
Accepted Manuscript

A grain boundary formulation for crystal plasticity

I. Benedetti, V. Gulizzi, V. Mallardo

PII: S0749-6419(16)30059-6

DOI: 10.1016/j.ijplas.2016.04.010

Reference: INTPLA 2047

To appear in: International Journal of Plasticity

Received Date: 20 January 2016

Revised Date: 4 April 2016

Accepted Date: 15 April 2016

Please cite this article as: Benedetti, I., Gulizzi, V., Mallardo, V., A grain boundary formulation for crystal
plasticity, International Journal of Plasticity (2016), doi: 10.1016/j.ijplas.2016.04.010.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.ijplas.2016.04.010


A grain boundary formulation for crystal plasticity

I. Benedetti∗, V. Gulizzi

Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali - DICAM
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Abstract

A three-dimensional grain-boundary formulation for small strains crystal plas-

ticity is presented for the first time. The method is developed and implemented

for both single grains and polycrystalline aggregates and it is based on the

use of a suitable set of boundary integral equations for modelling the individ-

ual grains, which are represented as anisotropic elasto-plastic domains. In the

boundary integral framework, crystal plasticity is modelled resorting to an ini-

tial strains approach and specific aspects, related to the integration of strongly

singular volume integrals in the anisotropic elasto-plastic grain-boundary equa-

tions, are discussed and suitably addressed for the first time. In the poly-

crystalline case, Voronoi-type micro-morphologies are discretised using robust

non-structured boundary and volume meshes. A general grain-boundary incre-

mental/iterative algorithm, embedding rate-dependent flow and hardening rules

for crystal plasticity, is developed and discussed. The method has been assessed

through several numerical simulations, for both single and polycrystalline ag-

gregates, which confirm its robustness and accuracy and suggest directions for

further developments. The key feature of the formulation is the expression of

the micro-mechanical problem in terms of grain-boundary variables only, namely
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inter-granular displacements and tractions, which results in a reduction of the

total number of degrees of freedom, which may be appealing in a multi-scale

framework.

Keywords: Crystal plasticity, Polycrystalline materials, Micromechanics,

Boundary element method

1. Introduction

Polycrystalline materials are widely used in engineering applications. In

recent years, due to the advancements in microstructural materials character-

ization and the wider affordability of High Performance Computing (HPC),

much interest has been focused on microstructural modeling of materials, in5

which an increasing number of microstructural features and details are included

in the material representation, in an attempt to capture the origin of several

macroscopic effective material behaviours. The interest in microstructural mod-

elling has also been motivated by the increasing use of micro-mechanical devices

(MEMS, stents, etc.), in which the application scale is often comparable with10

the grains’ size. In particular, three-dimensional computational modeling is to-

day a very active research area [1].

One of the main deformation mechanisms active in crystals, at the grain level, is

plastic slip over well defined crystallographic planes. The phenomenon, known

as crystal plasticity, is characterised by its inherent anisotropy, induced by the15

structure of the crystalline lattice itself. Several numerical and computational

methods have been proposed in the literature for the analysis of plasticity in

single crystals and crystal aggregates. A very complete review of Crystal Plastic-

ity Finite Element Methods (CPFEMs) can be found in [2], where a wide range

of continuum-based techniques and contributions, with applications in fields20

as diverse as texture evolution, creep, nano indentation, forming and others,

is discussed. A detailed comparison among three different theoretical frame-

works, i.e. conventional continuum plasticity, discrete dislocation plasticity and

nonlocal plasticity, is reported by Needleman [3], who strongly underlines the
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importance of computational studies.25

Several studies have been devoted to the modelling of plastic slip in single crys-

tals. Both rate–dependent (RD) [4, 5, 6] and rate–independent (RI) [7] models

have been proposed and compared [8]. Much research has also been focused on

the development of crystal plasticity models for polycrystalline aggregates [2].

Several 3D CPFEMs were initially developed to assess texture development in30

polycrystals. In several studies, the aggregate was represented with simple mor-

phologies and coarse meshes, with individual grains often modelled by a single

finite element. Despite such approximations, the models were quite accurate in

predicting texture evolution. In [9] a Taylor-type polycrystal plasticity model

was tested in large strain reverse torsion tests, with the different slip hardening35

laws presented by Asaro & Needleman [10], by Harren et al. [11], by Bassani &

Wu [12] and by Kalidindi et al. [13].

Both 2D [14] and fully 3D [15] polycrystalline models, with the explicit rep-

resentation of individual grains, have been developed, using a rate–dependent

CPFEM formulations. Quilici and Cailletaud [16] developed a CPFEM frame-40

work that was subsequently used for the analysis of stress/strain fields within 3D

polycrystalline aggregates in the small strains regime [17, 18]. Voronoi tessella-

tions have been used to represent the microstructure and a visco-plastic crys-

tallographic constitutive model, with isotropic and kinematic hardening, was

employed. Aggregates up to 200 grains were analyzed and the FETI (Finite El-45

ement Tearing and Interconnecting) method [19] was employed, in conjunction

with High Performance Computing, to tackle the high computational require-

ments of 3D computations. The same strategy was later employed by Diard

et al.[20], who analyzed micro-plasticity in hexagonal close-packed materials,

with as realistic as possible microstructures. Sarma and Radhakrishnan [21]50

applied CPFEM for studying the hot deformation of grains in polycrystalline

aluminum. They report that, due to the time-consuming nature of such simula-

tions, it was possible to consider only a limited number of specially constructed

microstructures. Zeghadi et al.[22] performed, in a CPFEM framework, a sta-

tistical analysis on several different 3D morphologies generated starting from55
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the same 2D surface. Aggregates with around 40 grains were considered and

the plastic strain fields over the reference 2D surface, induced by different inter-

nal 3D morphologies of the assessed specimen, were investigated. It was found

that large fluctuations in the equivalent plastic slip level are induced by dif-

ferent internal 3D morphologies, under the same external loading conditions,60

thus advocating the need of fully 3D studies over simplified pseudo 3D (or 2D

columnar) studies.

Similar studies, focused on the comparison between experimental and compu-

tational results, with the aim of identifying possible sources of error and better

calibrating microstructural constitutive parameters were performed by Héripré65

et al.[23], Musienko et al.[24], Zhang et al. [25] and Pinna et al.[26]. Musienko et

al.[24] analyzed an experimentally reconstructed copper specimen with approx-

imately 100 grains. CPFEM was used and the results of fully 3D and columnar

2D (pseudo-3D) simulations were compared, to assess the bias introduced by

the simplified morphologies. It was found that the computational results of the70

fully 3D mesh were in good agreement with the experimental data, while only

some traces of the experimental behaviour were retained in the extended 2D

simulations. Zhang et al. [25] compared, in terms of stress-strain curves and

lattice reorientation, the experimental results obtained from a tensile test of a

Ti-5Al-2.5Sn specimen with those obtained from numerical CPFEM simulations75

using 2D columnar and 3D microstructures. The stress-strain curve was used to

calibrate the parameters of the crystal plasticity constitutive model. Using the

lattice reorientation maps, the authors showed that fully 3D microstructures

better reproduced the experimental observations with respect to the pseudo

3D microstructures. Pinna et al. [26] simulated the deformation of a FCC80

aluminium alloy AA5052 at high temperatures using a structured mesh where

each cubic volume element had its own crystallographic orientation, and a Fe-

30wt%Ni alloy using a two dimensional mesh with plane strain assumption.

Besides the qualitative agreement between the numerical results and the exper-

imental measurements in terms of stress-strain curves, the authors reported the85

limitations of simplified CPFEM models to capture the intra-granular strain
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distribution and suggested the use of fully three-dimensional models.

