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Abstract

A novel approach is presented to the Boundary Element analysis of steady incompress-
ible flow. NURBS basis functions are used for describing the geometry of the prob-
lem and for approximating the unknowns. In addition, the arising volume integrals
are treated differently to published work, that is, volumes are described by bounding
NURBS curves instead of cells and a mapping is used. The advantage of our approach
is that non-trivial boundary shapes can be described with very few parameters and that
no generation of cells is required. For the solution of the non-linear equations both
classical and modified Newton-Raphson methods are used. A comparison of the two
methods is made on the classical example of a forced cavity flow, where accurate so-
lutions are available in the literature. The results obtained agree well with published
ones for moderate Reynolds numbers using both methods, but it is found that the latter
requires a relaxation scheme and considerably more iterations to converge. Finally, it
is shown on a practical example of an airfoil how more complex boundary shapes can
be approximated with few parameters and a solution obtained with a small number of
unknowns.

Keywords: BEM, isogeometric analysis, flow, incompressible

1. Introduction

Numerous approaches to numerically solve incompressible viscous flow problems
can be found in the literature. Most publications use domain methods such as Finite
Difference, Finite Elements or Finite Volumes ( see for example [1]). A classical exam-
ple to test published numerical methods is the forced flow in a cavity and very accurate
solutions are available for comparison. In [2] for example an extremely fine finite
difference mesh is used for the solution. We will use these solutions to compare our
results later on.
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Here we use the Boundary Element method (BEM). The advantage of this method
is that for linear problems, unknowns only exist on the boundary and that the solutions
inside the domain satisfy the governing differential equations exactly. For nonlinear
problems, such as the one discussed here, volume integrals arise which have to be dealt
with and this will be discussed in more detail later on.

1.1. The Boundary Element method for viscous flow

The governing differential equation for steady incompressible viscous flow can be
developed from the laws governing the conservation of mass and momentum and as-
sume the following differential forms:

∂u j

∂x j
= 0

µ
∂ 2ui

∂x j∂x j
− ∂ p

∂xi
−ρu j

∂ui

∂x j
= 0

(1)

where xi is the Eulerian coordinate, ui is the velocity vector, p is the pressure, ρ the
mass density and µ the viscosity.

The requirement for the BEM is the existence of fundamental solutions of the dif-
ferential equations. These solutions can be found for the nonlinear equations (1) only
if we consider the non-linear terms as body forces. We rewrite the equations as:

∂u j

∂x j
= 0 (2)

µ
∂ 2ui

∂x j∂x j
− ∂ p

∂xi
+ fi = 0

with

fi =−ρu j
∂ui

∂x j
(3)

Fundamental solutions of equations (2) can now be obtained for an infinite domain
by substituting the Dirac-Delta function for the body force.

We define fluid stresses as:

σi j = µ
(

∂ui

∂x j
+

∂u j

∂xi

)
(4)

and the resulting tractions on boundary S:

ti = σi j n j− pni (5)

where ni is the unit vector normal to the boundary. Using the reciprocal theorem, the
following integral equation is obtained (for a full derivation refer to [3]):

ci j(y) u̇ j(y) =
∫

S

[Ui j(y,x) t j(x)−Ti j(y,x) u̇ j(x)]dS(x)+
∫

V0

Ui j(y, x̄) f j(x̄)dV0(x̄) (6)
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where ci j(y) is an integral free term, depending on the shape of the boundary and u̇i is
the velocity perturbation, i.e. the total velocity can be written as:

ui(x) = u̇i(x)+u0
i (x) (7)

with u0
i is the free stream velocity and Ui j(y,x) and Ti j(y,x) are fundamental solutions

for the velocity and traction at point x due to a source at point y listed in the Appendix.
In Equation (6) f j appears that involves derivatives of velocities. As has been

shown in [4] these derivatives can be computed by using finite differences or by taking
derivatives of an approximation of the velocity field. In both cases additional compu-
tational work needs to be done and errors are introduced.

Alternatively, the requirement of computing derivatives can be eliminated by ap-
plying the divergence theorem to the volume integral in Equation (6) as explained in
[5] resulting in:

ci j(y) u̇ j(y) =
∫

S

[Ui j(y,x) t j(x)−Ti j(y,x) u̇ j(x)]dS (8)

−
∫

S0

Ui j(y,x) t0
j (x)dS0 +

∫

V0

Ui j,k(y, x̄)b0
jk(x̄)dV0

where Ui j,k(y,x) is a derived fundamental solution and:

b0
ik(x̄) = ρ uk(x̄) u̇i(x̄) (9)
t0
i (x) = b0

ik(x)nk(x)

This is the approach used here.

