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Highlights 

 fatigue damage from an estimated power spectral density is statistically uncertain 

 moment generating function of the estimated spectral moments is obtained 

 confidence interval for the ‘true’ spectral moments 

 confidence interval for the damage by the ‘single-moment’ spectral method 
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Nomenclature 
 

,  parameters of the S-N curve 

 ‘true’ narrow-band damage 

 ‘true’ single-moment damage 

 estimated narrow-band damage 

 estimated ‘single-moment’ damage 

 frequency 

∆  frequency resolution 

 ‘true’ power spectral density  

 estimated power spectral density 

 number of segments (blocks) in  

 ‘true’ spectral moment of order  

 estimated spectral moment of order  

 moment generating function 

 number of degrees of freedom 

 overlap ratio 

 total time length of  

 segment time length 

 sample realisation of time length  

 random process 

1  confidence 

 normalised random error 

 equivalent degrees of freedom 

 estimated equivalent degrees of freedom 

 chi-square random variable with  dof 

;  -percentage point of chi square random variable 

dof degrees of freedom 

edof equivalent degrees of freedom 

mgf moment generating function 

pdf probability density function 
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1.  Introduction 

The durability analysis of structures undergoing random loadings can be addressed in the 

frequency-domain by the use of spectral methods. After characterising a random loading by 

its power spectral density (PSD), spectral methods provide mathematical expressions that 

allow the fatigue damage to be estimated from combinations of PSD spectral parameters. 

A great many spectral methods exist in the literature. Starting from the pioneering works of 

Miles [1] and Bendat [2], so many spectral methods have been proposed that it would be 

almost impossible to mention them all here. Some examples, in chronological order, are found 

in [3-10]. The great majority of spectral methods apply to stationary random loadings with 

Gaussian or non-Gaussian probability distribution. In fact, the variety of non-stationarities 

encountered in practical applications makes rather hard to develop a spectral model 

encompassing any type of non-stationary loading, though solutions exist for specific 

subclasses [11,12,13]. 

A feature common to all spectral methods is that they consider the power spectral density as 

being a ‘true’ quantity, known exactly without any statistical uncertainty. This situation is 

purely hypothetical, as in practice things go differently. Usually the power spectral density is 

estimated from one or more measured records and therefore it only represents an estimate of 

the true but unknown power spectral density [14]. This estimate has an intrinsic statistical 

variability that transfers to all quantities (e.g. the damage) computed from it. 

The importance of the statistical variability of an estimated power spectrum and its spectral 

parameters seems to be well known in the field of ocean engineering [15-19]. But surprisingly 

it has received no attention in the field of structural durability, where the statistical variability 

characterising the fatigue damage computed from an estimated power spectrum is not 

considered by spectral methods. Developing a theoretical approach by which to quantify such 

a statistical variability of the damage constitutes the purpose of this article, which represents 

an extended version of [20].  

To make things more specific, let a random loading be represented as a stationary and ergodic 

random process , ∞ ∞. The process represents an infinite collection (or 

ensemble) of time-histories  of unlimited time length . Given only one sample record 

, the one-sided power spectral density of  is defined as [14,21]: 
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where 	  denotes the expected value and ,  indicates the finite Fourier Transform of 

: 

, 	 	 2 	

where symbol j is the imaginary unit and  is the natural exponent. The power spectrum  

so defined embodies, in the frequency-domain, the main statistical properties of the random 

process  (e.g. variance, rate of mean value up-crossings, rate of peaks, peak 

distribution) [22]. 

A random process is classified depending on whether its power spectrum is narrow-band or 

wide-band. If  is clustered over a very narrow frequency interval, process  is called 

narrow-band, whereas if  is spread over a wider frequency interval the process is called 

wide-band. 

For a narrow-band Gaussian process, the expected damage per second (damage intensity) is 

[2]: 

2 ⁄

1
2

/ 	 3 	

in which Γ  is the gamma function, and ,  are the zero- and second-order spectral 

moments [22,23]: 

		 2 							 1,2, … 	 4 	

(  is the frequency in Hertz). Symbols  and  define the S-N curve , relating the 

number of cycles to failure  to the stress amplitude  in a constant amplitude loading. 

