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Abstract
The work at hand deals with the design of the longitudinal spacing among rows of closely spaced large-diameter shafts

used to stabilise a precarious slope. The problem under consideration is idealised through a conceptual framework where an

unstable mass of an infinitely long slope pushes a stable portion of soil adjacent to shafts, leading to failure along a slip

surface passing through the upper end of the reinforcement elements. By exploiting the upper bound theorem of plastic

collapse, a closed-form solution is derived for the load required for the failure of the stable mass as a function of

geometrical and mechanical parameters of the slope and the soil. Results are validated through physical model tests by

means of geotechnical centrifuge. Given the satisfactory agreement between analytical and experimental results, the model

is extended to evaluate the safety conditions of the reinforced slope.

Keywords Centrifuge test � Design � Limit analysis � Piles � Shafts � Slope stabilisation

1 Introduction

The use of piles or large-diameter shafts is a quite wide-

spread engineering solution for the stabilisation of a shal-

low slow-moving landslide. The design of a row of piles

involves the assessment of soil thrust on reinforcement

elements and pile spacing. When multiple rows of piles or

shafts are necessary due to a large extension of the unsta-

ble soil mass in the direction of the slope, the longitudinal

spacing among rows of piles is a further parameter to be

determined. The transversal and longitudinal spacing affect

the critical failure mechanism which, in turn, has a crucial

influence on the development of soil pressures on shafts

and thereby the safety conditions of the reinforced slope.

To facilitate understanding the above concepts, three

different failure paths are depicted in Fig. 1. For each of

them, body forces associated to soil weight would lead to

failure if not contrasted by (1) the stresses developing

along the specific slip surface and (2) the reinforcement–

soil contact pressures. Path 1 involves pressures along the

whole length of pile embedded in the unstable layer; path 2

exploits only partially such pressures while in path 3, not

intersecting the shafts, soil cannot rely on any direct

favourable contribution of the reinforcement. From path 1

to path 3, there is thereby a decreasing stabilising contri-

bution of shaft–soil interaction pressures, yet the soil alone

is more stable along the path 3 rather than paths 2 and 1,

due to the geometry of the associated slip surface.

In the absence of reinforcement, the slope fails along the

slip line n. 1 parallel to the slope surface, the other two

paths being associated with larger safety. If a row of lar-

gely spaced piles or shafts is inserted in the unstable soil till

penetrating for a sufficient depth the firm layer, soil may

find path 2 as the easiest way to fail. If the spacing among

the shaft decreases, the potential contribution of the rein-

forcement increases, so that there is a critical spacing

below which the failure mechanism associated with the

lowest level of safety corresponds to the path 3. In this

case, the reinforcement, although does not contribute with

interaction pressures, forces soil to fail according to a slip
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surface associated with larger safety compared to the

unreinforced slope.

The evaluation of the pressures that isolated or rows of

piles may offer in favour of stability was studied, among

others, by Ito and Matsui [15], De Beer and Carpentier [8]

and Viggiani [24]. The first two contributions dealt with the

evaluation of the ultimate load of a row of piles. A dis-

cussion on the applicability of these methods can be found

in Bosscher and Gray [5]. Viggiani [24] provided analytical

solutions for a single free-head pile embedded in fine-

grained soil, considering undrained conditions and per-

forming a total stress analysis in the framework of limit

equilibrium method. With a similar approach, Muraro et al.

[20] obtained the solution for the case of a rigid (not

yielding) single free-head pile in drained conditions. A

number of contributions dealt with pile–soil interaction

[3, 12, 14, 22], and other investigators focused on general

aspects of design by performing numerical analyses (e.g.

[13, 16, 17, 21]), while fewer research exploited physical

models to explore the behaviour of reinforced slopes of

finite length (e.g. the recent centrifuge experiments per-

formed by Zhang et al. [25, 26]).