1.2. Previous work and novelty of our approach
Early work on the solution of viscous flow problems using the BEM appeared for

example in [5]. As with most published methods, internal cells were used for the eval-
uation of the volume integrals. Cells are basically like finite elements with the subtle
difference that they are only used for evaluating integrals and not for approximating
the resulting fields (fundamental solutions, that satisfy the linear differential equation,
are used to approximate these inside the domain). In [5] Equation (8) was used and
therefore the computation of derivatives of velocities was avoided.
Remark 1: To overcome the need for a volume discretization, approaches such as the
dual reciprocity BEM [6] or the use of radial basis functions [7] have been proposed.
However, radial basis functions can not be used for infinite domain problems and a
comparison of these methods to the cell based approach found in [8] recommends the
latter for accuracy and robustness.

Solving the forced cavity flow problem it was found that a very accurate integration
scheme and a fine mesh of cells had to be used to obtain good results. For higher
Reynolds numbers it was necessary to use a classic Newton-Raphson method, where
the left hand side is updated at every iteration step, to get results that converge to the
right solution. Results for Reynolds numbers up to 1000 are presented, but details on
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how the tangent operator was determined are missing. The application of the BEM to
fluid flow problems has also been discussed in textbooks (see for example [9]).

In [10] and [11] the same approach as in [5] is used and the method is extended
to three dimensions. The authors explain how the tangent operator for full Newtom-
Raphson can be obtained, but results for the forced cavity flow problem are only pre-
sented for Reynolds numbers up to 100. A solution of the problem with the BEM can
also be found in [4]. Here Equation (6) is used and the derivatives of velocities are
computed using either finite differences or by taking the derivatives of basis functions
that approximate the solution inside cells. A modified Newton-Raphson method with
relaxation is used and good results are obtained for Reynolds numbers up to 1000.

Isogeometric analysis [12] has gained significant popularity in the last decade. The
novelty of our approach is that instead of Lagrange polynomials, that are used in the
quoted published work, NURBS basis functions are used for describing the geome-
try and the variation of the unknowns. The use of these functions means that fewer
parameters are required to describe complex geometries accurately. Using NURBS
to approximate values at the boundary also provides greater flexibility with respect to
refinement options. The geometry independent field approximation method, that has
already been used successfully in [13] and [14], means that approximation of the un-
known is completely uncoupled from the geometry definition. Another novelty is that
instead of cells, a mapping method that was first introduced in 2-D in [15] and extended
to 3-D in [16], is used, abolishing the requirement of generating a cell mesh. Finally, a
comparison between the modified and full Newton-Raphson methods is presented here
for the first time.

2. Surface discretisation

As in majority of previous work on the isogeometric BEM [13, 14, 17, 18, 19, 20,
21, 22, 23] we use the collocation method, i.e. we write the integral equations for a
finite number (N) of source points at locations yn. Changing to matrix notation, the
integral equations are re-written as:

c(yn) u̇(yn) =
∫

S

U(yn,x) t(x)dS−
∫

S

T(yn,x) u̇(x)dS

−
∫

S0

U(yn, x̄) t0 (x̄)dS0 +
∫

V0

U′ (yn, x̄)b0 (x̄)dV0

(10)

with n = {1, . . . ,N}. In the above c(yn) is a matrix containing integral free terms, u̇(x)
and t(x) are vectors containing perturbation velocities and tractions at point x on the
boundary. U(yn,x) and T(yn,x) are matrices containing fundamental solutions listed
in the Appendix. b0 (x̄) is a body force vector at a point x̄ inside V0.

Using the Einstein summation convention we have

U1 j,k(y, x̄)b0
jk(x) =U ′111 b0

11 +U ′112 b0
12 +U ′121 b0

21 +U ′122 b0
22 (11)

U2 j,k(y, x̄)b0
jk(x) =U ′211 b0

11 +U ′212 b0
12 +U ′221 b0

21 +U ′222 b0
22
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With the fundamental solution listed in the Appendix this can be converted into the
matrix multiplication occurring in Equation (10) if:

U′ =
1

4π µ r




r1−2r3
1, −r2−2r2

1 r2, r2−2r2
1 r2, r1−2r2

2 r1

r2−2r2
1 r2, r1−2r2

2 r1, −r1−2r2
2 r1, r2−2r3

2


 (12)

and:

b0(x̄) =




b0
11(x̄)

b0
12(x̄)

b0
21(x̄)

b0
22(x̄)




= ρ




ux(x̄) u̇x(x̄)

uy(x̄) u̇x(x̄)

ux(x̄) u̇y(x̄)

uy(x̄) u̇y(x̄)




(13)

The initial traction vector is given by:

t0 = Nb0 (14)

where

N =

(
nx ny 0 0
0 0 nx ny

)
(15)

The integrals over the domain V0 and boundary S0 need only be evaluated if the
body force term is not zero. In practice this means that volume integration can be
avoided if the body force is negligible, i.e. the integration will usually be restricted to
an area near the boundary.