Barbe and Quey [27] presented a CPFEM model for 3D polycrystalline mi-

crostructures, including polycrystal-to-polycrystal diffusive transformations. Schnei-

der et al. [28, 29] investigated the mechanical behavior of αFe-Cu composites90

under large plastic deformations in simple tension and compression, using 3D

FEM simulations (ABAQUS) with an elasto-visco-plastic material model. Crack

initiation and evolution in polycrystalline aggregates is addressed in [30], where

the cohesive-zone type contact is implemented in a CPFEM framework em-

ploying Bassani-Wu hardening laws. In [31], a comparison between the self-95

consistent, finite element and spectral methods is carried out in the context

of homogenization of polycrystalline aggregates with an elastic-viscoplastic be-

haviour. Zhang et al. [32] studied the anisotropic mechanical response of a rolled

AA1050 aluminium plate with respect to the loading direction using five differ-

ent crystal plasticity models, showing the ability of CPFEM to qualitatively100

reproduce the experimental findings. Zeng et al. [33] developed a smoothed

crystal plasticity finite element framework for modelling two-dimensional single

crystals and polycrystals. Kim and Yoon [34] simulated the necking behaviour

of AA 6022-T4 sheet using a CPFEM formulation involving four different con-

tinuum damage mechanics models, discussing the performance of such damage105

models when compared to experimental tests. Moreover, more advanced crys-

tal plasticity phenomenological models, able to capture different deformation

mechanisms besides slip, such as twinning in HCP crystals or non-Schmid ef-

fects in BCC crystals, are still under investigation. As a few recent examples,

Abdolvand et al. [35] implemented in a finite element formulation a crystal110

plasticity model comprising twinning as well as slip in HCP materials, in order

to simulate the deformation of a rolled Zircaloy-2 element. Wang et al. [36]

proposed a physically-based crystal plasticity model including also de-twinning

for HCP crystals and used it in a self-consistent model to simulate cyclic load-

ing in a magnesium alloy. Lim et al.[37] developed a BCC crystal plasticity115

finite element model and employed it to simulate the deformation of tantalum

oligo-crystals [38]. The authors compared numerical and experimental results
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finding good agreement in terms of both in-plane and out-of-plane strain fields

and lattice rotations. An interesting point raised by the authors was the lower

agreement between predicted and measured fields at the grain boundaries, which120

prompted the authors to recommend more detailed grain boundary models in

future studies.

The short review given above confirms the maturity of the CPFEM for the

investigation of plasticity in crystalline solids and also the current engineering

interest toward the development of new or more enriched models. On the other125

hand, while several boundary element formulations for elasto-plastic isotropic

problems are present in the literature, see e.g. Refs.[39, 40, 41, 42, 43, 44, 45, 46],

the authors are not aware of any boundary element application to anisotropic or

crystal plasticity. A boundary element approach may in fact result in accurate

stress/strain predictions at reduced discretization effort.130

In the present work, a novel three-dimensional grain–boundary formulation for

small strains crystal plasticity is presented for the first time. The boundary

integral equations for anisotropic elasto-plasticity are given, Section 2. The

presence of plastic flow is taken into account through an initial strains ap-

proach, which is commonly adopted in boundary element formulations for ad-135

dressing elasto-plastic problems [39, 41]. The anisotropic kernels involved in

the formulation are explicitly given, Section 2.2, and the strategy for numerical

integration of the strongly singular volume integrals is discussed, Section 2.4.

The adopted phenomenological continuum-based crystal plasticity description

is discussed, Section 3, and the incremental/iterative grain-boundary algorithm140

for crystal plasticity is presented in a rate-dependent framework, Section 4. A

grain–boundary polycrystalline implementation for crystal plasticity, based on

previous works from Benedetti et al. [47, 48, 49, 50], is given, Section 5. The

salient feature of the formulation is the expression of the problem in terms of in-

tergranular variables only, namely grain–boundary displacements and tractions,145

also in presence of an interior plastic flow, which allows a remarkable reduc-

tion in the order of the numerical system, especially for polycrystalline analysis.

Numerical tests are performed both for single crystals and crystal aggregates,
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and they confirm the potential of the technique, Section 6. Directions of further

investigation are discussed in Section 7, before the Conclusions.150

2. Anisotropic elasto-plastic boundary element formulation

In the present section, the different ingredients of the boundary integral for-

mulation of the crystal plasticity problem are presented. To maintain a unified

notation, the basic equations are presented in rate form. This is a common155

procedure for time-dependent problems, such as creep or visco-plasticity. Rate-

independent crystal plasticity problems, on the other hand, could be formulated

in purely incremental terms, due to the to the lack of time-dependent effects.

However, also rate-independent problems can be generally associated to a time-

like parameter that plays the role of an ordering parameter, such as the load160

factor λ. Keeping this in mind, it is possible to retain a unique rate notation

for both classes of problems.

Considered a generic domain D ⊂ R3, representing a single crystal with specific

symmetry undergoing elasto-plastic deformations, the proposed formulation is

based on the use of a set of boundary integral equations representing the displace-165

ments and stresses of the points of the domain in terms of boundary integrals of

the displacements and tractions of points on the surface S of the domain itself.

When a region within D undergoes plastic slip, such equations are modified by

the presence of some volume integral terms. The salient feature of the method

is that only the boundary points carry degrees of freedom, irrespective of the170

presence of internal plastic regions, allowing a considerable reduction in the size

of the solving system, which may be appealing in computational terms.

In the following sections, the previous outline is further developed and attention

is devoted to the fundamental boundary integral equations, to the expressions of

the integral kernels appearing in the equations and their numerical integration175

and to the form of the discrete algebraic systems.
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2.1. Boundary integral equations

Let us consider the generic domain D ⊂ R3, whose volume V is bounded by

the external surface S = ∂V . When plastic deformations are considered within180

the context of the small strains theory, the total strain rates ε̇ij can be expressed

as the sum of elastic and plastic contributions

ε̇ij =
1

2
(u̇i,j + u̇j,i) = ε̇ e

ij + ε̇ p
ij . (1)

where ui denote the displacements components. The presence of plastic strains

can be addressed in boundary element formulations by adopting an initial strain

or initial stress approach [39, 40]: in the present work, the initial strain formu-

lation is used, as it appears particularly suitable to the form of the crystal

plasticity constitutive equations, see Section 3.

When some initial plastic strains ε̇pjk are present in Vp ⊂ V , the displacement

boundary integral equations can be written, in rate form, as

cij(x)u̇j(x) +−
∫
S

Tij (x,y) u̇j(y)dS(y) =

∫
S

Uij (x,y) ṫj(y)dS(y)+

+

∫
Vp

Σijk(x,Y) ε̇ p
jk(Y)dV (Y) (2)

where x,y ∈ S denote the collocation and integration boundary points respec-

tively, Y ∈ V is a volume integration point, u̇j and ṫj are components of the

boundary displacements and tractions, Uij , Tij and Σijk are components of the

displacement, traction and stress fundamental solutions respectively, see Sec-

tion 2.2, −
∫

denotes the Cauchy principal value integral due to the presence

of the strongly singular kernels Tij and cij are free terms stemming from the

integration procedure over the domain boundary S, which are cij = δij/2 for

regular boundary points; the volume integral is performed over the interior re-

gion Vp ⊂ V undergoing plastic deformation, i.e. where ε̇ p
jk ̸= 0.

The boundary integral representation for the strains ε̇ij at the generic interior

point X ∈ V can be obtained applying the strain-displacement differential oper-

ator to the displacements boundary integral equations collocated at the interior
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point X ∈ V . In rate form, it is written as

ε̇ij(X) +

∫
S

T ε
ijk(X,y)u̇k(y)dS(y) =

∫
S

U ε
ijk(X,y)ṫk(y)dS(y)+

+−
∫
Vp

Σ ε
ijkl (X,Y) ε̇ p

kl(Y)dV (Y) + f ε
ijkl ε̇

p
kl(X),

(3)

where U ε
ijk, T

ε
ijk and Σ ε

ijkl are obtained through suitable derivation from the

kernels appearing in Eqs.(2), f ε
ijkl ε̇

p
kl are the so called free terms [39, 40] and the

Cauchy principal value integral −
∫
is due to the presence of the strongly singular

kernels Σ ε
ijkl in the volume integral. The expressions of both the kernels and

free terms are given in Section 2.2, while the numerical treatment of the singular

integrals is addressed in Section 2.4.

The boundary integral representation for the stresses σ̇ij at the generic interior

point X ∈ V is obtained from Eq.(3) using the constitutive relationships σ̇ij =

Cijkl(ε̇kl − ε̇ p
kl). In rate form, the stress boundary integral representation reads

σ̇ij(X) +

∫
S

T σ
ijk (X,y) u̇k(y)dS(y) =

∫
S

U σ
ijk (X,y) ṫk(y)dS(y)+

+−
∫
Vp

Σ σ
ijkl (X,Y) ε̇ p

kl(Y)dV (Y) + f σ
ijkl ε̇

p
kl(X),

(4)

where U σ
ijk, T

σ
ijk and Σ σ

ijkl and f σ
ijkl can be obtained from the kernels and free

terms appearing in Eqs.(3), suitably using the constitutive relationships.