Despite numerous studies, there are still many uncer-

tainties and issues on the topic. A general lack in previous

studies is that the methods proposed in the literature refer

to the critical surface corresponding to the unreinforced

slope, and this, as the discussion above suggests, may lead

to a large overestimation of the stability conditions of a

slope reinforced with closely spaced shafts given that soil

finds an easier way to fail, without intersecting the

reinforcement. In addition to this, to stabilise a slope with a

predominant longitudinal dimension, several rows of piles

or shafts placed at a certain distance from each other have

to be adopted, yet no explicit method exists for the design

of such spacing.

To furnish a contribution on this aspect, in this work the

mechanism n. 3 described above is studied analytically to

evaluate the safety conditions associated with a specific

longitudinal dimension of the unstable soil mass, under the

hypothesis of plane strain conditions (i.e. strains perpen-

dicular to the direction of sliding are zero).

2 Proposed problem decomposition

The problem at hand consists of a slope of inclination a
which, due to phenomena like progressive failure, pos-

sesses a reduced value d of shearing resistance angle at

soil–bedrock interface for a length Lu and is therefore

stabilised through the insertion of closely spaced shafts, so

that soil does not flow among them. A schematic sketch of

the problem is reported in Fig. 2 where the slip surface

follows the above-described path 3. It is convenient to refer

to a conceptual framework where the problem geometry is

decomposed in two distinct zones, specifically a thrust zone

of length Lt which slides, for d\ a, along the direction of

the slope thereby forcing the remaining part of soil of

length ns (= Lu - Lt) to fail according to a rotational

mechanism along a curved surface passing through the

upper end of the reinforcement. This decomposition,

Fig. 1 Problem under consideration
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although not rigorous because the combination of a trans-

lational and a rotational mechanism is kinematically

inadmissible, offers the following advantages: (1) it allows

results to be expressed in closed form; (2) permits a direct

validation of results through laboratory experiments where

the slope failure is achieved through the application of a

load; (3) permits to quantify the safety conditions through

the ratio of failure load and unstabilising action. Accord-

ingly, an upper bound to the failure load of the resistant

zone will be sought. To facilitate understanding, the main

theoretical aspects associated with the limit analysis tech-

nique utilised in this work are briefly recalled in the

following.

3 Upper-bound solution for failure load

When tackling collapse problems, it is very common the

use of limit analysis. Instead of seeking an exact value of

failure load, upper and lower bounds which bracket the true

value can be found by this technique. Ignoring whether the

equilibrium or the compatibility condition, theorems of

plastic collapse will furnish rigorous upper and lower

bound values, respectively, to the failure load if an asso-

ciative flow rule is considered for the soil material.

The upper bound theorem states that for any arbitrary

compatible failure surface (i.e. no gaps or overlaps exist

within the body) such that the work done by external loads

and body forces equals the energy dissipated along the

failure surface, the external loads represent an upper bound

to the true collapse loads. This theorem reflects the fact that

soil may find a different failure surface associated with

lower external loads. (Details on the application of theo-

rems of plastic collapse to geotechnical problems may be

found in many textbooks, e.g. [7] and [1].)

From a practical standpoint, the application of the upper

bound theorem is herein carried out by means of the fol-

lowing steps:

1. A compatible rotational failure mechanism is assumed,

the geometry of which is function of different

variables;

2. The work done by self-weight and external loads due

to the displacement (or velocity) field assumed for the

mechanism is computed;

3. The internal dissipation of energy by plastically

deformed regions associated with the mechanism is

evaluated;

4. The external load is derived through the work equation

(i.e. by equating the quantities derived at steps 2 and

3);

5. By varying the values of the independent variables as

defined in step 1, the mechanism layout that leads to

the least external loads is detected.

With reference to step 1, an important consequence of

the associative flow rule is that in a rotational mechanism

for drained conditions is that velocity (or displacement)

vector and failure surface make always an angle u (Fig. 3).