For the discretization of the surface integrals over S we divide the boundary into
patches and we adopt a geometry independent field approximation approach for each
patch, i.e. we use different basis functions for the description of the geometry and for
the field values.

xe =
K

∑
k=1

Rk(s)xe
k

u̇e =
Ku

∑
k=1

Ru
k(s) u̇e

k

te =
Kt

∑
k=1

Rt
k(s) te

k

(16)

In the above equations the superscript e refers to the number of the patch, Rk, Ru
k and

Rt
k are NURBS basis functions1 with respect to the local coordinate s for the geometry,

velocities and tractions respectively. xe
k specify the location of control points and u̇e

k

1Considering the vastly increasing literature on isogeometric analysis we refrain from presenting the
equations for NURBS. The interested reader is referred to [24]
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and te
k are the parameters for velocities and tractions. K, Ku, Kt are the number of

parameters for each patch. The advantages of NURBS are that they are much better
suited than Lagrange polynomials for describing smooth boundaries and that superior
refinement strategies such as order elevation, knot insertion and k-refinement, can be
used. By manipulating the knot vector one can easily influence the continuity of the
basis functions for the approximation of unknown values.

Inserting the approximations into the integral equations and applying the rigid body
trick for eliminating the free term and singular integration involving Kernel T as out-
lined in detail in [24] the following discretized integral equations can be obtained:

E

∑
e=1

Kt

∑
k=1
4Ue

nkte
k =

E

∑
e=1

Ku

∑
k=1
4Te

nku̇e
k−Tn

Ku

∑
k=1

Ru
k(sn) u̇en

k (17)

+
∫

S0

U(yn, x̄) t0 (x̄)dS0−
∫

V0

U(yn, x̄)b0 (x̄)dV0

for n = 1,2,3 · · ·N

with en specifying the patch that contains the collocation point. Furthermore

4Ue
nk =

1∫

0

U(yn,x
e(s))Rt

k(s)J ds (18)

4Te
nk =

1∫

0

T(yn,x
e(s)) ·Ru

k(s)J ds

Tn =
E

∑
e=1

1∫

0

T(yn,x
e(s)) J ds (19)

In the above J is the Jacobian of the transformation from local s to global (x,y) coordi-
nate systems.

After assembly the following system of equations

[U]{t}= ([T]− [T]0){u}+{F}0 (20)

is obtained, where [U], [T] are matrices assembled from patch contributions (18) and
{t}, {u} are vectors that collect all traction and velocity components on points yn. [T]0
is a matrix relating to rigid body modes and {F}0 relates to the integrals involving body
forces. Either t or u must be known on the boundary, so for a mixed boundary problem
we have

[L]{a}= {F}+{F}0 (21)

where [L] contains a mixture of [U],[T] coefficients and {a} contains a mixture of
unknown tractions and velocities. {F} is a vector computed with known boundary
values.
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3. Integration

For flow problems accurate integration of the Kernel-basis function products is
even more critical than for solid mechanics problems and therefore it is discussed in
detail here. Depending on the ratio R (= minimum distance from integration region to
collocation point yn) over L (=size of the integration region) the following cases occur:

1. R/L > lim (the collocation point is far from the integration region). We refer
to this as regular integration. 0 < R/L < lim (the collocation point is near the
integration region). We refer to this as nearly singular integration.

2. R/L = 0 (the collocation point is inside the integration region and the Kernel is
weakly singular). This is referred to singular integration.

where lim is a limiting value (see later).

3.1. Regular and nearly singular integration
If the collocation point is far away relative to the size of the integration region

standard Gauss Quadrature can be applied with the number of Gauss points determined
depending on the variation of the basis function and of the Jacobian. Note that NURBS
basis functions are not polynomials but rational functions and therefore the number of
Gauss points has to be higher than for Lagrange polynomials.

If the collocation point is near the integration region then the number of Gauss
points has to be increased as a function of R/L. Instead of increasing the number of
Gauss points to a large number it is more efficient to subdivide the integration region
into subregions. We define MaxG as the maximum number of Gauss points that we
want to use and define an array Rlim that determines the limiting value of R/L depend-
ing on the number of Gauss points G, i.e. the array Rlim(1−6) contains limiting values
for 3 to 8 Gauss points2. This means that R/L is checked against Rlim and the required
number of Gauss points is determined. If the maximum number specified by MaxG is
exceeded then the integration region is subdivided. The limiting value lim above is set
to Rlim(1).