Parameters  and  are usually estimated by a regression analysis of experimental fatigue 

data and their statistical variability is not considered here.  

In the circumstance in which the random process is wide-band, Eq. (3) is too conservative and 

other damage expressions should be used. Some examples can be found in [6,9]. For the 
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discussion that follows, it is useful to recall the ‘singe-moment’ method as it has the 

advantage to relate the damage to a single spectral moment: [4,5]:  

2 ⁄

2 ⁄
⁄

1
2
	 5 	

Despite its simplicity, this method was proved to agree well with time-domain results in the 

case of power spectral densities ranging from narrow-band to wide-band [4,5,6].  

It has to be emphasised that the expected damage in Eq. (3) and (5) adopts an S-N curve with 

constant slope and no fatigue limit, also known as elementary Miner’s rule [25,25]. 

Whichever spectral method is considered, the damage always depends upon one or more 

spectral moments  of the power spectral density. Therefore, the power spectral density and 

its spectral moments play a key role in the calculation of the damage in the frequency-domain. 

That being said, the cases in which the power spectral density is expressed by a mathematical 

formula are rare, apart from a few exceptions (e.g. ISO standard for road roughness [26], 

Pierson-Moskowitz for fully developed waves [27], von Karman-Harris for atmospheric 

turbulence [28], just to name a few). In these fortunate cases, one can use the power spectrum 

expression directly, or as input in a spectral dynamic analysis aimed at determining the output 

stress power spectra at any point in a linear structure.  

In all other less fortunate cases, the power spectral density must be estimated from one or 

more measured time-history records of finite time length. In the Welch’s method [29], for 

example, the power spectral density comes from averaging the power spectra of overlapped 

segments into which a sample record has been divided. Methods other than Welch’s are also 

available [30]. 

Any method will nevertheless provide only an estimate of the ‘true’ power spectrum in Eq. 

(1), which can never be computed exactly. Indeed, the ‘true’ power spectrum is a 

mathematical idealisation because – as stated by Eq. (1) – it would require an infinite number 

of infinite-length records, which are never available in practice. On the other hand, the ‘true’ 

PSD can be bounded by a confidence interval constructed from a PSD estimated from an 

observed time-history record. The estimated power spectrum is a sample realisation of the 

‘true’ power spectrum. The difference between the two constitutes the sampling variability (or 

statistical uncertainty) of the estimated power spectrum.  
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What is more important for a structure durability analysis is that the statistical uncertainty of 

an estimated power spectrum transfers to its spectral moments and, in turn, to the fatigue 

damage computed by Eq. (3) or (5), or by any other expression. Both the spectral moments 

and the damage – if coming from an estimated power spectrum – are themselves sample 

values with an inherent statistical uncertainty. Quantifying this statistical uncertainty then 

becomes of paramount importance.  

This goal will be achieved as follows. Starting from the chi-square distribution followed by an 

estimated power spectral density, the article obtains the moment generating function (mgf) of 

the spectral moments. This mgf is used to approximate the probability distribution of spectral 

moments with a scaled chi-square random variable. This result allows the confidence interval 

of the spectral moments of any order to be easily derived. This result then serves to derive the 

confidence interval of the ‘single-moment’ spectral fatigue damage. 

 

2.  Power spectral density estimated from a finite-length record 

The power spectral density  defined in Eq. (1) represents the ‘true’ spectrum of the 

random process . It is clearly a mathematical abstraction, as requires an ensemble 

averaging over all possible realisations of infinite duration that belong to .  

In practice, one has available only few records of finite duration ‒ if not perhaps only one. 