Fig. 2 Conceptual framework for the sliding mechanism of a slope stabilised by closely spaced shafts
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Therefore, a compatible failure surface can be only a log-

arithmic spiral of equation:

r hð Þ ¼ r0 e
h�h0ð Þ tanu ð1Þ

with r the radius at any angle h and r0 the initial radius (i.e.

for h = h0). Such a curve degenerates in a straight line for

r0 ? !.

An arc of logarithmic spiral necessitates of three

parameters to be fully described, e.g. initial radius r0 and

initial and final angle with the horizontal axis h0 and hs, and
therefore, the solution of the problem at hand should be

identified as the particular combination of the three values

of the parameters above which gives rise to the least

applied load q.

Nevertheless, with reference to the investigated prob-

lem, further considerations may simplify the tractation, as

shown in Fig. 4. The sliding surface must pass by point B

and must be tangent, in the same point, to the base. By

making use of these two conditions, given the associative

flow rule of soil material the velocity in B must make an

angle u with the slope and therefore the centre of rotation

must lie on a line passing through B and inclined of

(90� ? u) with respect to the slope direction. For any

radius r0, the angle h0 is immediately identified, whereas

the final angle hs is determined by the intersection of the

logarithmic spiral with soil surface (point C), having dis-

tance ns from the applied load acting on the line AB. It

follows that the problem has now 1 degree of freedom and

any value of r0 (or, alternatively, ns or hs) corresponds to a

specific value of the load q. The value of r0, ns or hs that
leads to the lowest q determines the critical failure surface,

and the associated load is the sought upper bound to the

failure load.

3.1 Geometry of the mechanism

It is rather straightforward to determine the geometry of

any failure mechanism by simple trigonometric consider-

ations. With reference to Fig. 4, initial angle h0 is function
of the soil shearing resistance angle u and the inclination of

the slope a according to the equation:

h0 ¼ 90� þ u� a ð2Þ

For any final angle hs, taken for convenience as the

independent variable, the geometry of the slip surface is

univocally determined, and intersects soil surface at an

abscissa

ns ¼ H tanD1 ¼ H tan 180� þ h0 � hs � u� D2ð Þ ð3Þ

D1 and D2 being the angles AbBC and ObCB, respectively.

D2 can be computed through the equation:

Fig. 3 Slip surface and displacement (or velocity) field for u[ 0

Fig. 4 Slip surface and velocity field for the problem under

consideration
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D2 = ObCB

¼ sin�1 sin hs � h0ð Þ � 1þ e2 hs�h0ð Þ tanu
�h

�2e hs�h0ð Þ tanu cos hs � h0ð Þ
��1

2

�

ð4Þ

The initial radius is:

r0 ¼ H
sinD2

sin hs � h0ð Þ cosD1

¼ ns
sinD2

sin hs � h0ð Þ sinD1

ð5Þ

3.2 Rate of work due to self-weight and external
load

The rate of work due to self-weight of the portion of sliding

soil rotating at clockwise angular velocity _x according to

the rotational mechanism in Fig. 4 may be computed by

evaluating the work rates _W1, _W2 and _W3 due to the soil

weight in the regions OCB, OCA and OAB, respectively,

then performing the algebraic summation _W1 � _W2 � _W3.

Other combinations of areas may be considered; however,

this strategy is adopted here following other works dealing

with upper-bound solutions for slope stability problems

like Chen [7], Michalowski [18] and Ausilio et al. [2].

Figure 5 depicts the detailed computation of the three

contributions above, which are found to be:

_W1 ¼ _xc

3 tanu cos hs þ sin hsð Þr3s
� 3 tanu cos h0 þ sin h0ð Þr30

3 1þ 9 tan2 uð Þ

_W2 ¼ _xc � 1

6
Hr0 H sin a� 2r0 cos h0ð Þ sinu

� �

_W3 ¼ _xc � 1

6
rsns

2H sin a� 2r0 cos h0

þns cos a

 !

sin hs þ að Þ
" #

ð6Þ

with c the unit weight of the soil and rs = r(hs). Note that

the rate of work due to self-weight is negative for the

assumed rotational mechanism (i.e. soil weight represents a

stabilising contribution).