For Gauss integration we require a local coordinate system ξ = [−1,+1]. For
subregion m the relationship between coordinate s and ξ is given by

s(ξ ) =
dm

2
(ξ +1)+ sm (22)

where dm is the size of the subregion and sm is the local coordinate of its left edge. The
Jacobian of this transformation is Jξ = dm

2 . The numerical integration of (18) is for
example:

4Ue
ni =

M

∑
m

G(m)

∑
g=1

U(yn,x
e(s(ξg)))Rt

i(s(ξg))J(s(ξg))Jξ Wg (23)

where M is the number of subregions, G(m) is the number of Gauss points for subre-
gion m, ξg is the Gauss point coordinate and Wg the corresponding weight.

2For further details see [24]. Limits are set for integration errors 10−2 to 10−4
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To make the integration even more efficient we use an interval halving method for
determining the size of the subregions. This means that the integration region is first
divided into two subregions of equal size. Each subregion is then checked if R/L <
Rlim for the maximum number of Gauss points specified. If this is the case then the
subregion is halved again. This continues until R/L > Rlim.

3.2. Singular integration

Here we deal with a logarithmic singularity and we have to use a different Gauss
formula which integrates exactly any function f (γ) ln 1

r where f (γ) = a0 +a1 γ + · · ·+
a2L−1 γ 2L−1 and L is the number of Gauss points:

1∫

0

f (γ) ln
1
r

dγ ≈
L

∑
l=1

f (γl)Wl (24)

In the above γl are Gauss-Laguerre abscissae and Wl weights. For the integration the
local coordinate γ = [0,1] is used which originates from the singularity point. For
the case where the singularity point is on the left edge of the integration region the
transformation between s and γ is given by:

s(γ) = dm γ + sm (25)

For the case where the singularity point is on the right edge of the integration region
we have

s(γ) = dm (1− γ)+ sm (26)

The Jacobian of this transformation is Jγ = dm. For the integration we have to isolate
the singular part of U (see Appendix):

4Ue
ni =

1∫

0

c
[

R(yn,x
e(s))+ I ln

1
r
− I ln

1
γ

]
Rt

i(s)J ds (27)

+

1∫

0

cI ln
1
γ

Rt
i(s)J ds (28)

where the first integral is now regular and can be evaluated with standard Gauss,
whereas the second integral is singular and can be evaluated using Gauss-Laguerre.
The singular integration for a subregion m is given by

4Ue
ni =

G

∑
g=1

[
U(yn,x

e(s(ξg)))− I ln
1
γg

]
Rt

i(s(ξg))J(s(ξg))Jξ Wg (29)

+
L

∑
l=1

IRt
i(s(γl))J(s(γl))Jγ Wl
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4. Basic approach for dealing with volume terms

The basic approach is to solve the problem in an iterative way. First the linear
problem is solved. Then the solution is modified to account for the presence of body
forces.

The procedure can be summarized as follows:

1. Solve the linear problem and determine the velocity perturbation v̇ inside V0.
2. Determine the increment in body force b0 from Equation (9).
3. Compute new right hand side F0 by evaluating the arising volume integral.
4. Solve for the new right hand side and compute a new increment of boundary

velocity perturbation u̇.
5. Repeat 2. to 5. until b0 is sufficiently small.

5. Geometry definition of V0

The first task is the description of the geometry of the subdomain V0. For this we
propose to use a mapping method introduced recently for trimmed surfaces in [14]
and [24]. This means that the domain is defined by two NURBS curves and a linear
interpolation between them.

We establish a local coordinate system s = (s, t)ᵀ = [0,1]2 as shown in Figure 1
on the right and perform the integration in this system and then map it to the global
(x,y)-system. The global coordinates of a point x with the local coordinates s are given
by

x(s, t) = (1− t)xI(s)+ t xII(s) (30)

where

xI(s) =
KI

∑
k=1

RI
k(s)xI

k and xII(s) =
KII

∑
k=1

RII
k (s)xII

k . (31)

The superscript I relates to the bottom (red) curve and II to the top (green) curve and
xI

k, xII
k are control point coordinates. KI and KII are the number of control points, RI

k(s)
and RII

k (s) are NURBS basis functions 3. The derivatives are given by

∂x(s, t)
∂ s

= (1− t)
∂xI(s)

∂ s
+ t

∂xII(s)
∂ s

∂x(s, t)
∂ t

= −xI(s)+ xII(s)
(32)

where

3Note that the advantage of this description is that this allows the definitions of the bounding curves to
be different, i.e. the top curve can have different number of control points and order than the bottom curve.
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x

y

 0

 0.5

 1

 0  0.5  1

t

s

Figure 1: Example of a possible definition of volume V0 surrounding half of an airfoil in (left) global x,y and
(right) local s, t coordinate system. The red curve defines the boundary of the airfoil as well as the bottom
boundary of the domain V0. The green curve defines its top boundary. The associated control points are
depicted by hollow squares. Note that only 5 control points are required to accurately define the shape of the
airfoil and 5 more control points the surrounding domain.

