly less responsive to pro-osteogenic factors [19].
Higher incidence of mineralization-associated dis-
eases, including either osteoporotic paucity of bone
mineralization or aberrant calcification in soft con-
nective tissues and atherosclerotic vasculature [20], is
consistently associated with age.

The aim of this study was to evaluate whether (i)
different commercial hPLs have the same influence
on mineral deposition in different cell lines, (ii) reduced
in vitro proliferative capacity affects mineral deposi-
tion upon hPL supplementation and (iii) donor age
modifies mineral deposition in the presence of the same
hPL.

Methods

Liquid chromatography/electrospray ionization
quadrupole time-of-flight mass spectrometry analysis

Electrospray ionization quadrupole time-of-flight (ESI-
Q-TOF) accurate mass spectrometer (G6520A, Agilent

Technologies), controlled by MassHunter (v. B.04.00)
and interfaced with an HPLC-Chip Cube to an Agilent
1200 nano-pump was used for analysis.

Chromatographic separation was performed on an
integrated HPLC-Chip (Agilent Technologies) with
a 75-µm ID, 43 mm, 300 Å C18 column, before a de-
salting step through a 40-nL trap column.The injected
sample (1 µL) was loaded onto the trap column with
a 4 µL/min 0.1% FA:ACN (98:2) phase flow, and after
3 min, the pre-column was switched inline with the
nanoflow pump (400 nL/min, phase A: water:ACN:FA
96.9:3:0.1, phase B: ACN:water:FA 94.5:5:0.1), equili-
brated in 10% mobile phase B. Proteins were eluted
from the reverse phase column through the follow-
ing gradient: 10–90% mobile phase B for 5 min, held
in 90% mobile phase B for 5 min and switched back
to 10% mobile phase B for 3 min, for a total runtime
of 40 min, including a 10-min post-run recondition-
ing step.

Mass spectra were recorded from 350 to 3200 m/z
at scan rates of 1 Hz; the detector was operated at 2
GHz in extended dynamic range mode. Mass spectra
were automatically recalibrated with two reference mass
ions. Spectra were displayed and processed by the soft-
ware MassHunter Qualitative Analysis (B05.00, Agilent
Technologies).

Mass spectra across the whole chromatogram (0–
26 min) were averaged and, after subtracting the
background (obtained by averaging the mass spectra
at the end of the run), the spectrum was deconvoluted
by using the maximum entropy algorithm in the range
of 10 000–150 000 Da.

Cell culture

hBM-MSCs were harvested from a 42-year-old male
donor after informed consent, according to the Dec-
laration of Helsinki and local ethical committee–
approved procedures for isolation and immune-
phenotypic characterization, as previously described
[16,21]. Briefly, cells were routinely grown in
α-minimum essential medium (MEM) without nucleo-
sides (Gibco Invitrogen), supplemented with 8% hPL
(obtained from pooled batches of 50 donors), 1%
L-glutamine (Gibco Invitrogen), 1 UI/mL heparin
(Sigma-Aldrich), and 10 mg/mL ciprofloxacin
(HIKMA) [16]. In this study, hBM-MSCs were se-
lected among those obtained from six independent
donors as representative of the behavior of hBM-
MSCs. HDFs from adult tissue (aHDFs; Thermo
Fisher Scientific, cat. # C-013-5C).To evaluate whether
hPL can reverse the “resistant phenotype” of cells con-
sidered to be “low responders” to pro-osteogenic
stimuli, we also used HDFs derived from neonatal
tissue (nHDFs;Thermo Fisher Scientific, cat. # C-004-
5C) [19].
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HDFs were grown in Dulbecco’s Modified Eagle
Medium (DMEM) supplemented with 10% FBS
(Gibco-Thermo Fisher Scientific) according to stan-
dard procedures [22].

Cell expansion

Cell expansion represents a preliminary step neces-
sary to obtain the required number of cells at different
passages (i.e., low and high) to be used for the min-
eralization assay. Cells (hBM-MSCs, nHDFs and
aHDFs) were serially passaged in T25 flasks in their
growth medium as specified in the previous para-
graph.The number of population doublings (PD) for
each cell type was determined. In particular, cell
number was measured by hemocytometer, and PD was
calculated using the following formula [23]:

PD Ln number of cells harvested

Ln number of cells seeded

= ( )
− ( )) ln .2

Cells at low passage (p3) were used when the
number of PD was ≈3 ± 1 in all cell lines. Cells at high
passages were used when hBM-MSCs, nHDFs and
aHDFs were at p10, p40 and p30, respectively, and
PD was ≈1 ± 0.2. Cell cultures were monitored using
an inverted phase contrast microscope (Leica DM-IL).