185

2.2. Anisotropic kernels and free terms

The kernels Uij , Tij , Σijk, U ε
ijk, T ε

ijk, Σ ε
ijkl, U σ

ijk, T σ
ijk, Σ σ

ijkl appearing

in Eqs.(2-4) can be expressed in terms of the Green’s functions for general

anisotropic domains [51, 52, 53, 54, 55], which are reported in Appendix A for

the sake of completness.190

Once the Green’s functions Gij and their derivatives have been introduced, the

kernels appearing in Eq.(2) can be written

Uij = Gij , Σijk = Cjkpq
∂Gip

∂yq
, Tij = Σijk nk, (5)
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where nk are the components of the outward unit normal vector at the generic

surface point at which the tractions are being computed. In Eq.(5), the right

minor symmetry Cijkl = Cijlk, in conjunction with the summation rule with195

respect to repeated subscripts, has been used to simplify the expression of Σijk.

The kernels appearing in Eq.(3) are

U ε
ijk =

1

2

(
∂Gik

∂xj
+

∂Gjk

∂xi

)
, Σ ε

ijkl =
Cklpq

2

∂

∂yq

(
∂Gip

∂xj
+

∂Gjp

∂xi

)
, T ε

ijk = Σ ε
ijkl nl,

(6)

which can be readily evaluated considering that ∂Gij/∂xk = −∂Gij∂yk, due to

the fact that Gij depend on the difference between the positions of the colloca-

tion point y and the position of the integration point x, i.e. Gij = Gij(x− y),200

see Appendix A.

The kernels appearing in Eq.(4) can be obtained considering that U σ
ijk = Cijpq U

ε
pqk

and Σ σ
ijkl = Cijrs Σ

ε
rskl, from which it follows

U σ
ijk = Cijpq

∂Gpk

∂xq
, Σ σ

ijkl = CijrsCklpq
∂2Grp

∂yq∂xs
, T σ

ijk = Σ σ
ijkl nl, (7)

where again the right minor symmetry of the elasticity tensor and the summa-

tion rule have been used.205

The coefficient f ε
ijkl appearing in the free terms in Eq.(3) are given by

f ε
ijkl = −

1

2

∫
Γ(X)

(Σikl nj +Σjkl ni) dΓ, (8)

where Γ(X) is the unit sphere centred in X ∈ Vp (note that the free terms

are given by the products f ε
ijkl ε̇

p
kl). The coefficients f σ

ijkl appearing in the

free terms in Eq.(4) can be obtained considering that σ̇ij = Cijkl (ε̇kl − ε̇pkl)

and taking again into account the right minor symmetry and the subscripts210

summation rule, which lead to

f σ
ijkl = −Cijpq

(∫
Γ(X)

Σpkl nq dΓ + δpkδql

)
. (9)

It is worth noting that the Green’s functions and all their derivatives, Appendix A,

and then all the kernels K appearing in the formulation, can be written as a
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product between a singular function, depending on the distance r between the215

collocation (x or X) and integration (y or Y) points and a finite part Ψ (θ, ϕ),

known as modulation function, depending on the collocation-integration direc-

tion and the material properties:

K =
1

rβ
·Ψ(θ, ϕ) (10)

where β is specific to the considered kernel. The previous form is useful in the

evaluation of the singular integrals appearing in the boundary integral repre-220

sentation.

2.3. Numerical discretisation

In the initial strains approach [39, 41], the crystal plasticity problem is closed

considering the displacement and stress boundary integral equations, Eq.(2)225

and Eq.(4), together with the crystal plasticity constitutive equations given in

Section 3. In order to write the discrete counterpart of the boundary integral

equations, the following steps are followed:

• The boundary S and the volume V of the analysed domain are subdi-

vided into sets of non-overlapping surface and volume elements: in the230

present work, the surface has been discretised using the strategy devel-

oped in [50], where a specific grain–boundary meshing algorithm suitably

combining continuous and semi–discontinuous triangular and quadrangu-

lar two-dimensional elements has been implemented in order to tackle and

reduce the high computational costs of the polycrystalline problem; on235

the other hand, sub-parametric elements1 have been used for the volume

(constant strains within each linear internal volume cell);

• The unknown fields, namely displacements and tractions on the surface

1In sub-parametric elements the order of interpolation of the unknown fields is lower than

the order of interpolation of the geometry.

11



and plastic strains in the volume, are expressed in terms of nodal values

and suitable shape functions;240

• Eq.(2) is written for every boundary discretisation node and it is then

numerically integrated;

• Eq.(4) is written for every internal point and it is then numerically inte-

grated.

Grouping the discrete displacement equations written for each boundary node245

leads to the system

Hu̇ = Gṫ+Dε̇p, (11)

where u̇ and ṫ contain the components of the nodal values of the boundary

displacements and tractions, which are the primary unknowns of the problem,

the matrices H and G stem from the integration of the kernels Uij and Tij ,

over the boundary of the considered domain, ε̇p contain the components of the

nodal values of plastic strains and the matrix D is generated from the numerical

integration of Σijk over the interior volume region undergoing plastic flow.

To solve the crystal plasticity problem, Eq.(11) has to be used with the dis-

cretised version of the stress integral equation (4) that, written for a specific

internal point, reads

σ̇ (X) = Gσ
X ṫ−Hσ

X u̇+Dσ
X ε̇p (12)

where σ̇ (X) contains the components of stress at the generic interior point X,

the matrices Hσ
X and Gσ

X stem from the numerical integration of the kernels

U σ
ijk (X,y) and T σ

ijk (X,y) over the domain’s boundary, and Dσ
X stems from

the integration of the kernels Σ σ
ijlk (X,Y) over the interior region undergoing250

plastic flow, including the corresponding free terms.

Eqs.(11-12) must be used in conjunction with the suitable boundary condi-

tions and the constitutive crystal plasticity equations for the solution of the

grain-boundary elasto-plastic problem, as will be described in Section 4. The

interested reader is referred to references [39, 40, 41] for further details about255
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the boundary element method.

2.4. Numerical integration and singular integrals

To obtain the discrete equations introduced above, it is necessary to accu-

rately evaluate the singular integrals appearing in Eqs. (2) and (4). While the260

singular integrals appearing in the displacement equations, Eq.(2), have been

widely considered in the literature, the authors are not aware of any previous

work considering the integration of the singular kernels Σijkl for the anisotropic

case. In this section, the procedures used for the evaluation of the singular

integrals are briefly recalled, and the strategy used for treating the integrals265

involving Σijkl is described.

Considering Eq.(2), the weak singularity induced on the boundary by Uij is

treated subdividing the singular elements into triangles and representing each

sub-triangle as a quadrangle collapsed into the singular point; the strong singu-

larity induced by Tij , treated as a Cauchy singular value, is tackled using rigid270

body considerations [40, 41]; the volume terms appearing in Eq.(2) may give

rise to weak singularities only when the plastic region reaches the boundary: in

this case, the interested volume cells are subdivided into sub-tetrahedra, which

afterwards are represented as 8-node cubes collapsed into the singular point.

In the strain and stress integral equations, Eqs.(3-4), since constant volume275

cells are used in the implementation, the collocation points X always fall in the

interior domain, being the centroids of the volume cells. For such a reason,

the boundary integrals may become at most nearly singular, and this happens

when the plastic region reaches the boundary. Nearly singular integrals are

simply evaluated through boundary element subdivision. The volume integrals,280

on the contrary, must be treated in the Cauchy singular value sense, being the

kernels Σijkl strongly singular in the volume.

In the present work, the starting point for the evaluation of the volume Cauchy

singular values is the work by Gao and Davies [56], who, for isotropic materials,

have shown that the integral of Σijkl over the singular volume cell Vs can be285
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expressed as

−
∫
Vs

Σijkl dV = −
∫
Vs

1

r3
Ψijkl dV =

∫
Ss

Σijkl rpnp ln(r) dS, (13)

as long as the condition ∫
Γ(X)

Ψijkl dΓ = 0, (14)

involving the integral of the modulation function Ψijkl over the unit sphere Γ(X)

centred in the singular point X, is satisfied. In Eq.(13), Ss = ∂Vs is the external

boundary of the singular volume sub-cell Vs. Gao and Davies [56] demonstrated290

Eq.(14) for isotropic materials, taking into account the explicit analytical form

of the isotropic fundamental solutions. In the anisotropic case, the analytical

expression of Ψijkl is not available, being the Green’s functions expressed in a

closed integral form. However, in the present work, the condition expressed by

Eq.(14) has been numerically tested for the considered anisotropic materials,295

providing the sufficient condition for the application of Eq.(13), which holds

also in the anisotropic case.