∂xI(s)
∂ s

=
KI

∑
k=1

∂RI
k(s)

∂ s
xI

k

∂xII(s)
∂ s

=
KII

∑
k=1

∂RII
k (s)
∂ s

xII
k .

(33)

The Jacobian matrix of this mapping is

J =




∂x
∂ s

∂y
∂ s

∂x
∂ t

∂y
∂ t


 (34)

and the Jacobian is J(s, t) = |J|.
An example is shown in Figure 1 where half of the shape of an airfoil is described

by NURBS basis functions of order 2 and only 5 control points. Note that the bottom
definition of the nonlinear domain V0 is coincidental with the boundary of the problem.
Remark 2: It is obvious that the following theory is not restricted in any way to the
description of V0 outlined above. Any method that allows the mapping of its geometry
to a unit square can be applied.

6. Computation of {F}0

Here we discuss the computation of the right hand side during iteration. This in-
volves the solution of the integrals in Equation (10) over S0 and V0.

6.1. Computation of the surface integral over S0

For the computation of the surface integral the same procedures as explained in
section 3 are used.

10
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 0.5
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 0  0.5  1

t

s

sns

tns

-1

 0

 1

-1  0  1

d
j

Figure 2: Subdivision of integration region for the volume integration (shown here in the s coordinate system)
and mapping of the subregion surrounded by the red lines to the local coordinate system ξ, in which the
integration is carried out.

6.2. Computation of the volume integral over V0

The volume integration also involves the subdivision into subregions. The transfor-
mation from s coordinates to ξ = (ξ ,η)ᵀ = [−1,1]2 is given for integration region ns
by (see Figure 2)

s =
∆sns

2 (1+ξ )+ sns (35)

t =
∆tns

2 (1+η)+ tns

where ∆sns ×∆tns denotes the size of the integration region and sns , tns are the starting
coordinates. The Jacobian of this transformation is Jns

ξ =
∆sns ∆tns

4 .

The sub vector of {F}V0
0 related to collocation point n can be written as:

FV0
0n =

Ns

∑
ns=1

1∫

−1

1∫

−1

U′ (yn, x̄(ξ ,η)) ḃ0 (x̄(ξ ,η))J(s)Jns
ξ dξ dη (36)

Applying Gauss integration we have:

FV0
0n ≈

Ns

∑
ns=1

M

∑
m=1

N

∑
n=1

U′ (yn, x̄(ξm,ηn)) ḃ0 (x̄(ξm,ηn))J(s)Jns
ξ Wm Wn (37)

where Ns is the number of integration regions and M and N are the number of inte-
gration points in ξ and η directions respectively. To determine the number of Gauss
points necessary for an accurate integration, we consider that the Kernel U′ is O(1/r)
so the number of integration points has to be increased if yn is close to V0.

If the integration region includes the collocation point yn, then the integrand tends
to infinity as the point is approached and a procedure used to deal with weakly sin-
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Figure 3: Subdivision into integration regions when the collocation point (marked by a square) is inside
V0. The grey line indicates a subdivision into 2 integration regions and red thin lines the subdivision into
triangular subregions. The locations of Gauss points are marked with crosses

gular integrals in three dimensional BEM, can be invoked, which involves triangular
subregions.

In this approach we perform the integration in a local coordinate system, where the
Jacobian tends to zero as the singularity point is approached. For this we divide the
integration region into two, three or four triangular sub-regions depending on whether
the collocation point is at a corner, edge or inside. The procedure is well documented
in [24] and leads to the following expression:

FV0
0n =

Ns

∑
ns=1

K4

∑
k=1

+1∫

−1

+1∫

−1

U′ (yn,x)b0 (x̄(ξ ,η)) J(s)J4k Jns
ξ dξ dη

≈
Ns

∑
ns=1

K4

∑
k=1

M

∑
m=1

L

∑̀
=1

U′ (yn,x) b0 (x̄(ξm,η`)) J(s)J4k Jns
ξ WmWl

(38)

where K4 is the number of triangles and J4k is the Jacobian of the transformation
from the square to the triangular subregion. An example of this subdivision is shown
in Figure 3.