These records only allow for an estimate of the ‘true’ power spectral density, which thus 

remains unknown. For example, given one sample stationary record	  of time length , an 

estimate of  is obtained by omitting the limiting and expectation operations in Eq. (1) 

[14]: 

2
| , | 	 6 	

Throughout the text,  will be named as sample, or estimated, power spectral density to 

distinguish it from the ‘true’ power spectral density . 

Unlike , the sample power spectrum  is defined at discrete and equally spaced 

frequencies . The frequency resolution ∆  is the distance between adjacent 

points and it is determined by the total record length, ∆ 1⁄ . The spectral values , 
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1,… ,  are independent [16]. The number of points in the power spectrum, 2⁄

1, is established by the number of points  that form the digitalised version of  [14].  

It can be demonstrated that, at each frequency, the spectral estimate  is distributed as a 

chi-square random variable with 2 degrees of freedom (dof) [14]:  

2
	 7 	

The power spectrum estimated in this way has a rather large standard deviation, as large as the 

‘true’ power spectrum being estimated [14]. The standard deviation can be reduced by 

increasing the number of dofs. To this end, the original record  is divided into  adjacent 

disjoint segments (or blocks) of equal length , see Figure 1(a); the power spectral density of 

 is estimated by averaging the power spectra of each segment (Welch’s technique) 

[14,29]. With this record subdivision, the frequency resolution is established by the segment 

length, ∆ 1⁄ , see Figure 1(b), and the previous relationship becomes [14]: 

								 2 	 8 	

At each frequency, the spectral estimate  is used to construct a confidence interval for the 

true but unknown spectral value . The fact that the ratio  is a chi-square 

random variable allows writing the following probability statement: 

; ⁄ ; ⁄ 1 	 9 	

where χ ;  is the -percentage point of the chi-square distribution with  dofs, whose values 

are tabulated in statistics textbooks [14,31].  

After rearranging the quantities inside the brackets, the previous expression turns into the 

1  confidence interval that bounds the true but unknown spectral value  [14]: 

; ⁄ ; ⁄
	 10 	

For example, for =10 and 1 0.95, it is ; . =20.48 and ; . =3.25, which 

yields the two limits 0.488 and 3.077 for the ratio ⁄ . Based on these limits, one may 
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conclude that, given a value of  at every frequency, the true power spectral value  is 

not known to within a factor of 6.3 at the 95% confidence level. 

The approach described so far and depicted in Figure 1 conveys the main idea lying behind 

the power spectrum estimated from a measured record. In practice, data windowing and 

segment overlapping are often used to improve the power spectrum estimate [14,23,32]. Data 

windowing (e.g. Hanning window) alleviates the “frequency leakage”; segment overlapping 

raises the number of dofs by further increasing the number of segments in a single record. 

These improvement techniques, on the other hand, tends to weak the validity of the chi-square 

distribution for the estimated spectrum [23] and are not considered hereafter. Nevertheless, 

not considering these aspects does by no means undermine the validity of the approach 

presented in the following. 

A further aspect to be emphasised is that the time-history record  being analysed needs to 

be stationary for the PSD to exist. Quite often this requirement is violated in practical 

applications, where measured vibration data are everything but exactly stationary [12,33,34]. 

When the standard estimation procedures are applied anyway, they may yield an enormous 

scatter of the possible results depending on the chosen parameters of analysis. For example, 

large differences may be observed from analysing longer or shorter segments of a measured 

record that, on the whole, is markedly non-stationary [34]. In such circumstances, the 

deviations arising from longer or shorter stationary (or almost stationary) records ‒ which 

represent the inherent statistical scatter of a PSD ‒ are small in comparison with the 

deviations from analysing signals that violate the requirements of a PSD estimation. 

  

3.  Confidence interval for sample spectral moments 

This section introduces the concept of sample spectral moments for an estimated power 

spectral density and develops an approach for estimating their probability distribution. The 

section concludes by defining the confidence interval of the ‘true’ spectral moments. 