From the same figure, it is simple to verify that the rate

of work due to the external load is given by:

_Q ¼ _x qH r0 cosu� hð Þ ð7Þ

where q is the average normal stress due to the applied load.

Note that the rate of work due to the external load is positive

(i.e. the load furnishes an instabilising contribution).

3.3 Dissipation of energy

The dissipation of energy D in the layer of plastic shearing

(grey area in Fig. 3) may be written as:

D ¼ s � du� r � dv ¼ du s� r tanuð Þ ¼ c � du ð8Þ

where r and s are the normal and shear stress (the former to

be taken as positive in compression), whereas du and dv are
the components of the displacement along and perpendic-

ular, respectively, to the slip surface. It is interesting to

note that internal dissipation is related merely to the

cohesion of the soil material. It follows that for a cohe-

sionless soil there is no internal dissipation, and therefore,

the soil can be considered at the same time both dissipative

and conservative, which is self-contradicting. This seems

to indicate that the flow rule for a frictional material cannot

be associative [1]. The possibility of considering a non-

associative material for seeking a better upper bound is

explored in Drescher and Detournay [9]; however, these

considerations are not employed in the present work.

The differential rate of dissipation along the logarithmic

spiral slip line is found by multiplying the differential

segment length (r�dh/cosu) by the cohesion c times the

component of velocity parallel to the discontinuity, V�cosu.
By integrating the differential rate of dissipation over the

whole length of the log-spiral arc, one obtains the rate of

dissipation as:

_D ¼
Z
hs

h0

c V cosuð Þ r � dh
cosu

¼ _x
c

2 tanu
r2s � r20
� �

ð9Þ

3.4 Derivation of the external load

The external load can be now computed through the work

equation:

_Qþ _W1 � _W2 � _W3 ¼ _D ð10Þ

from which one, after algebraic manipulation (see Ap-

pendix), can derive the collapse load, in the ensuing

denoted by qlim, as:

qlim

cH
¼

r0

H
sinu 2

r0

H
cos h0 � sin a

� �

� ns
H

rs

H

ns
H
cos aþ 2 sin a� 2

r0

H
cos h0

� 	

sin hs þ að Þ

þ

2

3 tanu cos h0 þ sin h0ð Þ r0

H

� �3

� 3 tanu cos hs þ sin hsð Þ rs

H

� �3

2

6

6

4

3

7

7

5

1þ 9 tan2 u

þ 3
c

cH
cotu

rs

H

� �2

� r0

H

� �2
� �

6
r0

H
cosu� h

H

� 	

ð11Þ
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Fig. 5 Detailed calculation of the work done by self-weight and external load
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Figure 6 depicts the failure load qlim, initial radius r0
and angle covered by failure surface, (hs-h0), as a function
of the only independent variable ns, for two hypotheses on

the position of applied load (h/H = 1/2 and h/H = 1/3). By

inspection of these diagrams, a number of aspects are

noteworthy: (1) despite r0 and (hs-h0) formally depend on

soil properties and load position (see Eqs. 2–5), the curves

are not distinguishable (Fig. 6b); it follows that the

geometry of the failure surface depends mainly on the

geometry of the problem under consideration; (2) by

increasing ns, initial radius increases while the angle cov-

ered by the failure surface decreases, that is the failure

surface becomes more ‘‘smooth’’, tending to a straight line;

(3) failure load qlim diminishes with ns up to a certain

value, because soil is facilitated to slip on a smoother

surface, and then increases when this effect is counterbal-

anced by the increasing resistance along the wider surface;

(4) the presence of cohesion in the soil has a remarkable

role in increasing failure load; (5) a smaller value of h/H is

detrimental for slope stability due to the increasing distance

from the centre of the mechanism; (6) for increasing values

of ns the position of the instabilising force has no influence

on the limit load; this indicates that the failure mechanism

is tending to a translational one, as confirmed by the

increasing value of radius r0, and gives an idea of how

small is the influence of the kinematic mismatch involved

in the approximated combined mechanism proposed in this

work.