In order to limit the number of internal point evaluations we propose to compute re-
sults on grid points inside V0 and interpolate to the required Gauss point locations [16].
Since the right hand side has to be evaluated for every iteration step it is convenient to
precompute matrices that multiply with the values of b0 at grid points. The value of
body force at a location s, t is given by:

b0(s, t) =
K

∑
k=1

Mk(s, t)b0k (39)

where Mk(s, t) are interpolation functions, K is the number of grid points and b0k are
values of body force at grid points. With this the following matrix equation can be
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written:
{F0}= [B]{b0} (40)

where {b0} is a vector of body force values at grid points and [B] =
(
[B]S− [B]V

)
, the

sub-matrices of which are given by

BS
nk =

∫

S0

U(yn, x̄)Mk NdS0 (41)

and
BV

nk =
∫

V0

U′ (yn, x̄)Mk dV0 (42)

7. Computation of results inside V0

The solution algorithm requires the evaluation of perturbation velocities inside the
inclusion V0. The velocity vector v4 at any internal point yi can be computed by

v(yi) =
∫

S

U(yi,x) t(x)dS−
∫

S

T(yi,x) u̇(x)dS (43)

−
∫

S0

U(yi, x̄) t0 (x̄)dS0 +
∫

V0

U′ (yi, x̄)b0 (x̄)dV0

The above equation be written in matrix notation as:

{v}= [A] {t}− [C] {u̇} +[D]{b0} (44)

where matrices [A] and [C] are assembled from element contributions of Kernel basis
function products and matrix [D] =

(
[D]V − [D]S

)
where [D]V and [D]S are computed

as shown in equation (41) and (42) and replacing yn with yi.

8. Iterative procedure

There are two possibilities for the iterative procedure: modified Newton-Raphson
or full Newton-Raphson. In the former the left hand side of the system of equations
is not changed and only a new right hand side is computed at each iteration, whereas
in the latter the left hand side is changed at every iteration. All test examples are
pure Dirichlet problems, i.e. {a} = {t} in Equation (21) and therefore the unknown
are boundary tractions {t} and the known values are perturbation velocities {u̇} at the
boundary. Without loss of generality, the algorithms are detailed for this special case
as the extension to mixed boundary conditions is trivial.

4The velocities at internal points are referred to as v to distinguish them from the boundary velocities u̇.

13



8.1. Modified Newton-Raphson

The iterative procedure for modified Newton-Raphson is essentially the same as
used in [4] and is shown in Algorithm 1.

INITIALIZATION;
solve for tractions {t}0 using Equation (45);
compute velocities at internal points {v̇}0 using Equation (47);
compute body forces {b0}0 using Equation (13);
compute vector {F}0

0 using Equation (40);
ITERATION;
for k=1:number of iterations do

solve for tractions {t}k using Equation (46);
set {t}= β {t}k +(1−β ){t}k−1;
compute velocities at internal points {v̇}k using Equation (48);
set {v}= β {v}k +(1−β ){v}k−1;
compute body forces {b0}k using Equation (13);
compute vector {F}k

0 using Equation (40);
compute residual;
if residual < Tolerance then

exit
end

end
Algorithm 1: Modified Newton-Raphson

For the first iteration the unknowns are computed by

[U]{t}0 = {F} (45)

For the subsequent iteration we have

[U]{t}k = {F}+{F}k−1
0 (46)

where k is an iteration counter. The velocities at internal points are computed by:

{v}0 = [A] {t}0− [C] {u̇} (47)

for the first iteration and

{v}k = [A] {t}− [C] {u̇}+[D] {b0} (48)

for the subsequent iterations. To ensure convergence for higher Reynolds numbers we
apply a relaxation scheme, i.e. the tractions and velocities are computed by a combi-
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nation of new and previous values:

{t} = β {t}k +(1−β ){t}k−1 (49)
{v} = β {v}k +(1−β ){v}k−1

where β is a relaxation coefficient (0 < β < 1).

8.2. Full Newton-Raphson

The iterative procedure for full Newton-Raphson is similar to the one published in
[10] and shown in Algorithm 2.

INITIALIZATION;
solve for tractions {t}0 using Equation (45);
compute velocities at internal points {v̇}0 using Equation (47);
compute body forces {b0}0 using Equation (13);
compute vector {F}0

0 using Equation (40);
ITERATION;
for k=1:number of iterations do

compute
[

∂{b0}
∂{v}

]k
and update the tangent operator in Equation (51);

solve the system of equations (51) to compute {∆t}k+1 and {∆v}k+1;
update the tractions by Equation (52a);
update the velocities by Equation (52b);
compute body forces {b0}k using Equation (13);
compute vector {F}k

0 using Equation (40);
compute the residuals {Rt}k+1 and {Rv}k+1 by Equations (50);

end
if resperc < Tolerance then

exit
end

Algorithm 2: Full Newton-Raphson

For the first iteration the unknowns and the velocities are computed by the same
equations of the modified Newton Raphson approach, that is by Equation (45) and
Equation (47), respectively. For the subsequent iterations we introduce the following
residuals:

{Rt}k = − [U]{t}k +{F}+{F}k−1
0 (50a)