Ex vivo mineralization assay

For mineralization experiments, cells seeded in 24-
well plates at a density of 40 × 103 cells/well (DB
Falcon), were treated with an OIM containing DMEM
supplemented with ascorbic acid (50 µg/mL; Sigma),
β-glycerophosphate (10 mmol/L) (Sigma) and dexa-
methasone (10 nmol/L; Sigma) and 10% FBS
[3,24,25] or with FBS replaced by 8% or 5% com-
mercial hPL, depending on the manufacturer’s
recommendation. Change from FBS- to hPL-
containing OIM was well tolerated without cell toxicity.
Because hPL and pro-mineralization reagents present
in the OIM may influence proliferation rate [26,27],
in a preliminary experiment, we tested various com-
mercial hPLs on hBM-MSCs during the expansion
phase. After 6 days of culture, cell number was 185
000, 273 000, 228 000 and 301 000 cells, depend-
ing on the commercial hPL used.Therefore, to allow
a more uniform comparison, mineralization assess-
ment was performed on cells expanded in their
medium until confluence, as previously described.

As hPL sources, we used the following: two
Stemulate liquid formulas produced by Cook Medical,
one preparation requiring heparin (hPL1) and the other
heparin-free (hPL2); a Good Manufacturing Practice–
grade hPL liquid formula produced by Macopharma
requiring the addition of heparin (hPL3); and a ly-
ophilized formula, Lyset, produced by Sclavo

Diagnostics International, which is supplemented with
anticoagulant by the manufacturer (hPL4).

Mineralization can be assessed by alizarin red (AR)
or by von Kossa (VK) staining. Although AR is ac-
cepted as indicative of the presence of calcium
phosphate deposits, it is a nonspecific stain for acid
insoluble divalent complexes and does not specifical-
ly stain calcium-containing minerals or calcium itself
[28,29].Therefore, mineralization was assessed byVK,
a precipitation reaction in which silver ions react with
phosphate and, under ultraviolet light, silver is de-
posited to replace the reduced calcium of calcium
phosphate [30]. Briefly, after 9, 14 and 21 days in OIM,
cells were fixed in 4% paraformaldehyde, stained with
2.5% silver nitrate, placed under a ultraviolet lamp for
30 min and rinsed with distilled water before treat-
ment with 5% sodium thiosulfate for 2 min. VK-
positive (dark) deposits were observed after alcohol
washes.

Areas of mineralization were quantified on digital
images by ImageJ software.Triplicate experiments were
performed twice.

Statistical analysis

Statistical comparison was made using GraphPad soft-
ware, version 6.0, and P values < 0.05 were considered
significant. Statistical significance between treat-
ments and time of culture in the same cell line was
determined using two-way analysis of variance fol-
lowed by Tukey’s multiple comparison test.
Independent t-tests were used to compare cells at low
and high passages with the same time in culture and
with the same OIM. Values are shown as mean
values ± SEM.

Results

Mass spectra indicated differences between hPL
commercial sources

The complex protein mixtures of four hPLs were ana-
lyzed by ESI-Q-TOF without gel separation and
digestion. For all samples, a broad range of peaks
showing intensities <0.5 across the selected 10 000 to
150 000 m/z range and a prominent base peak of in-
tensity >1.5 between m/z ratios 66 440 to 66 557
(Figure 1). Interestingly, there was notable heteroge-
neity in number and peak intensities among the hPLs.
For instance, hPL3 and hPL4 exhibited a peak at 76
102 and at 109 559 m/z, whereas hPL1 and hPL2 did
not (Figure 1).

Effect of different commercial hPL on hBM-MSC-
dependent mineralization

In line with expectations from previous studies [16],
treatment of hBM-MSCs with OIM led to a
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progressive increase ofVK staining from 9 to 21 days.
For OIM supplemented with hPL3 or hPL4,VK stain-
ing was >40% of the cellular monolayer at 14 days and
>90% at 21 days (Figure 2). In the same cells, when
OIM was supplemented with FBS, hPL1 or hPL2,VK
staining was significantly (P < 0.001) reduced at 14
days compared with other hPL treatments. A similar
trend was observed also at 21 days, when only 20%
of the cellular monolayer appeared stained (Figure 2).