4 Centrifuge test modelling

The problem under consideration was tackled experimen-

tally by means of the ISMGEO (Istituto Sperimentale

Modelli Geotecnici, Seriate–BG–Italy) geotechnical cen-

trifuge (IGC), made up of a symmetrical rotating arm with

a diameter of 6 m, a height of 2 m and a width of 1 m. The

arm holds two swinging platforms, one used to carry the

model container and the other the counterweight; during

the test, the platforms lock horizontally to the arm to pre-

vent transmitting the working loads to the basket suspen-

sions. An outer fairing covers the arm; the arm and the

cover concurrently rotate to reduce air resistance and per-

turbation during flight; further details of the centrifuge can

be found in Baldi et al. [4]. It is worth recalling that, in a

physical model subjected to a centrifuge acceleration N

times larger than the acceleration of gravity g, geometrical

dimensions are N times smaller than the ones in the pro-

totype, whereas both stresses and strains are scaled 1-to-1.

A complete set of similarity relationships between physical

model and prototype is available in many scientific con-

tributions (e.g. [19, 23]). The adopted geometrical scaling

factor of the models was N = 50, and therefore, the test

was conducted under an acceleration field of 50 g, which

was reached in the centre of gravity of the model mass.

The model and prototype geometrical dimensions are

listed in Table 1. Three static tests were performed: the

unreinforced sandy landslide and the landslide reinforced

with 1 central and 3 aligned shafts. Figure 7 shows the

general layout of the tests. (All measures refer to the model

scale.) The rock slope was modelled through a lightweight

concrete block fixed to the centrifuge strong box with shear

wave velocity VS & 950 m/s as deduced with reference to

linear elasticity from the Young’s modulus and Poisson’s

ratio measured in uniaxial cylindrical tests with local strain

measurements. The sandy slope was modelled through a

very fine and uniform silica powder, derived by grinding

and sieving pit rocks, named FF sand (FFS), mainly con-

sisting of sub-angular particles and made of 98.2% quartz,

1.3% feldspar and 0.5% mica. The main characteristics of

FFS are:

• maximum and minimum dry density, cd,max = 14.78 -

kN/m3, cd,min = 11.58 kN/m3,Fig. 6 Critical failure surfaces and associated values of external load

for different values of c, u and h/H
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• maximum and minimum void ratio, emax = 1.211,

emin = 0.732,

• specific density, Gs = 2.61,

• mean particle size, D50 = 0.093 mm,

• uniformity coefficient, UC = 1.88.

The critical state parameters are:

• shearing resistance angle at critical state, /0
cv = 33�,

• critical stress ratio, M = 1.35,

• void ratio at p0 = 1 kPa, eC = 1.15,

• slope of the critical state line in the e-ln(p0) plane,

k = 0.026.

The sand layer was reconstituted by tamping the sand,

with a moisture content of 5%, in four horizontal layers

20 mm thick, having inclined the box - 32� to the hori-

zontal, so that the strata were parallel to the rock slope. The

average relative density achieved at the end of the 50 g in–

flight consolidation was DR & 40%, computed from the

variation in the volume of the sand, as measured in few

points by vertical and rotational potentiometer transducers.

The knowledge of relative density can be therefore utilised

to estimate a unit soil weight of 12.5 kN/m3. The soil–

concrete interface was rough and produced an interface

friction angle d’ equal to u0
cv (in the ensuing indicated with

u for brevity), as deduced from several interface direct

shear tests. The model container was designed with rigid

walls to confine the model in the transversal direction

(Fig. 7). The side friction between the soil and the con-

tainer walls was minimised by lubricating the lateral sur-

faces. Rock sockets were pre-formed, and the shafts

inserted and grouted before tamping the sand around them.