{Rv}k = −{v}k +[A]{t}k− [C] {u̇}+[D] {b0}k−1 (50b)
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The traction and velocity increments are computed by solving the following first-
order Taylor expansions:



− [U]

[
∂{F}0
∂{v}

]

[A] [D]
[

∂{b0}
∂{v}

]
− [I]




k


{∆t}

{∆v}





k+1

=−




{Rt}

{Rv}





k

(51)

The total tractions and velocities are computed by:

{t}k+1 = {t}k +{∆t}k+1 (52a)
{v}k+1 = {v}k +{∆v}k+1 (52b)

where:
∂{F}0

∂{v} = [B]
[

∂{b0}
∂{v}

]
(53)

and

[
∂{b0}
∂{v}

]
=




∂{b0}
∂{v} (y1) {0} · · · {0}

{0} ∂{b0}
∂{v} (y2) · · · {0}

...
...

...

{0} · · · · · · ∂{b0}
∂{v} (yNΩ)




(54)

where NΩ is the number of internal points.
The derivatives of b0 are given by:

∂{b0}
∂{v} (yi) =




2u̇x(yi)+u0
x(yi) 0

u̇y(yi)+u0
y(yi) u̇x(yi)

u̇y(yi) u̇x(yi)+u0
x(yi)

0 2u̇y(yi)+u0
y(yi)




if yi ∈Ω

and

(55)

∂{b0}
∂{v} (yi) = [0]4x2 otherwise (56)

The iteration is halted when resperc = {∆t}k+1

{t}k is less than a pre-set Tolerance

9. Numerical results

The implementation of the theory is tested here on two examples. In the first one
the results are compared with an available fine grained solution in order to ascertain
that good quality of results can be obtained. The second one is used to demonstrate the
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Figure 4: Flow in cavity: Definition of geometry with 4 linear patches and control points. Also shown is the
Dirichlet boundary condition on top.

superiority of the proposed approach for describing more complex practical geome-
tries.

9.1. Flow in cavity

A driven cavity problem has become a standard test problem for fluid dynamics
codes. An incompressible fluid of uniform viscosity (µ = 1) is confined within a square
region of dimension H = 1× 1. The fluid velocities on the bottom, left and right are
fixed at zero, while a uniform velocity ux = 1 is specified at the top, which is tapered
off to zero very near the corners. The Reynolds number is defined as Re = ρ U H/µ .
The example is tested for two different Reynolds numbers (= 100, 400) by changing
the value of ρ

9.1.1. Definition of geometry and boundary conditions
The boundary of the problem is defined by 4 linear NURBS patches as shown in

Figure 4. Using a geometry independent field approximation, the non-zero Dirichlet
boundary condition along the top NURBS patch was defined using the following Knot
vector for the basis function Ru

k(s)

Ξ = [0,0,0.05,0.95,1,1] (57)

with all weights equal to 1. The parameters were specified as:

u̇e =

(
0 1 1 0
0 0 0 0

)
(58)

This means that the velocity vector at the top is tapered off to zero very near to the
corners.
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Figure 5: Refinement of solution: Location of collocation points for 3, 7 and 15 knot insertions for each
patch
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Figure 6: Definition of domain for volume integration with two NURBS curves marked red and green and
location of the internal points for the three refinement stages

9.1.2. Approximation of the unknown and refinement
The approximation of the boundary unknown (in this case t) was achieved by in-

serting knots and by order elevating the basis functions for describing the geometry
(from linear to quadratic). Three different refinements were investigated and the result-
ing locations of collocation points computed using Greville abscissa [25] are shown in
Figure 5.

9.1.3. Approximation of body forces inside domain
The domain for the volume integration was defined by 2 NURBS curves. The

refinement of the boundary values was accompanied by an increased number of internal
points as shown in Figure 6. Quadratic interpolation between the points was assumed.
The number of degrees of freedom and the number of internal points for the different
meshes is shown in Table 1.

9.1.4. Results and comparison
Results were computed for the three meshes and two different Reynolds numbers

with a modified and full Newton-Raphson method. Figure 7 shows the velocity vec-
tors for the two Reynolds numbers. A shift in the vortex centre can be clearly seen.
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Mesh Degrees of freedom No. of internal points
mesh1 64 81
mesh2 128 289
mesh3 256 1089

Reference [2] - 16641

Table 1: Mesh statistics

x

y

x

y

Figure 7: Forced cavity flow: Resulting velocity vectors for Re=100 and Re=400

Figures 8 and 9 show a comparison of the results obtained with the different meshes
and iteration methods. The variation of x-velocities along a vertical line though the
middle agree well with the extremely accurate published solution, except for mesh 1
and Re=400. It seems that for this Reynolds number mesh 1 is not adequate.