3.1.  Sample spectral moments 

Since  is a continuous function of frequency, its spectral moment  of order  is 

defined in Eq. (4) as an integral over all frequencies. By contrast, the estimated spectrum 
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, 1,… ,  is defined at  discrete frequency points , so its spectral moments are 

approximated by a summation: 

Using Eq. (8) and introducing the coefficient 2 ∆ , the previous expression 

becomes: 

	 12 	

where  is a multiple of a chi-square random variable, with scale parameter  and  

degrees of freedom. Equation (12) shows that  is a weighted linear combination of chi-

square random variables with a common number of dofs , but different parameters , 

1,… , . Therefore,  is a random variable, too.  

The ‘hat’ symbol emphasises that  is an estimate of the true but unknown spectral moment 

; it represents a sample value of . Note that taking the expected value of  does not 

remove the summation ∆ ∑ 2  and, therefore, represents an 

approximation of the “integral” spectral moment . This result occurs because the frequency 

axis remains divided into discrete values , with a resolution 	∆ 1⁄  controlled by the 

segment length. Only in the limit → ∞ would the frequency axis become continuous and 

the summation converge to an integral. 

 

3.2.  Moment generating function and probability distribution of sample spectral moments 

This section obtains the moment generating function of , which is next used to 

approximate the corresponding probability density function. The moment generating function 

(mgf) of a random variable  is defined as [31]:  

		 	 13 	

2 ∆ 																 1,2,… 	 11 	
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provided that the integral exists. The mgf is the Laplace transform of the probability density 

function  of . A mgf is an equivalent way to express a probability density function, 

which – in principle – can be retrieved as the inverse Laplace transform of its mgf [31].  

A useful property of  is that its derivatives computed at 0 return the moments of 

 about the origin. For example, the first and second derivatives yield the first and second 

moments: 

															 	 14 	

The variance is ; symbol  denotes the “expected value of    

squared” and  denotes the “square of the expected value of ”. 

While textbooks often report the formulae of  for the most common probability 

distributions (Gaussian, Rayleigh,…) [31], for the scaled chi-square random variable  the 

mgf is [35,36]: 

1 2        for  
1
2
	 15 	

At this point, it is useful to define the mgf  for the random variable . 

Substituting the expression given in Eq. (12): 

	 16 	

where the second equality follows from the property ∑ ∏ . The previous 

expression can be further elaborated. Since the random variables , 1,… ,  are 

independent, the expected value of their product equals the product of their expected values: 

	 17 	

The quantity  represents the mgf of the chi-square random variable 

, as exemplified in Eq. (15). Substituting in Eq. (17), one gets the mgf of the sample 

spectral moment : 
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This product of moment generating functions is too complicated and cannot be inverted to 

obtain an analytical form for the probability distribution of . However, this product of 

mgfs can be approximated by the mgf of a chi-square random variable, say , with a 

newly chosen parameter  and number of dofs . This approach corresponds to approximating 

the probability distribution of  with the probability distribution of .  

The goal is to determine  and . More precisely, the approximation seeks those values of  

and  for which the expected value and the variance of  and  are equal: 

This approximation is often credited to Satterthwaite [37]. The random variable  has 

expected value  and variance 2  [38]. Solving for  and : 

As established by the previous approximation, the expected value and variance of  are to be 

replaced by those of : 

where . The first and second moments,  and , 

are now determined from the first and second derivatives of  computed at 0. The 

Appendix A summarises the main mathematical steps; the final expressions of the expected 

value and variance of  are: 

1 2 	 2 ∆ 	 18 	

 

 
19 	

2
															

2
			 20 	

2
															

2
			 21 	

														 2 			 22 	
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Substituting these two expressions in Eq. (21), and the definition of 2 ∆ , 

one gets the final expression of : 

	 ∑ 	

∑
	 23 	

(the expression of  is omitted being of no interest for the following discussion). 

For 0, the quantity  is often called the “equivalent degrees of freedom” (edof) of the 

power spectral density  [16,17].  