3. Crystal plasticity phenomenological modelling

Crystal plasticity can be generally modeled through phenomenological or300

physically-based approaches [2]. Moreover, the crystallographic slip within single

crystals can be idealized as either rate-dependent or rate-independent. In the

present work, a phenomenological rate-dependent description is adopted. In the

present section, an introductory functional description of crystal slip is briefly

recalled for the sake completeness.305

The slip over a specific slip plane α identified by the unit normal vector nα,

and along a specific direction identified by the unit vector sα, is activated by

the Schmid resolved shear stress

τα = sαi σijn
α
j , (15)
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which triggers the corresponding slip or shear rate

γ̇α = Ψα

(
τα

ταc

)
(16)

where Ψα expresses a specific flow rule and ταc = Φ(γ, γ̇), is a certain critical310

shear stress, which plays the role of a state variable for the slip system α.

ταc generally depends on the accumulated slips γβ =
∫
t
|γ̇β |dt and on the slip

rates γ̇β on all the Ns slip systems, that have been collected into the vectors

γ =
(
γ1, · · · , γNs

)
and γ̇ =

(
γ̇1, · · · , γ̇Ns

)
to indicate the functional dependence

of ταc . To avoid possible confusion, the sum of the accumulated slips γα over all315

the Ns slip systems, which is defined as γ ≡
∑

α γα, will be referred to as the

overall cumulative slip.

As plastic slip accumulates, ταc evolves as

τ̇αc = Ξα (γ, γ̇) (17)

where Ξα expresses some specific hardening law. Eqs.(15–17) hold ∀α = 1, · · · , Ns.

Once the slip rates (or slip increments, in rate-independent formulations) are320

known, the plastic strains rate (or increment) at a point in the crystal can be

expressed as

ε̇pij =
1

2

Ns∑
α=1

γ̇α
(
nα
i sαj + sαi nα

j

)
. (18)

The developed formulation can be coupled with different types of flow and hard-

ening rules. For completeness, the flow and hardening rules used in this work

are reported in Appendix B.325

4. The grain-boundary incremental-iterative algorithm for crystal plas-

ticity

Following Refs.[57, 39], in the framework of the initial strain formulation the

elasto-plastic grain-boundary problem can be expressed in terms of accumulated330

values of displacements u, tractions t and plastic strains εp. Eq.(2) can then be
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rewritten as

Hu = Gt+D εp
BCs−−−→ Aq = ϕ(λ) +D εp (19a,b)

where the reordering induced by the enforcement of the boundary conditions

(BCs) is indicated. In Eq.(19b), the matrix A contains a selection of columns

from H and G corresponding to unknown components of boundary displace-335

ments and tractions, collected in the unknowns vector q; the vector ϕ(λ) is

a linear combinations of the columns from H and G corresponding to known

components of boundary displacements and tractions, weighted by the known

values of displacements and tractions themselves, which in general depend on a

load factor λ that plays the role of an ordering parameter; the matrix D stems340

from the volume integration over the interior region undergoing plastic flow and

εp contains the components of the plastic strains within the volume discretiza-

tion cells, to be determined through an iterative algorithm.

On the other hand, Eq.(12) can be rewritten, in terms of accumulated values,

as345

σ = Gσt(λ)−Hσu(λ) +Dσεp (20)

where the dependence on the interior point X is omitted for readability and no

distinction is made between known and unknown values of boundary displace-

ments and tractions, due to the fact that the previous equation is generally used

in a post-processing stage, after Eq.(19b) has been solved.

The incremental iterative algorithm used to solve the crystal plasticity prob-

lem is described in Algorithm 1, which is commented in the following. In

the Algorithm, the superscript α refers to the slip systems while the subscript

k = 0, 1, ..., Nconv indicates the current iteration. On the other hand, e refers to

the interior volume cells, but it is not used as sub/superscript, to avoid making

the notation too heavy. Once the solution corresponding to the load factor λ

has been found, the load increment ∆λ = λ̇∆t, where λ̇ is the loading rate, is

introduced and the iterative cycle starts initialising the accumulated slip incre-

ments (∆γα), the overall cumulative slip increments (∆γ), the critical stress

increments (∆τ α
c ) and the plastic strain increments (∆εp) (steps 3-6).
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In step 8, Eq.(19b) is solved for the current iteration after suitably updating

the right-hand side (note that, in the Algorithm, εp(λ) collects the converged

plastic strain components up to the load level λ, but not including the effects

of the last increment ∆λ).

The updated computed values of boundary displacements and tractions are then

used in step 9 to compute the internal stress σ(k) at each volume cell’s centroid,

using Eq.(20). The internal stresses are in turn used, in step 10, to obtain the

resolved shear stresses τα(k) on each slip plane through Eq.(15) and then the cor-

responding increments ∆τα(k) with respect to the last converged values τα(λ).

In step 11, the values ∆τα(k) are used to compute the slip and critical stress

increments using the reported expressions, where θ ∈ [0, 1] is an interpolation

parameter for which a value between 0.5 and 1 is suggested [58], γ̇ α (λ) and

τ̇ α
c (λ) are the converged values of slip rate and critical shear stress at λ and

γ̇ α
(k)(λ+∆λ) = γ̇ α(λ) +

∂γ̇ α

∂τ α

∣∣∣∣
λ

∆τ α
(k) +

∂γ̇ α

∂τ α
c

∣∣∣∣
λ

∆τ α
c(k) (21)

τ̇ α
c(k) (λ+∆λ) = Ξα

[
γ(λ) + |∆γ(k)|, γ̇(λ+∆λ)

]
(22)

where the vector ∆γ(k) =
(
∆γ1

(k), · · · ,∆γNs

(k)

)
collects the increments of accu-

mulated slips over the Ns slip systems.

At this point the overall cumulative slip increment ∆γ(k+1) is computed for each

volume cell and the convergence condition is checked. If the convergence is met

then the accumulated slips, the resolved shear stresses and the critical shear350

stresses are updated and stored and another load increment can be introduced

and computed if needed. If the convergence is not met, the plastic strain in-

crements are computed using Eq.(18), the iteration counter k is updated and

another iteration is started (steps 12-21).

355

5. Grain–boundary polycrystalline implementation

The grain–boundary crystal plasticity formulation proposed above has also

been developed and implemented for polycrystalline microstructures, in the
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Algorithm 1 CPBEM algorithm

START

1: Set λ := 0

2: while (λ < λf ) do

3: Set ∆λ := λ̇∆t, k := 0

4: ∀e set ∆εp(k=0) := 0, ∆γ(k=0) := 0

5: ∀e, α, set ∆γα
(k=0) := 0, ∆τ α

c (k=0) := 0

6: Set CONVERGED := .FALSE.

7: while (.NOT.CONVERGED) do

8: Solve Aq(k) = ϕ(λ+∆λ) +D ·
[
εp(λ) + ∆εp(k)

]
; ◃ Eq.(19a,b)

9: ∀e solve

σ(k) = Gσ t(k) −Hσ u(k) +Dσ ·
[
εp(λ) + ∆εp(k)

]
; ◃ Eq.(20)

10: ∀e, α compute τα(k) and ∆τα(k) := τα(k) − τα(λ) ◃ Eq.(15)

11: ∀e, α compute

∆γ α
(k+1) :=

[
(1− θ) γ̇ α (λ) + θ γ̇ α

(k) (λ+∆λ)
]
∆t

∆τ α
c (k+1) :=

[
(1− θ) τ̇ α

c (λ) + θ τ̇ α
c(k) (λ+∆λ)

]
∆t

◃ Eqs.(21-22)

12: ∀e compute ∆γ(k+1) :=
∑Ns

α=1

∣∣∣∆γα
(k+1)

∣∣∣;
13: if (∀e

∣∣∆γ(k+1) −∆γ(k)
∣∣ < ϵconv) then

14: Set CONVERGED := .TRUE.

15: else

16: ∀e compute ∆εp(k+1); ◃ Eq.(18)

17: Set k := k + 1

18: end if

19: end while

20: ∀e, α update and store


γα(λ+∆λ) := γα(λ) +

∣∣∣∆γα
(k+1)

∣∣∣
τα(λ+∆λ) := τα(λ) + ∆τα(k+1)

ταc (λ+∆λ) := ταc (λ) + ∆ταc (k+1)

21: Set λ := λ+∆λ;

22: end while

EXIT
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framework developed by Sfantos and Alibadi (2D) [59, 60] and by Benedetti

et al. (3D) [47, 48, 49, 50]. In the present Section, such polycrystalline imple-360

mentation is described.

5.1. Boundary integral equations

In a polycrystalline framework, each grain can be thought as an anistropic

elasto-plastic domain with a specific orientation in the three-dimensional space.

In the present work, the polycrystalline morphology is represented as a Voronoi-

Laguerre tessellation contained within a bounding domain V: each grain is

then a convex polyhedron bounded by convex polygonal flat faces, see Fig.(1).