There is very little difference between the results obtained with modified and full
Newton-Raphson. However, as shown in Table 2 there is a large difference with respect
to the number of iterations required to achieve convergence to a tolerance of 10−4 with
the modified Newton-Raphson requiring a significant higher number of iterations.

mesh 1 mesh 2 mesh3
Re=100 modified Newton-Raphson 15 19 18

full Newton-Raphson 3 3 3
Re=400 modified Newton-Raphson 24 39 100

full Newton-Raphson - 5 5

Table 2: Number of iterations required for convergence
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Reference [2]

Figure 8: Comparison of velocity in x-direction along a vertical line through centre for Re=100 together with
the reference solution

Reference [2]

Figure 9: Comparison of velocity in x-direction along a vertical line through centre for Re=400 together with
the reference solution
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Figure 10: Description of NACA0018 airfoil with two patches and 5 control points and basis functions of
order 2 each
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Figure 11: Location of collocation points after refinement by knot insertion

9.2. Airfoil
As a practical example we show the simulation of the flow past an airfoil. We

chose the NACA0018 airfoil, where detailed coordinates are available on the internet
(see for example www.airfoiltools.com). The airfoil is placed in an infinite domain and
subjected to a stream. The free stream velocity is defined by u0

x = 0.984,u0
y = 0.173

which corresponds to a unit velocity vector inclined at 10 degrees.

9.2.1. Description of boundary geometry
NURBS are ideally suited for describing such shapes with very few parameters.

Only 5 control points and basis functions of order 2 are able to describe the shape
fairly accurately as is shown in Figure 10. More accurate descriptions can be obtained
with more control points and higher basis function order. An important fact is that the
approximated shape has a CI continuity throughout each patch, which would not be the
case if piecewise continuous Lagrange polynomials are used.

9.2.2. Approximation of the boundary unknown
We use the geometry independent field approximation approach for the variation of

the unknown boundary values by inserting 7 knots into the knot vector that is used to
describe the boundary, for each patch. The resulting locations of the collocation points
are shown in Figure 11.
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Figure 12: Definition of domain for volume integration

9.2.3. Approximation of the body forces
The task left is the description of the domain for the volume integration. Here

we use 4 subdomains defined by 2 NURBS curves each. The discretisation and the
locations of the internal points are shown in Figure 12. As with the previous example
a quadratic interpolation between points is assumed.

9.2.4. Results
The problem was analysed by choosing the parameters in such a way that a Reynolds

number of 10 was achieved. The resulting velocity vectors are shown in Figure 13.

10. Summary and Conclusions

An implementation of the BEM for incompressible viscous flow was presented.
The main novelty of our approach is that instead of Lagrange polynomials, NURBS
are used for both the description of the geometry and the approximation of the bound-
ary values. A geometry independent field approximation was used, which means that
the approximation of unknown boundary values is completely uncoupled from the de-
scription of the geometry. It was shown that the use of NURBS for the description of
the geometry results in an accurate, smooth description with few parameters. Another
novelty of the paper is that instead of cells, that have been used in the literature for the
evaluation of the volume integrals, volumes are defined by bounding NURBS curves
and a mapping is used.

For the solution of the non-linear system of equations modified and full Newton-
Raphson methods are used. Although these two methods have been applied in the
cited publications using conventional BEM approaches, this is the first time the two ap-
proaches have been compared on the test example of a forced cavity flow. It was shown
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Figure 13: Resulting velocity vectors for Re=10

that for higher Reynolds numbers and for the modified Newton-Raphson method a high
number of iterations is required for convergence. The results of the simulation with the
new technology agree very well with very accurate results available in the literature.
On a practical example of an airfoil the advantages of our approach (accurate definition
of geometry with few parameters, solution with few unknowns...) were demonstrated.
Only plane problems are discussed here, the extension to 3-D problems is planned.

Whilst the paper is concerned only with steady, viscous incompressible flow an
extension of the BEM to deal with unsteady, compressible flow is possible (for details
see [10]). It is hoped that this paper provides some impetus for applying isogeometric
methods and for much needed research in this area of application.

Appendix A. Fundamental solutions

The fundamental solutions for equations (2) for the velocity at point x due to point
sources at y is

U(y,x) = c(R+ I ln
1
r
) (A.1)

with c = 1
4π µ , I is the identity matrix and

R =

(
r2

1 r1 r2
r2 r1 r2

2

)
(A.2)

For the tractions acting on a boundary S:

T(y,x) =−cosθ
π r

R (A.3)
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In the above r is the distance between x and y, ni is a unit vector normal to S and

ri =
1
r
(xi− yi) (A.4)

cosθ = ri ni

The derived fundamental solution is

U ′i jk =
1

4πµr

(
δ jk ri +δik r j−δi j rk−2ri r j rk

)
(A.5)

where δi j is the Kronecker Delta.
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