The reinforcing shafts were modelled by aluminium alloy

cylinders of external diameter d = 70 mm. The selection

of the cylinder thickness is aimed at obtaining a ratio

between prototype and model flexural stiffness equal to N4

[11, 19]. Referring to a prototype concrete shaft with

Young’s modulus equal to 35 GPa with an external

diameter of 3.5 m and an internal diameter of about 2.6 m,

the prototype must possess a wall thickness of 3.5 mm. The

centre-to-centre shaft spacing in the tests with 3 reinforcing

piers was equal to 1.5 d = 105 mm. Each model was

prepared at 1 g, and then it was embarked into the cen-

trifuge, accelerated to 50 g and allowed to consolidate due

to the self-weight, until settlements at surface reached a

constant value. The landslide was triggered by a dis-

placement-controlled piston which pushed down the top of

the slope through a rigid slab connected to a hydraulic

actuator. The raft was allowed to slide parallel to the slip

interface to produce a uniform displacement field gradually

increasing until failure.

Figure 8 shows the failure modes directly observed in

the test with 1 and 3 shafts. It can be immediately recog-

nised that in the case of an isolated reinforcing element soil

flows around the shaft, which is thus intersected by the

failure surface, that is according to the path 2 in Fig. 1. On

the contrary, for the case of three shafts, soil fails just

behind the reinforcement (path 3). The latter mechanism is

investigated in the next section.

Table 1 Geometrical dimensions at the model and the prototype scale

Dimension Model scale Prototype scale

Sandy slope Thickness, H 80 mm 4 m

Length, L 555 mm 27.75 m

Inclination, a 32� 32�
Shaft External diameter, d 70 mm 3.5 m

Height, Hs 200 mm 10 m

Shaft spacing, s 105 mm 5.25 m

Fig. 7 Layout of the tests (model scale): section and plane views of

the reinforced model. All dimensions are in mm
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5 Validation of the proposed solution
through centrifuge test results

5.1 Failure loads

The proposed model is applied to interpret the centrifuge

tests described above. The first, straightforward application

can be made with reference to the unreinforced slope.

Given the soil strength parameters obtained from labora-

tory tests (c = 0, u = 33�), Fig. 6 suggests that slope

failure occurs for the highest possible value of ns that, for
the case under consideration, is the slope length

(= 27.75 m at the prototype scale). The failure load fur-

nished by the proposed method is 42 kPa for any position

of the applied load. In the same fashion, the maximum load

for the test with three shafts may be evaluated. Given the

very small spacing among the shafts, no flow occurs within

them and hence soil cannot but fail without intersecting

slope reinforcement, so that ns is equal to the distance np
(= 13.85 m) between applied load and the shafts’ axis. For

ns = np Eq. (11) provides a failure load qlim ranging

between 47 and 49 kPa. As an additional step, for the case

of the unreinforced soil, the failure load may be also used

to estimate to whole load–displacement curves of the

control points, as outlined below.

5.2 Load–displacement curves

It is apparent that a rigorous description of the load–dis-

placement behaviour of any point in the soil mass requires

complex analyses involving all the geometrical and

mechanical parameters of the problem, including a realistic

assumption for the constitutive law of the soil material.

Instead, it is herein tried to outline a simple method to

quickly estimate the load–displacement curve of any point

for the case of unreinforced slope. The method, while

taking into account–directly or indirectly—all the salient

problem parameters, requires few quantities easy to

determine. Specifically, it is proposed to describe the load–

displacement curve (i.e. the relationship between the

applied load q and the displacement sn at any location n)
through a hyperbolic law having equation:

sn n; qð Þ ¼ q

K0 nð Þ � 1� q
qlim

� �0:2
� � ð12Þ

Such an hyperbolic approach therefore requires the

knowledge of only two parameters, i.e. the asymptote qlim,

previously determined, and the initial stiffness K0 at the

location n. To estimate the latter, one may suppose that the

displacement field is one-dimensional so that all points at

the same coordinate n will experience the same displace-

ment in the direction of the slope, and neglect shear stress

at the base. Under these assumptions, the initial stiffness

can be simply calculated as:

K0 nð Þ ¼ E0

L� n
ð13Þ

where E0 is the Young’s modulus of the soil at small strain.