Following Ref.[47], Eqs.(2) can be rewritten, for a generic point xg belonging to

the surface Sg of a generic grain g, as

c̃ij(xg) ˙̃uj(xg) +−
∫
Sg

T̃ij

(
xg,yg

)
˙̃uj(yg)dS(yg) =

∫
Sg

Ũij

(
xg,yg

) ˙̃tj(yg)dS(yg)+

+

∫
Vpg

Σijk(xg,Yg)ε̇jk(Yg)dV (Yg)

(23)

where Vpg is the interior grain’s volume undergoing plastic strain and the tilde

( ·̃ ) denote quantities expressed in local reference systems chosen on each grain

face, so to express boundary displacements and tractions in terms of components

normal and tangent to the grain faces themselves, to simplify the implementa-

tion of general inter-granular conditions [48]. It is worth noting that only the

integral terms containing boundary variables are expressed in local coordinates,

while generally the volume terms, where the plastic strains ε̇ij components ap-

pear, can be expressed in any other convenient reference system, e.g. a global

or grain’s material reference system.

Analogously, Eq.(4) can be rewritten, for a generic point Xg inside the generic

19



grain g

σ̇ij(Xg) +

∫
Sg

T̃ σ
ijk

(
Xg,yg

)
˙̃uk(yg)dS(yg) =

∫
Sg

Ũ σ
ijk

(
Xg,yg

) ˙̃tk(yg)dS(yg)+

+−
∫
Vpg

Σ σ
ijkl (Xg,Yg) ε̇

p
kl(Yg)dV (Yg) + f σ

ijkl ε̇
p
kl(Xg). (24)

Figure 1: Polycrystalline morphology generated through Laguerre-Voronoi tes-

sellations: each grain is a convex polyhedron bounded by convex polygonal

faces. A local reference system is set on each face, so to express inter-granular

variables in varying local coordinates.

5.2. Numerical discretization365

Eqs.(23-24), suitably used for each grain, are the basis for the construction of

the numerical polycrystalline model. As mentioned above, each grain is a convex

polyhedron bounded by convex polygonal faces. In the present work, the bound-

ary discretisation process is based on the subdivision of each grain’s face into

non-overlapping triangles/quadrangles, according to the strategy described in370

Ref.[50]. However, for crystal plasticity modeling, besides the grain-boundary

meshes used in previous studies [47, 48, 49, 50], also volume meshes for the

grains’ interior must be used, to take into account the occurrence of plastic slip.

In the present work, the volume meshes for polycrystalline Voronoi–type mi-

crostructures are generated using Hypermesh (http://www.altairhyperworks.com),375

which subdivides the volume into non-overlapping tetrahedra. In general, no
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conformity between boundary meshes and interior volume meshes is required,

which results in a relatively more complex implementation counterbalanced by

simpler data preparation. The boundary polygons and the volume tetrahedra

provide the geometrical support to express boundary displacements and trac-380

tions and volume strains and stresses fields through shape functions and nodal

values of displacements, tractions, strains and stresses. Linear shape functions

are used for the boundary fields [50], while the plastic strains are assumed con-

stant within each volume tetrahedron.

Once the boundary and volume meshes have been generated for all the grains385

of the aggregate, Eq.(23) can be written for each boundary node of each grain,

and numerically integrated. Following the procedures detailed in Refs.[47, 50],

taking into account the presence of the volume terms and enforcing the external

boundary conditions (i.e. displacement and tractions conditions on the grains’

faces lying on the exterior surface of the bounding box V), Eq.(19b) can be390

written for each grain g

Ag qg = ϕg(λ) +Dgε
p
g ∀g = 1, ..., Ng (25)

where the symbols have the same meaning as in Eq.(19b), with the additional

consideration that now qg collects also the components of the unknown inter-

granular displacements and tractions. The model for the polycrystalline aggre-

gate is then obtained using Eq.(25) for each grain and enforcing the suitable395

inter-granular conditions, which leads to

A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · ANg

←− I −→




q1

q2

...

qNg

 =



ϕ1

ϕ2

...

ϕNg

0


λ

+



D1 0 · · · 0

0 D2 · · · 0
...

...
. . .

...

0 0 · · · DNg

0 0 · · · 0




εp1

εp2
...

εpNg


(26)

or more compactly  A

I

q =

 ϕ(λ)

0

+

 D

0

 εp, (27)
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where I is the matrix implementing the considered interface conditions: in the

present work, only perfect bonding between contiguous grains is assumed, so

that I contains just zeros and ±1, to enforce the conditions ua = ub and ta =400

−tb for pairs of contiguous interface points belonging to the generic grains a

and b. In the solution algorithm, system (27) is used in conjunction with the

stress equation

σ = Gσ
g tg(λ)−Hσ

g ug(λ) +Dσ
gε

p ∀g = 1, ..., Ng, (28)

which is used to evaluate the stress at each interior test point within each grain.

It is worth noting that, being Eq.(28) used after the solution of Eq.(27), in a405

post-process stage within each iteration, it can be used for each grain separately,

as ug and tg are known.

5.3. Polycrystalline iterative system solution

The analysis of crystal-plasticity in polycrystalline aggregates poses a re-410

markable computational task. The problem is tackled employing the incre-

mental/iterative procedure described in Section 4, with Eq.(27) used to update

the accumulated values of displacements and tractions for all the aggregate and

Eq.(28) used to compute the stress components at each interior test point within

each grain, which then trigger, through the resolved shear stresses, the plastic415

flow. In the present work, only the rate–dependent algorithm is tested for the

polycrystalline case, as the rate–independent implementation, in the simple form

presented in Section 4, gave difficult or no convergence. The implementation

of more sophisticated rate–independent schemes [8] goes beyond the scope of

the present work and is left for open to further investigation. Convergence is420

reached for the aggregate when condition at step 13 of Algorithm 1 is satisfied

for each interior test point within each grain, which considerably increases the

required computational effort.

From the purely numerical/computational point of view, System (27) is solved

using a slight modification of the procedure in described in Refs.[48, 50], to425
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take into account the iterative update of the plastic strains εp. Being the sys-

tem highly sparse, PARDISO (http://www.pardiso-project.org/) [61, 62, 63]

is used as solver. In terms of computational effectiveness, further research could

be addressed at the development of specialized high efficiency solvers, based

for example on the use of the hierarchical format in conjunction with iterative430

solution strategies [64, 65].

6. Numerical tests

In this Section, the developed and implemented formulation is numerically

and computationally assessed. The phenomenological framework by Bassani435

and Wu [12] is used in the first series of tests performed in the present work,

considering FCC copper as benchmark material. The single crystal properties

as well as the slip systems numbering used in the present study coincide with

those in Refs.[66, 12]. The elastic constants for FCC copper single crystals

are: C11 = 170GPa; C12 = 124GPa; C44 = 64.5GPa. The crystal plasticity440

parameters are summarised in Table 1.

Table 1: Crystal plasticity parameters for copper single crystals and strength

amplitude factors fαβ for the FCC single-crystal slip systems from [12].

τ0 τs hs h0 γp γ̇0 n q

17MPa 1.3 · τ0 1.5 · τ0 90 · τ0 0.001 0.001 s−1 50 0

Cross hardening moduli

No junction, fαβ = a1 = 8.0

Hirth lock, fαβ = a2 = 8.0

Coplanar interaction, fαβ = a3 = 8.0

Glissile junction, fαβ = a4 = 15.0

Sessile junction, fαβ = a5 = 20.0
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6.1. Single crystal tests

To assess the accuracy and numerical performance of the formulation, tests

on a single crystal are performed first. The analysed domain is a cubical crys-445

tal, with the edges aligned with the reference system and subjected to uniaxial

stress acting along the x3 direction.

In Fig.(2) the behaviour of the implemented scheme is tested with respect to

the value of the rate sensitivity n appearing in Eq.(B.1), for the three differ-

ent crystallographic loading directions [001], [111] and [632], chosen as in [12]450

for comparative purposes. In all the tests, the loading rate λ̇, is always set as

λ̇ = 10−3s−1. The curves plot the stress component σ33 at the centroid of the

cube versus the strain component ε33 at the same point. It is worth noting that

nominal components of strains are considered, being the developed formulation

valid for small strains. However, strains up to 10% are plotted, to investigate455

when the small strains assumption breaks down: it is interesting to note as, up

to this value of strains, the converged curves match reasonably well with those

reported in [12], which have been replicated in the figure using a simple rate-

independent scheme and represented with dashed lines. It is confirmed that,

as n rises, the rate-dependent scheme simulates a rate-independent process, al-460

though the convergence is not the same for all directions, being noticeably slower

(with respect to n) for the direction [632]. Also, it is interesting to note that

for the [001] and [111] loading directions, the rate-dependent scheme predicts a

lower bound for the stress, whereas for the [632] loading direction it predicts an

upper bound.465

In the following series of tests, the single crystal response is tested against

different domain volume meshes, in order to assess the robustness of the com-

putational homogenization scheme that will be used in the polycrystalline tests.