Effect of different commercial hPL on HDF-dependent
mineralization

The overall pattern of calcification evidenced by VK
staining of HDF cultures (Figure 2) was very differ-
ent compared with that seen in hBM-MSCs. In
particular, in aHDF cultures,VK staining at 9 and 14
days was similar for OIM supplemented with either
FBS or any of the hPL sources (Figure 2). At 21 days,
the only evident staining was in the presence of FBS
and hPL1, although it never exceed 20% of the mono-
layer area.

In nHDFs, the use of FBS or hPL4 did not result
in any appreciable calcification because VK staining
was observed only at 21 days using hPL1, hPL2 and
hPL3, although hPL3 demonstrated more than twice
the extent of VK staining as that seen using hPL1 or
hPL2.

Notably, in the same experimental condition (e.g.,
OIM with hPL4), the mineralized area measured in
aHDFs and nHDFs was different (Figure 2), indi-
cating that donor age influenced cellular behavior.
Similar behavior was also observed with other hPLs.

Continuous passaging influences the response to
osteogenic stimuli

Several studies investigated the effect of cellular se-
nescence on osteogenic differentiation potential, but
results often disagreed with each other, probably due
to differing experimental conditions [20,31]. Because
replicative senescence causes an increase in cell death
that can affect the extent of mineral deposition, we
decided to investigate the influence of different com-
mercial hPL preparations on aging cells (i.e., cells at
high passages exhibiting significantly reduced prolif-
eration capabilities). To exclude interindividual
variability, the same cell line was aged in vitro through
serial passages, as described in Methods, and these
cells were therefore compared at low and high passages.

hBM-MSCs in OIM supplemented with FBS,
hPL1 and hPL2 did not differ in their deposition of
minerals over time compared with cells at low passage.
In the presence of hPL3 or hPL4, the amount of the
mineralized area was markedly decreased at 14 days
(≈4% at high passage versus ≈50% at low passage;

Figure 1. Liquid chromatography (LC)/ESI-Q-TOF profiling. Representative LC-mass spectrometry spectra of m/z intensities for pep-
tides ranging from 10 to 150 kDa from four commercial hPL preparations. Each hPL was characterized by a specific peak profile indicating
composition differences.
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P < 0.001), although calcification reached similar values
at 21 days (≈84% versus ≈91% at high and low passage,
respectively; Figures 2 and 3).

In aging aHDFs,VK positivity was appreciable at
14 days, especially upon hPL treatments, and at 21
days, the calcified area was >75% in all experimental
conditions (Figures 2 and 3).

Continuously passaged nHDFs did not exhibit sig-
nificant changes in the amount of minerals deposited
over time compared with the same cell line at low
passage, thus remaining poorly responsive to pro-
osteogenic stimuli.The only exception was hPL3, which
led to more than twice the extent of VK staining at
21 days (69% versus 31% at high and low passage,
respectively; P < 0.01).

Discussion

The need to address the demographic burgeoning of
age-related diseases and their complications has in-
creased interest in understanding the processes
governing mineralization to improve current thera-
peutic interventions. However, diverse ex vivo

experimental models exploring mineralization has re-
vealed difficulties in comparing results using various
cell types and relevant reagents.

In the past decade, hPL has received significant
attention for its possible clinical use and for its great
effectiveness, compared with FBS, in enhancing MSC
osteogenic induction. Interestingly, comparison of four
hPLs showed mass spectrometry peak differences in-
dicative of unique aspects to their composition.
Identification of single components in each hPL was
not within the scope of the present study, but results
provide a model for future exploration to better un-
derstand which specific hPL sub-components may
influence mineralization.Therefore, manufacturers’ pro-
vision of pooled hPL (as we used in the present study)
did not necessarily avoid diverse preparation-specific
outcomes, and this likely reflected the complex nature
of hPL [32]. In particular, we demonstrated that only
two of the four hPLs assessed showed a significant in-
crease of mineralized matrix compared with FBS,
indicating that the extent of cell responsiveness can
be markedly modulated by the physical-chemical
characteristics of an hPL preparation, at least in