Some features of  are worth to be highlighted. As clear from Eq. (23), the quantity  is a 

function of several parameters. It is proportional to the number of dofs  , which equals the 

number of segments . It has also to be noticed that, in the sums of Eq. (23), the true power 

spectrum  is to be computed at the same discrete frequencies , 1,… ,  in which 

also the estimated power spectrum is defined. This definition makes  inversely proportional 

to the frequency resolution ∆  that controls how many points  define the discrete frequency 

axis. 

The parameter  also depends both on the order  of the spectral moment (a subscript is 

added, indeed) and on the shape of the power spectral density. This last dependence is 

demonstrated in Figure 2, which compares  for four different power spectral shapes. The 

value  is independent of the actual values of	 . For the special case of =const. over 

the whole set of discrete frequencies, Eq. (23) becomes ; this value represents an 

upper bound for . 

In the sum in Eq. (23), each term  is actually not known, because it is a function of 

the true power spectrum . If  is replaced by its estimate , Eq. (23) gives the 

sample estimate  corresponding to . 

 

3.3.  Confidence interval for the true spectral moment 

According to the procedure described so far, the sample spectral moment  is approximated 

by a scaled chi-square random variable , with  degrees of freedom and 

parameter . Its expected value is . 
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The dependence on  can be made to disappear. Considering that ≅  (this result has 

already been commented above), it is possible to write the scale parameter as ⁄  and 

substitute it into the definition of , which shows that the ratio  is a chi-square 

random variable with  dofs.  

Exploiting the close similarity with , it is possible to write the 1  confidence 

interval for the true spectral moment : 

	

; ⁄
	

	

; ⁄
	 24 	

where ;  is the -percentage point of the chi-square distribution with  dofs.  

In the special case 0, the previous equation gives the confidence interval for the variance 

(i.e. zero order spectral moment) of the random process: 

; ⁄
	 	

	

; ⁄
	 25 	

where  is the sample variance, corresponding to the area under the 

estimated power spectrum . A similar result is quoted in [17,18] for the significant wave 

height 4 . 

 

4.  Confidence interval of fatigue damage 

It has already been emphasised that, in any spectral method, the fatigue damage explicitly 

depends on one or more spectral moments  of the power spectral density . An 

example is in Eq. (3) and (5). The power spectrum , its spectral moments , and the 

damage computed from them, represent ‘true’ but unknown quantities as they characterise the 

countless set of realisations in the stationary random process . 

When instead one single realization is considered, one obtains the power spectrum  and 

its spectral moments  that represent estimates of  and , respectively. The use of the 

estimates  yields an estimate of the ‘true’ fatigue damage. For example, Eq. (5) gives the 

estimate of the ‘single-moment’ damage as: 

2 ⁄

2 ⁄
⁄

1
2
	 26 	
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while the estimate of the narrow-band damage  follows after replacing, in Eq. (3), the true 

moments ,  with their sample estimates , .  

The quantities  and  represent the estimates of  and . The estimates are two 

sample values with an intrinsic statistical uncertainty that comes from the sampling 

uncertainty in the power spectrum  from which the damage is computed.  

The statistical uncertainty of the damage can be evaluated through confidence intervals. It is, 

however, not trivial to obtain a confidence interval for the narrow-band damage in Eq. (3), as 

it combines ,  in a nonlinear fashion (product, square root, exponentiation).  

It is much easier to deal with the ‘single-moment’ damage as it only involves one spectral 

moment. To start with, consider the inequality in Eq. (24) for the special case 2/ . The 

inequality remains unchanged if each of its terms is first raised to the exponent /2 and then 

multiplied by the constant 
⁄
Γ 1 . Using Eq. (5) and (26), one finally obtains: 

/ 	

/ ;	 ⁄

/

	
/ 		

/ ;	 ⁄

/

	 27 	

where  is the true but unknown damage obtained from the true spectral moment ⁄  in 

Eq. (5), and  the corresponding estimate from Eq. (26). 

Symbol 
/ ;  indicates the -percentage point of the chi-square distribution with /  dofs, 

where /  is the equivalent dof of order 2/  computed by Eq. (23). Notice that the above 

confidence interval is a function of the power spectral density shape via the parameter / . 