For the case at hand, considering the low confinement

pressure, both laboratory testing and the empirical rela-

tionship proposed by Fioravante [10] furnish a value of

about 28 MPa.

5.3 Comparison with experimental data

Figure 9 depicts vertical displacements of points on soil

surface against applied load for the unreinforced slope

(Fig. 9a) and for the 3-shafts reinforcement (Fig. 9b). Also

shown in the graph are the failure loads predicted by the

analytical method via Eq. (11). Figure 9a also shows load–

displacement curves predicted by Eq. (12). Vertical com-

ponent of displacement is naturally found by multiplying

the displacement along n by sina. Considering the sim-

plicity of the method and the amount of variables—and

associated uncertainties—affecting the system response,

the analytical results are in remarkable agreement with

experimental data both for initial stiffness (pronounced in

the graph owing to the log-scale in the horizontal axis) and

the evolution of the displacements by approaching the

failure load. The good performance of the model is con-

firmed for the reinforced slope in Fig. 9b, where measured

displacements approach a vertical asymptote at

q = 46 kPa, corresponding to an error between 2 and 6%,

depending on the assumption on the position of the resul-

tant thrust.

Fig. 8 Failure surfaces for the tests with 1 and 3 shafts
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6 Factor of safety of the reinforced slope
and design of longitudinal spacing

The above findings may directly be employed to interpret

the centrifuge test results where the rigid slab, that pushes

soil by applying a one-dimensional displacement field,

represents the thrust zone Lt in Fig. 2 which displaces

uniformly along the direction of the slope. As a step

towards the definition of a design methodology, a measure

of the safety conditions of the reinforced slope may be

defined considering that the resistant zone of length ns
attains failure conditions for a load Tf given by Eq. (11)

(Tf = qlimH), whereas the unstable soil applies a thrust T

which can be easily derived from equilibrium considera-

tions as:

T ¼ cH(Lu � ns)ðsin a� cos a tan dÞ ð14Þ

To quantify the safety conditions, a factor of safety FSn
may be therefore defined as the ratio of the resistant and

driving force:

FSn ¼
Tf

T
ð15Þ

The trend of the above factor of safety is ns and is

schematically represented in Fig. 10 for different values

of the length of the unstable soil Lu and position of the

resultant instabilising force. Note that in a design prob-

lem Lu can be interpreted as the longitudinal spacing of

the reinforcement along the direction of the slope. It is

easy to recognise that FSn tends to infinity for ns
approaching H (as qlim tends to infinity, Eq. 11) and for

Fig. 9 Comparison between failure load and displacements predicted by the proposed methods and load–displacement curves measured in the

tests for unreinforced slope (a) and slope reinforced with 3 shafts (b)
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ns approaching Lu (as the applied thrust T vanishes,

Eq. 14) and therefore, for any Lu, there will exist a

critical value of ns corresponding to the minimum factor

of safety. The latter thus represents the actual factor of

safety FS for the specific set of Lu, H, h, a, d, u. By
means of dimensional analysis, it would be simple to

show that FS may be expressed as function of the five

dimensionless parameters Lu/H, h/H, a/u, d/u, u. A

simple spreadsheet can be therefore employed to explore

the influence of such parameters on FS. Figure 11

depicts the factor of safety as function of Lu/H for dif-

ferent values assumed by the remaining problem

parameters. Interestingly, FS is an increasing function of

d/u, decreases with a/u whereas is almost independent

of the specific value assumed by the angle u and the

position assumed for the instabilising force. It is indeed

evident from the graph that for 1/3\ h/H\ 1/2 and

25�\u\ 35� a very narrow range of FS is identified as

function of Lu/H, a/u and d/u, especially for the more

realistic case of a/u close to unity. The knowledge of the

geometrical (a) and mechanical (d and u) properties of

the unreinforced slope, combined with the selection of a

required FS, leads to a value of Lu.