Figure 2. Calcification assay at low cell passage. Phase contrast photomicrographs of hBM-MSCs and HDFs, derived from either adult
(aHDF) or neonatal (nHDF) tissues, cultured in osteogenic induction medium supplemented for 14 days with FBS or with four different
commercial hPL preparations. Mineral deposits were visualized with VK staining (arrows). Bar: 120 µm. The percentage of calcified areas
in hBM-MSCs, nHDFs and aHDFs cultured for 9, 14 and 21 days are shown in histograms. Results are expressed as mean values ± SEM.
*P < 0.05; **P < 0.01;***P < 0.001 21 days versus 14 days or 14 days versus 9 days in the same cell line and with the same OIM composition.
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hBM-MSCs, a mesenchymal cell type that has been
extensively studied in cell culture [33] and was se-
lected as a suitable positive control of efficient
mineralization because of its high osteogenic differ-
entiation potency. Moreover, within this context, we
tested three liquid hPL forms (hPL1, hPL2 and hPL3)
with differing heparin requirements versus a dry ly-
ophilized form (hPL4) that was rehydrated before use.
Heparin, a sulphated glycosaminoglycan that pre-
vents fibrinogen conversion to fibrin as well as hPL
gelatinization in the medium, is not a totally benign
component. Low or high doses of heparin, for in-
stance, can oppositely favor osteogenic differentiation
[34,35].The manufacturers of two of the hPLs (hPL1
and hPL3) recommended adding heparin to the culture
medium, whereas this was not necessary for fibrinogen-
depleted hPL2 or for hPL4, which already contained
an anticoagulant. Our ECM calcification outcomes
were not related to the requirement for heparin, as
shown by near-equivalent results for hPL1 and
hPL2. Interestingly, hPL4 was an adequate supple-
ment for prompt mineralization in hBM-MSCs, as

demonstrated by comparing lyophilized hPL4 with the
liquid hPL formulas (hPL1, hPL2 and hPL3).There-
fore, our data indicate that lyophilization of platelet
extract preserves biological activity of growth factors
similarly to preparations obtained after freeze–thaw
cycles, sonication or activation by thrombin/CaCl2 treat-
ment [36].

With regard to the cell-specific response to pro-
mineralization stimuli, dermal fibroblasts have been
shown to osteogenically differentiate upon transfec-
tion of an osteogenic transcription factor [37] or when
cultured in an appropriate mineralizing environment
[38–41]; however, the degree of similarity between
hMSCs and HDFs varies [42–44]. Of note, nHDFs
and aHDFs did not mimic the prompt and dense
nodular mineralization pattern of hBM-MSCs.These
effects were especially evident at 14 days, with differ-
ing responses to OIM treatment, supporting the view
that environmental conditions (OIM supplemented
either with FBS or with one of the four hPLs) exert
a different effect on the same cell type and, in addi-
tion, that the same experimental condition can induce

Figure 3. Calcification assay at high cell passage. hBM-MSCs and HDFs, derived from either adult (aHDF) or neonatal (nHDF) tissues,
were cultured for 14 days in OIM supplemented with FBS or four different commercial hPL preparations. Mineral deposits were visual-
ized by phase contrast microscopy after VK staining (arrows). Bar: 120 µm.The percentage of calcified areas in hBM-MSCs, nHDFs and
aHDFs cultured for 9, 14 and 21 days are shown in histograms. Results are expressed as mean values ± SEM. *P < 0.05; ***P < 0.001 21
days versus 14 days or 14 days versus 9 days in the same cell line and with the same OIM composition.
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a different response depending on the cell type, as seen
in both physiological and pathological contexts.

A peculiar feature of nHDFs was the absence of
any mineralization over the time course of the exper-
iment when using FBS, confirming previous data [19].
Substituting FBS with hPL led to nHDF-dependent
ECM calcification after 21 days in three cases, whereas
mineralization remained minimal when OIM was
supplemented with hPL4.This does not reflect a func-
tional inadequacy of hPL4 because the preparation
supported high levels of mineralization in hBM-
MSCs. In particular, hPL4 consisted of lyophilized
platelet lysate from platelet-rich plasma combined with
human platelet-poor plasma (1:1), and this more com-
prehensive supplement may have included inhibitors
as well as stimulators of mineralization that combine
for more cell type specific mineralization [45].

Another important point of this study is that al-
though in vitro expansion is necessary to obtain a
sufficient cell number for engineering and cell therapy,
this requirement, having an effect on the prolifera-
tive capacity of each specific cell type, can dramatically
affect the osteogenic induction efficiency.This finding
was particularly evident in hBM-MSCs and in aHDFs,
in which mineral deposition over time was delayed or
strongly increased, respectively.

Although it is necessary to better understand the
mechanisms mediating the effects of hPL on the min-
eralization process, this study highlights the importance
of defining the production process of commercial hPLs
and the release criteria, including concentration ranges
of growth factors in hPL batches, so that results can
be more easily compared. Additionally, it is also man-
datory to take into account cellular ontology, donor
age and cell proliferative capacity to optimize the os-
teogenic induction and design more effective cell-
based therapeutic protocols.
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