The confidence interval in Eq. (27) can be used to bound the unknown single-moment damage 

, which characterises the infinite ensemble of time-histories of the stationary random 

process . 

By contrast, the sample damage  depends on a particular sample time-history from which 

the power spectrum  has been estimated. The damage value  thus incorporates the 

statistical uncertainty coming from the estimated power spectrum . 

A final aspect to be emphasised is that the approach presented so far is restricted to stationary 

random loadings. Whenever this requirement is not fulfilled exactly, errors are introduced in 

the estimated PSD that may be as large as, if not even larger than, the confidence bands of the 

damage calculated as above. 
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5.  Numerical case study 

5.1.  The role of PSD estimation parameters 

The estimated power spectrum  represents one single realisation of the true but unknown 

power spectral density . At each frequency, the spectral estimate  is a chi-square 

random variable with  degrees of freedom. This randomness of  transfers to the spectral 

moment /  and, in turn, to the single-moment damage .  

Besides this, the estimated power spectrum  provides only an approximate representation 

of . This approximation comes from the fact that  is defined at discrete frequencies, 

whereas  is continuous; the distance between discrete frequencies is established by the 

frequency resolution ∆ 1⁄ . 

The damage estimate  is then a function of  and ∆ . Both parameters are considered in 

the numerical example illustrated in Section 5.2; its purpose is to study the statistical 

variability of  and to verify the correctness of Eq. (27). 

In the practical calculation of a power spectral density, in which target levels of both 

statistical accuracy and spectral resolution must be achieved, parameters  and ∆  cannot be 

chosen arbitrarily. 

The statistical accuracy in power spectrum estimate is quantified by the normalised random 

error (coefficient of variation) 2⁄  [14]. A way to diminish  is to increase the 

number of degrees of freedom . In the Welch’s method, this goal is obtained by increasing 

the number of records from which the power spectrum is averaged. A single time-history 

record is then subdivided into segments, each one contributing with 2 dofs. For  segments, it 

is 2  and the normalised random error becomes 1 √⁄  [14]. This definition 

demonstrates that  decreases if the number of segments  is made to increase.  

But  cannot increase indefinitely. If the total length  must be kept constant (for example, 

because a record has already been measured), an increase of  shortens the segment length  

and broadens the frequency resolution ∆ 1⁄ . Moreover, subdividing a record into too 

short segments may affect the perception of the stationarity of the record itself, especially if 

the entire record is not exactly stationary. For example, too short values of  may enhance a 

local non-stationary character of record portions and then lead to classify the whole record as 
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being non-stationary. Also the choice of which portions of a non-stationary record need to be 

analysed is a critical task, as it may lead to different PSD estimations [33]. 

In case the total length is not bound to a fixed value, the frequency resolution becomes an 

additional degree of freedom allowed to be changed independently. Specifying the value of 

the frequency resolution determines the block length as 1 ∆⁄ . A narrow resolution 

requires a longer segment length, and therefore a longer total record length, too. For distinct 

blocks with no overlapping, the total record length is simply . Overlapping reduces 

this value. In this case, the total length is 1 1 1 , where  (from 0 to 

1.0) is the overlap fraction between consecutive segments [23]. Higher ratios  (up to 75%) 

may be used to keep  within reasonable limits, in case a high number of segments  is 

required to achieve a low . Another way to decrease the frequency resolution artificially is 

by adding zeros at the end of the digitalised signals of every segment (zero padding) [32]. 

Table 1 clarifies the relationship among the parameters mentioned above, and how they 

change with the combinations of  and ∆  used in the subsequent numerical simulations. The 

total length  refers to an overlapping fraction of =0.50 and 0.75. Combining the highest 

number of segments with the narrowest frequency resolution gives the smallest error, but also 

the longest length .  