Unlike the curves reported in Figs.(2), which are obtained considering the val-

ues of stress and strain at the centroid of the cubic single crystal domain, the470

stress-strain curves in the subsequent part of this work are obtained as averaged

results of the stress and the strain fields over the crystalline or polycrystalline
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(c) Loading direction [632]
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(d) Loading direction [632]

Figure 2: Effect of the rate sensitivity parameter n for three different loading

crystallographic directions. Plot (d) shows a zoom from plot (c). It is appar-

ent as the rate-dependent results converge to the rate-independent ones with

increasing values of n.

25



domain. Strain and stress volume averages are given by

Γij =
1

V

∫
V

γij(X)dV (X) =
1

2V

∫
S

[ui(x)nj(x) + uj(x)ni(x)]dS(x) (29)

Σij =
1

V

∫
V

σij(X)dV (X) =
1

V

∫
S

xi(x)tj(x)dS(x) (30)

where S and V represents the boundary and the volume of the domain, re-475

spectively. The terms involving the surface integrals allow to write the volume

averages in terms of boundary displacements and tractions, which are the pri-

mary variables of the model. The terms involving the volume integrals, on the

other hand, are be obtained as the weighed sum of the strains and stresses

computed at the centroids of the tetrahedra, i.e.
∫
V
(·)dV =

∑
e(·)eVe being Ve480

the volume of the e-th volume element. The comparison between the volume

averages computed using the volume and the surface integrals can be used as a

tool to assess the accuracy in the integration of the kernels in the displacement

and stress boundary integral equations.

Fig.(3) shows four surface and volume meshes of a cubic domain. Following485

[47], the surface and volume meshes of the crystalline domain are built consid-

ering an as uniform as possible mesh size, which is computed as the average

length of the edges of the considered crystals divided by a mesh density pa-

rameter dm, see [47]. In the considered case, the average edge length is clearly

the cube edge. Figs.(3a,e), Figs.(3b,f), Figs.(3c,g), Figs.(3e,h) correspond to490

dm = 2, 3, 4, 5, respectively. Although they may not represent the best mesh-

ing choice for a cubic domain, the combination of triangular and quadrangular

elements in the surface meshes and the tetrahedra in the volume meshes have

been found particularly appropriate to adapt to the geometrical variability of

general Voronoi-like polycrystalline morphologies. The same meshing algorithm495

is used for the cubic domain. Some statistics about the meshing algorithm are

summarized in Tab.(2), which reports the number of degrees of freedom and the

number of surface and volume elements of the single crystal meshes involved in

the present test, as well as those for the polycrystalline meshes considered in

the next section.500
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The cube in Fig.(3) is loaded in uniaxial stress, with uniform tractions act-

Table 2: Statistics about the meshes of the single crystal and polycrystalline

domains: dm is the mesh density parameter; Ns
e is the number of surface el-

ements; DoFs is the number of degrees of freedom for the system in Eq.(27);

Nv
e is the number of volume elements. The last column reports the number

of volume elements per grain, which is considered as reference to capture the

volume field distribution.

morphology dm Ns
e DoFs Nv

e Nv
e /Ng

single crystal

2 36 162 46 46

3 72 288 161 161

4 150 504 436 436

5 255 729 836 836

polycrystalline, 10 grains

1 430 3594 562 56

2 895 6285 1576 158

3 1811 10131 4097 410

4 3291 15669 8791 897

5 5242 22143 16119 1612

polycrystalline, 100 grains (I) 2.5 19902 132369 45704 457

polycrystalline, 100 grains (II) 2.5 18075 122166 40181 402

ing over the top and bottom faces, whereas the lateral faces are traction-free.

To avoid the rigid body motion, the technique proposed by Lutz et al.[67] is

used. Fig.(4a) shows the stress-strain curves of a single crystal cubic domain

loaded along the [632] direction for the four considered meshes. The curves505

are plotted in the strain range 0–2% considering a slip rate sensitivity n = 50,

and are compared to that obtained for the single crystal centroid. The four

meshes replicate the results obtained in Fig.(2d) as uniform strain and stress

fields are expected for this configuration. In Fig.(4a), the close-up view shows a

comparison between the curves obtained using the surface and the volume inte-510

27



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Single crystal surface (a-d) and volume (e-h) meshes: (a,e) dm = 2,

(b,f ) dm = 3, (c,g) dm = 4, (d,h) dm = 5. The small circles in the surface

meshes represent the collocation points.

grals of Eqs.(29) and (30). A good match is found among the curves showing a

satisfactory accuracy in the integration of the kernels of the boundary integral

equations. Finally, Fig.(4b) shows the same response in a smaller strain range,

i.e. 0–0.2%.

515

6.2. Polycrystalline tests

In the present Section, the proposed model is used to simulate the plas-

tic behavor of Cu polycrystalline aggregates. To generate the polycrystalline

morphologies, the Neper package [68] is used for its capability of eliminating

pathologically small geometrical entities typical of domains subdivided by the520

Voronoi algorithm, which may induce unnecessarily heavy meshes.

First, a convergence analysis is performed to obtain a proper mesh size ensuring

appropriate grains boundary and volume fields resolution and mesh indepen-

dency of the results. Fig.(5) shows five different meshes (dm = 1, 2, ..., 5) of a

10-grain aggregate. The statistics about the number of DoFs and the number525
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Figure 4: Volume stress average Σ33 plotted versus volume strain average Γ33

for the four considered meshes of the single crystal loaded along the [632] direc-

tion. (a) stress-strain response in the strain range 0–2.0%; the close-up shows

the values obtained using the surface integral (solid lines) compared to those

obtained using the volume integral (dashed lines). (b) stress-strain response in

the range strain 0–0.2%.

of surface and volume elements are summarized in Table (2). The aggregate

is loaded in uniaxial tension, with uniform tractions acting over the top and

bottom faces, while the lateral faces are traction-free. In this case, to avoid

rigid body motion, the elimination of rigid body modes technique is applied to

one grain of the aggregate.530

Fig.(6a) shows the convergence of the macro stress-strain response of the Cu

10-grain aggregate with respect to the considered meshes. As the model allows

to build the surface and the volume meshes separately, Fig.(6a) shows also the

macro response obtained combining a surface mesh with a mesh density pa-

rameter dm = 2 and a volume mesh with a mesh density parameter dm = 3,535

which corresponds to the curve labelled with dsm = 2, dvm = 3. Fig.(6b) reports

the macro-stress error during the loading history between two consecutive mesh

refinements defined as:

e(Σi
33,Σ

i+1
33 ) = 100 · |Σ

i
33 − Σi+1

33 |
Σ5

33

(31)
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5: Surface (a-e) and volume (f -j ) meshes of a 10-grain aggregate: (a,f )

dm = 1, (b,g) dm = 2, (c,h) dm = 3, (d,i) dm = 4, (e,j ) dm = 5. The small

circles in the surface meshes represent the collocation points.

where Σi
33 corresponds to the macro stress computed for dm = i.

Fig.(7) shows the deformed configurations of the aggregate for the meshes of540

Fig.(5) at the last computed step of the load history, i.e. for Γ33 = 2%. A good

convergence is obtained in terms of the grain boundary displacements starting

from dm = 2. Fig.(8) and Fig.(9) report the contour plots of the Von Mises

stress and cumulative slip fields, respectively. Also in this case, the convergence

in terms of the overall behaviour and stress and slip concentration is satisfac-545

torily reached through mesh refinement. It is however noted that a dm = 3

mesh is required to appreciate the fields distribution, likely due to the use of

constant volume elements. Considering Table (2), an estimate of the number of

volume elements per grain to obtain satisfactory fields distributions within the

aggregate appears to be around 400 elements per grain, at least for the present550

load condition.

The same tensile test is performed on two 100-grain Cu aggregates, in order to

evaluate the plastic response of more complex and representative Cu microstruc-

tures. The two aggregates are labelled as aggregate (I) and (II). Fig.(10a) and
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Figure 6: Volume stress average Σ33 versus volume strain average Γ33 for the

considered meshes of the 10-grain aggregate. (a) Stress-strain response in the

strain range 0–2.0%; the close-up shows the values obtained in the strain range

0–0.2%. (b) Error between two consecutive mesh refinements.

Fig.(10d) show the microstructures (I) and (II), respectively. Figs.(10b,e) show555

the corresponding surface meshes, whereas Figs.(10c,f) show the volume meshes.