Recent design regulations like Eurocode 7 [6] employ a

different approach, namely the Load and Resistance Factor

Design (LRFD), where different partial factors are consid-

ered for driving forces and system resistance. In this logic, a

mobilised shearing resistance angle /mob, lower than the

actual one, is employed to calculate the conventional design

capacity. Following the latter rationale, Fig. 12 reports the

normalised reinforcement spacing Lu/H as function of

a//mob for different values of dmob/umob (note that curves for

different values of h/H andumob are not distinguishable) and

can be therefore directly utilised as a design chart.

7 Conclusions

In this work, a novel method based on limit analysis is

proposed to determine the spacing of closely spaced

slope-stabilising piles or shafts. The method is based on

the failure mechanism that a mass of unstable soil

pushes a stable mass along a surface through the upper

Fig. 10 Definition of factor of safety as function of Lu for different

values of h/H

Fig. 11 Factor of safety as function of Lu/H, a/u, d/u, h/H and u
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end of the reinforcement. The main findings are sum-

marised below:

1. The failure load for the stable mass is derived

analytically and expressed in closed form by exploiting

the upper bound theorem of the plastic collapse.

2. The analytical findings are validated by model tests in

a geotechnical centrifuge. The comparison between the

two approaches shows a remarkable predictive capa-

bility of the method.

3. A simple hyperbolic law, which implements small-

strain soil stiffness and the failure load determined

analytically, can be employed to reproduce the

observed load–displacement curves at any point of

the unreinforced slope.

4. The longitudinal spacing of the reinforcement ele-

ments is determined analytically. Design charts are

provided following two different design approaches.

Remarkably, the safety conditions of the slope

practically depend only on three dimensionless

parameters encompassing mechanical (a/u, d/u)
and geometrical (Lu/H) parameters, whereas they

are almost insensitive to the friction angle u and the

position of the resultant force h/H.

It is fair to mention that real problems are often more

complex than the idealised conditions analysed in the

paper, which however represent necessary assumptions to

obtain an analytical solution. Nevertheless, the design

charts may be a help for the preliminary design.

Appendix

Derivation of Equation (4)

With reference to the triangle OCB (see Figs. 4 and 5), the

law of sines assures that:

sin ObCB

OB
¼ sin CbOB

CB
ð16Þ

By making use of the law of cosines:

sinD2 ¼ sin ObCB

¼ sin CbOB
OB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

OB
2 þ OC

2 � 2�OB � OC � cos CbOB

q

ð17Þ

and therefore:

sinD2 ¼ sin hs � h0ð Þ

� r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r20 þ r20e
2 hs�h0ð Þ tanu�2r20e

hs�h0ð Þ tanu cos hs�h0ð Þ
p

¼ sin hs � h0ð Þ

� 1þ e2 hs�h0ð Þ tanu � 2e hs�h0ð Þ tanu cos hs � h0ð Þ
� ��1

2

ð18Þ

from which we obtain Eq. (4).

Derivation of Equation (11)

Solving Eq. (10) for _Q and dividing both sides of the

equation by _xcH2 r0 cosu� hð Þ:

qlim

cH
¼

_xc � 1

6
Hr0 H sin a� 2r0 cos h0ð Þ sinu

� �

þ _xc

"

� 1

6
rsns

2H sin a� 2r0 cos h0

þns cos a

 !

� sin hs þ að Þ
#

� _xc

3 tanu cos hs þ sin hsð Þr3s
� 3 tanu cos h0 þ sin h0ð Þr30

3 1þ 9 tan2 uð Þ
þ _x

c

2 tanu
r2s � r20
� �

_xcH2 r0 cosu� hð Þ ð19Þ

Multiplying both numerator and denominator of the

right side of the above equation by (6/H3) one obtains

Eq. (11).
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