The values in Table 1 are merely indicative. They indeed assume that the record length  is 

the result of an arbitrary choice of  and ∆ . Nevertheless, a too high value of  may not be 

achieved in practice. Often ‒ if not almost always ‒ it is only possible to measure one sample 

record of limited time length. In this case, conflicting requirements arise. For example, if the 

number of blocks is kept fixed to guarantee a certain estimation error , a reduction of the 

total duration  (and thus of the segment length ) would cause the frequency resolution ∆  

to increase. The estimated power spectrum would accordingly become smoother, but with a 

too broad frequency resolution the peaks in the power spectrum could not be detected 

precisely.  

5.2.  Numerical simulation procedure 

The following numerical example encompasses a broad range of combinations of  and ∆ . 

As the ‘true’ power spectral density, it considers the following expression [5,39]: 
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in which =scale factor, =damping ratio, =natural frequency of the fundamental mode of 

the structure, =dominant wave period. Without loss of generality, the scale factor  is so 

adjusted that the power spectrum area is unity ( 1). The power spectral density is cut-off 

at a frequency =1.5 Hz. 

The previous equation is meant to approximate the stress power spectral density in offshore 

platforms; it modifies the Pierson-Moskowitz spectrum to incorporate the resonance effect, by 

treating an off-shore platform as a simple oscillator (which is an oversimplification that 

neglects interaction effects between different parts of the structure). Typical parameters 

values ( =5 sec, =0.02, =1.143 Hz) were chosen in the numerical simulations [39].  

Simulations examined a total of 16 different combinations of the number of degrees of 

freedom, , and of the frequency resolution ∆ . Each parameter was assigned the values 

	10, 30, 70, 150 and ∆ = 0.005, 0.01, 0.02, 0.03 Hz.  

For each of the 16 possible combinations of  and ∆ , a total of 10000 power spectrum 

realisations , 1,… ,10000, were generated from the true power spectral density 

. 

The following procedure was adopted [18]. The frequency resolution ∆  established the 

distance between contiguous points in the frequency grid , 1,… ,  at which  was 

defined. Each ordinate  was evaluated independently from a chi-square random number 

generator, with expected value  and  degrees of freedom. As a result, each sample 

realisation  took on discrete values defined on a frequency grid (with points at distance 

∆ ) and following a chi-square distribution. As an example, Figure 3 compares the true power 

spectrum with two realisations corresponding to different combinations of  ∆  and . The 

combination with higher  and lower ∆  leads to the smaller estimation error (less scatter).  

For each realisation of the power spectrum , the analysis determined the sample spectral 

moment /  and the equivalent dof / , according to Eqs. (11) and (23), respectively. 

These quantities were next used to determine the sample damage  by Eq. (26), and the 
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confidence interval by Eq. (27). The damage computation assumed an S-N curve with 

parameters =3 and =1. 

In summary, for each combination of  and ∆ , a total of 10000 sample values were 

generated for each of the random variables / , /  and . These observed samples 

values have been elaborated to estimate the frequency histograms that, suitably normalised, 

provided the probability density function (pdf). 

Note that the number of discrete frequencies in each power spectrum realisation is ∆⁄  

and, for a given cut-off frequency, that number only depends on the frequency resolution. In 

numerical simulations, the number ranged from 50 (for ∆ =0.03 Hz) to 300 (for ∆ =0.005 

Hz).  

Different is the behaviour of / . Not only does it indirectly depend on ∆  through the 

positions of the discrete frequencies, but ‒ as shown in Eq. (23) ‒ it also depends on  and 

. Being /  a random variable, the previous dependence is best illustrated by 

considering the mean value of / . For the combinations of ∆  and  here scrutinised, the 

mean value varied from minimum of 126 (for ∆ =0.03 Hz, =10) up to a maximum of 12906 

(for ∆ =0.005 Hz, =150). 

5.3.  Discussion of results 

Figure 4 displays the pdfs of the single-moment damage for the sixteen combinations of  and 

∆  examined. The damage values are normalised to the expected (true) damage, as ⁄ . 