The meshes are built using a mesh density parameter that ensures an average

number of 400 volume elements per grain, see Table (2), which represents a

good tradeoff between solution accuracy and number of DoFs. Fig.(11a) shows

the macro stress-strain behaviour of the two aggregates, which is qualitatively560

similar to that obtained for the 10-grain aggregate. The insert of the figure

reports a close-up view of the macro response in the range 0 ÷ 1.5%, showing

the transition from the linear to the plastic slip behaviour. By comparing the

response of the two microstructures, it can be noted that an aggregate with 100

grains is satisfactorily representative for polycrystalline Cu undergoing small565

strains crystal plasticity. The solid line in Fig.(11a) represents the linear re-

sponse of the microstructure whose averaged stiffness is calculated using the

Hashin-Shtrikman bounds [69], whereas the dashed line reports the response of

the aggregate using the Berveiller and Zaoui (BZ) model [70]. It can be noted

that the BZ model and the present model agree very well with respect to the570
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(a) (b) (c) (d) (e)

Figure 7: Deformed shape for the five considered meshes of the 10-grain poly-

crystalline copper aggregate subjected to tensile load at the last computed step

(Γ33 = 2%). Figs.(a) to (e) correspond to the (a) to (e) surface meshes and (f )

to (j ) volume meshes of Fig.(5), respectively.

elastic to plastic behavior transition. On the other hand, the BZ model provides

values of stress higher than the present model, but this appears consistent with

Barbe et al. [17], who reported an overestimate with respect to FEM as well.

Fig.(11b) shows the averaged stress-strain behavior of each of the 100 grains of

the aggregates, obtained using Eqs.(29) and (30) where the integration is per-575

formed over the boundary of each grain. Eventually, Fig.(12a) and Fig.(13a)

report the contour plots of the Von Mises stress and cumulative slip fields, re-

spectively, over the external boundary of the aggregate (I), whereas Fig.(12b)

and Fig.(13b) report the same contour plots for a section of the aggregate giving

an insight of the internal volume fields distribution.580

In conclusion, a comparison with the homogenisation results obtained us-

ing the crystal plasticity finite element method is presented. The reference is

the work by Barbe et al.[17], where the response of polycrystalline aggregates at

small strains is studied using FEM. In their work, the authors employ the model

proposed by Méric and Cailletaud [71], which is briefly recalled in Appendix B585

for the sake of completeness.

Fig.(14) shows the comparison between the results obtained using the FEM and

those obtained from the presented formulation. The FEM aggregate consists of

200 grains with random crystallographic orientations, discretized using a struc-
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(f) (g) (h) (i) (j)

0 100 200 300 400 500 600 700 800

Von Mises stress [MPa]

(k)

Figure 8: Von Mises stress contour plots for the 10-grain polycrystalline cop-

per aggregate subjected to tensile load at the last computed step (Γ33 = 2%).

Figs.(a-e) and Figs.(h-j ) correspond to two different views of the aggregate. (k)

Colormap (to interpret the colour scale, the reader is referred to the web version

of the article).

tured mesh, and whose elastic and plastic properties are listed in Tab.(3). The590

elastic, slip rate and hardening constants are taken from [17], whereas the in-

teraction hardening moduli from the work of Gerard et al.[72], who adopted

such coefficients based on the work on dislocation dynamic simulations for FCC

crystals of Devincre et al. [73].

In Fig.(14a), the FEM points, denoted by small circles, indicate the response595

of a polycrystalline aggregate subjected to iso-volumic boundary conditions as

described in [17]. Fig.(14b) shows the averaged lateral stress. The aggregate is

loaded along the x3 direction, so that the axial stress and strain correspond to

the averaged macro-stress Σ33 and macro-strain Γ33, respectively. The lateral

stresses correspond to the averaged macro-stresses Σ11 and Σ22. The results600

shown in Fig.(14) are reported for the strain range 0 ÷ 0.6%. However, in this
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Figure 9: Cumulative slip contour plots of the 10-grain polycrystalline cop-

per aggregate subjected to tensile load at the last computed step (Γ33 = 2%).

Figs.(a-e) and Figs.(h-j ) correspond to two different views of the aggregate. (k)

Colormap (to interpret the colour scale, the reader is referred to the web version

of the article).

strain range it is still possible to assess the capabilities of the present formula-

tion, as the plastic behaviour of the polycrystalline aggregate is well developed.

The presented results highlight a satisfactory agreement between the results of

the present formulation and those reported in the literature.605

7. Discussion and possible developments

The presented formulation addresses, for the first time, crystal plasticity in

a boundary element framework, both for single crystals and crystal aggregates.

From this point of view, it may be interesting to note that, while the possibil-610

ity of using boundary elements for crystal plasticity is mentioned in the very
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(a) (b) (c)

(d) (e) (f)

Figure 10: (a,d) 100-grain polycrystalline microstructure (I) and (II), respec-

tively; corresponding surface (b,e) and volume (c,f ) meshes.

exhaustive review [2], no reference is provided to crystal plasticity boundary

elements papers.

The salient feature of the method is its expression in terms of grain-boundary

variables only, namely in terms of intergranular displacements and tractions. In615

previous applications, see e.g. [47, 48, 50], this aspect ensured simplification in

data preparation, as only meshing of the inter-granular interfaces was required,

and a reduction in the number of DoFs for the analysis, particularly appreciated

in polycrystalline problems. In crystal plasticity applications, the data prepa-

ration simplification with respect to other techniques is lost, due to the need620

of meshing the grains interior volume; however, the system order reduction is

maintained, as the volume mesh does not carry additional degrees of freedom.

The volume mesh is in fact only used to compute the plastic contribution on the
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Figure 11: (a) Volume stress average Σ33 versus volume strain average Γ33

for the two 100-grain aggregates; the solid line represents the linear elastic

behaviour computed using the Hashin-Shtrikman bounds [69]; (b) Averaged

stress-strain behaviour for each constituent grain of the aggregate (I).

right-hand side of Eq.(27), while the number of degrees of freedom with respect

to the purely elastic case remains unchanged. Additionally, it is worth noting625

that the plastic accumulation just modifies the right-hand side of Eq.(27): such

circumstance is particularly advantageous in terms of numerical solution, as the

factorization of the coefficient matrix in the left-hand side of Eq.(27) is per-

formed just once and used throughout the analysis, thus ensuring numerical

effectiveness.630

Although the proposed scheme allows a considerable reduction in the number

of DoFs with respect to other volume discretization schemes, the solution of

system (27) still represents a formidable computational task, especially in the

polycrystalline case, due to the fact that the numerical blocks associated to each

grain in the boundary integral scheme are fully populated. For such reason, at635

least in the present implementation, the typical computation time is longer than

the typical times with CPFEMs or Fast Fourier Transform based formulations,

see e.g. Ref.[74]. An interesting direction of further investigation, from this

point of view, could be related to the use of fast multipoles [75] or hierarchical
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Von Mises stress [MPa]

(c)

Figure 12: Von Mises stress contour plots for the 100-grain polycrystalline cop-

per aggregate (I) at the last computed step (Γ33 = 1.5%); (b) Section of the

aggregate; (c) Colormap (to interpret the colour scale, the reader is referred to

the web version of the article).

matrices [76, 64, 65, 77, 78] in conjunction with iterative solvers to reduce the640

computational time and further compress the storage memory requirements of

the proposed framework . On the other hand, the implementation of effective

rate-independent schemes [7, 79, 80], could speed up the iterative convergence

of the crystal plastic analysis, avoiding the numerical stiffness, and the asso-

ciated computational costs, associated to high values of the rate sensitivity n645

appearing in Eq.(B.1).

In the developed model, a phenomenological description of crystal plasticity has

been adopted. However, the model offers flexibility and could be coupled with

more sophisticated crystal plasticity laws, included physically based approaches.

Another natural extension could be the introduction of different models of grain650

interfaces, which at the moment are modelled as perfect and remain intact dur-
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Figure 13: Cumulative slip contour plots for the 100-grain polycrystalline cop-

per aggregate (I) at the last computed step (Γ33 = 1.5%); (b) Section of the

aggregate; (c) Colour map (to interpret the colorscale, the reader is referred to

the web version of the article).

ing the loading history. Sliding, separation and contact could be included within

the formulation by suitably redefining the interface equations in (27).

The presented formulation has also some limitations, which provide input for

further investigation. First of all, the formulation is confined within the frame-655

work of small strains, so that finite lattice rotations are not taken into account.

For this reason, applications to texture evolution problems are not currently

possible. In fact, the present formulation is based on an elasto-plastic analy-

sis, while crystal plastic finite element formulations for texture evolution are

often based on rigid-plastic approaches, where the initial elastic behaviour is660

neglected [12, 58]. The extension of the developed grain-boundary framework

to finite strains and the inclusion of finite rotations is not a trivial task and

poses considerable research challenges that are left as future task.

38



Table 3: Material parameters for FEM-BEM comparison. The elastic, slip rate

and hardening constants are taken from [17], whereas the interaction hardening

moduli from [72].

elastic behavior E = 169 GPa, ν = 0.3

slip rate constants K = 10 MPa s1/n, n = 25

hardening constants R0 = 111 MPa, Q = 35 MPa, b = 7

hardening moduli

self hardening, h0 = 1.0

coplanar interaction, h1 = 1.0

Hirth lock, h2 = 0.2

collinear interaction, h3 = 90.0

glissile junction, h4 = 3.0

Lomer lock, h5 = 2.5

8. Conclusions665

A boundary element formulation for small strains crystal plasticity has been

presented the first time. The method, based on the use of grain-boundary inte-

gral equations for the anisotropic elasto-plastic problem, is formulated in terms

of boundary (inter-granular) displacements and tractions, which play the role of

primary variables, thus allowing a considerable reduction in the number of DoFs670

with respect to other volume discretization techniques. The scheme has been

implemented both for single crystals and polycrystalline aggregates and a gen-

eral rate-dependent scheme has been used in the proposed incremental/iterative

grain-boundary crystal plasticity algorithm. Several numerical tests have been

performed to assess the accuracy and robustness of the method and the results675

confirm the potential of the developed tool. Although the still high computa-

tional costs associated with the analysis of general plastic polycrystalline prob-

lems call for further developments and refinements, the presented framework
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Figure 14: Comparison between FEM results [17] and the present BEM for-

mulation. (a) Macro stress-strain behaviour of a polycrystalline aggregate sub-

jected to iso-volumic boundary conditions; (b) Lateral macro-stresses versus

axial macro-strain.

provides an alternative tool for the analysis of this class of problems.

680
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Appendix A. Anisotropic Green’s functions685

Defined the unit vector b = (x − y)/∥x − y∥ in the direction connecting

the collocation point x with the integration point y, the anisotropic Green’s

function can be written

Gij =
1

8π2r

∫ 2π

0

M−1
ij [z (φ)] dφ Mij [z (φ)] = Cipjqzp(φ)zq(φ) (A.1)

where r = ∥x − y∥, z is a unit vector lying on the plane Π perpendicular to

b, z · b = 0, whose position is given in terms of the angle φ with respect to a690
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reference axis on Π, and Cipjq are the components of the stiffness tensor. The

integration in Eq.(A.1) is the performed along a unit circle lying on the plane

Π.

The kernels appearing in the boundary integral equations appearing in the for-

mulation can all be expressed in terms of the Green’s functions Gij and their695

first and second derivatives, which are given by

∂Gij

∂yp
=

1

4π2r2

∫ π

0

(−bpM−1
ij + zpFij)dφ (A.2)

∂2Gij

∂yp∂yq
=

1

4π2r3

∫ π

0

[2bpbqM
−1
ij − 2(zpbq + zqbp)Fij + zpzqAij ]dφ(A.3)

where the integration is still performed on the plane Π and

Fij = CmnpqM
−1
imM−1

pj (znbq + zqbn) (A.4)

Aij = Cmnpq[(znbq + zqbn)(FimM−1
pj +M−1

imFpj)− 2M−1
imM−1

pj bnbq](A.5)

Appendix B. Flow rules and hardening laws

In the present work two different crystal plasticity phenomenological frame-700

works have been used in the performed numerical tests: the model by Bassani

and Wu [12] and the model by Méric and Cailletaud [71].

Bassani and Wu used as flow rule a power law of the form

γ̇α = γ̇α
0

∣∣∣∣ταταc
∣∣∣∣n sgn (τα) ∀α = 1, · · · , Ns (B.1)

where γ̇α
0 and n are material parameters known as reference shear rate and rate

sensitivity of slip respectively, while ταc is the evolving critical stress. Eq.(B.1)705

describes, in general, a rate–dependent phenomenon in which all the slip systems

are always active with a specific slip rate γ̇α, as long as the corresponding

resolved shear stress is non-zero, so that no distinction is made between active

and inactive slip systems. It can be demonstrated that when n → ∞ the

formulation becomes rate–independent.710
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They also expressed the hardening laws, i.e. the evolution of ταc with respect to

the material state and evolution, as

τ̇αc =

Ns∑
β=1

hαβ

∣∣γ̇β
∣∣ ∀α = 1, · · · , Ns (B.2)

where the self hardening moduli hαα and the latent hardening moduli hαβ were

expressed as

hαα =

[
hs + (h0 − hs) sech

2

(
h0 − hs

τs − τα0
· γα

)]
·

1 +∑
β ̸=α

fαβ tanh

(
γβ

γp

)
(B.3)

hαβ = q · hαα β ̸= α (B.4)

where: h0 is the initial hardening modulus; hs is the hardening modulus during

easy glide within stage I hardening; τs is the stage I reference stress, where

large plastic flow initiates; τα0 = ταc (0) is the initial critical resolved shear stress715

on the α-th slip system; γα =
∫
t
|γ̇α|dt; γp is the amount of slip after which

the interaction between slip systems reaches the peak strength; fαβ is a specific

slip interaction strength; q is a constant latent hardening factor. The model by

Bassani and Wu has been implemented in several FEM formulations, also for

polycrystalline micromechanics [81, 82], often using the implementation devel-720

oped by Huang [58].

On the other hand, neglecting the kinematic hardening, Méric and Cailletaud

represented the slip rate γ̇α of the α-th slip system using the following flow rule

γ̇α =

⟨
|τα| − ταc

K

⟩n

sgn (τα) (B.5)

where ⟨·⟩ = max(0, ·) andK and n are material parameters. In addition, in their

model, the hardening law, which comprises self and latent hardening through725

the hardening moduli hαβ , has the form

ταc = R0 +Q

Ns∑
β=1

hαβ

[
1− exp(−b|γβ |)

]
∀α = 1, · · · , Ns (B.6)

where R0 is the initial critical resolved shear stress; Q is a material parameter

that, multiplied by the hardening modulus hαβ , represents the maximal increase
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of the critical shear stress on the α-th slip system due to the slip in the β-th

system; R0 + Q
∑

β hαβ represents the maximum, or saturated, value that the730

critical shear stress on the α-th slip system can reach; eventually, b is a material

parameter that governs the exponential saturation law.

References

[1] I. Benedetti, F. Barbe, Modelling polycrystalline materials: An overview735

of three-dimensional grain-scale mechanical models, Journal of Multiscale

Modelling 05 (01) (2013) 1350002. doi:10.1142/S1756973713500029.

[2] F. Roters, P. Eisenlohr, L. Hantcherli, D. Tjahjanto, T. Bieler, D. Raabe,

Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications,

Acta Materialia 58 (4) (2010) 1152 – 1211.740

doi:http://dx.doi.org/10.1016/j.actamat.2009.10.058.

URL http://www.sciencedirect.com/science/article/pii/S1359645409007617

[3] A. Needleman, Computational mechanics at the mesoscale, Acta Materialia

48 (1) (2000) 105 – 124.

[4] J. Rice, Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity,745

Journal of the Mechanics and Physics of Solids 19 (6) (1971) 433 – 455.

doi:http://dx.doi.org/10.1016/0022-5096(71)90010-X.

URL http://www.sciencedirect.com/science/article/pii/002250967190010X

[5] D. Peirce, R. Asaro, A. Needleman,

Material rate dependence and localized deformation in crystalline solids,750

Acta Metallurgica 31 (12) (1983) 1951 – 1976.

doi:http://dx.doi.org/10.1016/0001-6160(83)90014-7.

URL http://www.sciencedirect.com/science/article/pii/0001616083900147

[6] X. Ling, M. F. Horstemeyer, G. P. Potirniche,

On the numerical implementation of 3d rate-dependent single crystal plasticity formulations,755

43



International Journal for Numerical Methods in Engineering 63 (4) (2005)

548–568. doi:10.1002/nme.1289.

URL http://dx.doi.org/10.1002/nme.1289

[7] L. Anand, M. Kothari, A computational procedure for rate-independent crystal plasticity,

Journal of the Mechanics and Physics of Solids 44 (4) (1996) 525 – 558.760

doi:http://dx.doi.org/10.1016/0022-5096(96)00001-4.

URL http://www.sciencedirect.com/science/article/pii/0022509696000014
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