The unit value indicates the true damage; values other than unity characterise the sampling 

error in the damage estimate. Note that two different y-axis limits are set up so that the pdfs 

can adapt best to the space available in every subplot. 

The figure reveals that the pdfs shape has a dual dependence on ∆  and . Some general 

trends are clear. For small ∆  and large , the spectral resolution is high and the normalised 

random error low. In this case, the probability distributions tend to narrow around the true 

value of the damage; this means that there is little sampling variability in the damage 

computed from the estimated power spectrum. This fortunate situation nevertheless requires a 

record with a very long duration (the longest one from those in Table 1). 

As  decreases, the pdfs become broader ‒ that is, the variance of the damage estimate 

increases. For almost all the combinations of ∆  and , the damage pdfs tend to be symmetric 
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around the expected value. They also approximate a normal distribution, despite the fact that 

the individual power spectral estimates from which the damage is computed follow a chi-

square distribution. 

As the frequency resolution increases, the degree by which the estimated power spectrum 

approximates the true power spectrum gets worse. Accordingly, an error is introduced in 

estimating the damage and the pdfs become broader. As both  and ∆  increase, the spectral 

resolution progressively dominates over the statistical variability; the pdfs become more 

flatted and slightly asymmetric. In particular, the pdf shape tends to become not symmetric 

(slightly skewed to the left) for the combination having the lowest number of dofs and the 

highest frequency resolution. 

The deviation from a symmetric shape is accompanied by a deviation from the normal 

distribution. This trend is confirmed by the comparison of the normal probability plots in 

Figure 5. The figure refers to the two opposite cases for which the equivalent degrees of 

freedom turns out to be, on average, the smallest and the highest, respectively. 

The tendency of the sample damage to be normally distributed can be explained by the fact 

that, for high dofs (usually >100), a chi-square distribution asymptotically approaches a 

normal distribution [31].  

The last result examined is the confidence interval of the damage. Figure 6 shows two 

examples of a subset of 25 (out of 10000) confidence intervals for the ‘true’ single-moment 

damage. The remaining intervals, being very similar to those shown, are not displayed to 

avoid making each figure too confused. 

The intervals are constructed around the sample damage (solid circles) according to Eq. (27), 

for a confidence 1 0.950. The sample damage is normalised as ⁄ . Although 

the figure refers to the cases =10, ∆ =0.03 Hz and =70, ∆ =0.01 Hz, other combinations 

lead to similar results. It is nevertheless interesting to note that the second combination, 

having a higher dof and smaller resolution, leads to a lower damage variability and narrower 

confidence intervals, see also Figure 4. 

The results in Figure 6 allow one to check the correctness of Eq. (27). Indeed, by counting the 

number of confidence intervals (on a total of 10000) that enclose the ‘true’ damage it is 

possible to obtain the estimate 1  of the ‘true’ confidence value 1  associated with 

the confidence interval.  
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This counting was repeated for all the combinations  and ∆  shown in Figure 4. The 

resulting values of estimated confidence are listed in the boxes in Figure 4, and also in the last 

column of Table 1.  

The values of 1  fall in the range 0.9500.969; the highest values correspond to the 

lowest . The estimated and the true confidence are almost coincident; the difference of only 

few percentage points is perfectly acceptable given the approximations in the proposed 

approach. 

It has finally to be emphasised that larger values of 1  would result if the power 

spectrum realisations are generated with values of  and ∆  lower than those used in Table 1. 

In particular, too large a value of ∆  would introduce a crude ‒ and thus unacceptable ‒

sampling approximation of the true power spectrum shape; this would yield too large 

deviations between the true and the sample values of both spectral moments and damage, thus 

decreasing the accuracy of Eq. (27). This situation is enhanced in regions where the power 

spectral density exhibits sharp peaks, as in the example considered in this study. It is then 

recommended than the frequency resolution be carefully chosen to avoid the occurrence of 

such an approximation. 

6.  Conclusions 

This work dealt with the sampling variability in power spectrum estimation and how it affects 

the fatigue damage computed by a frequency-domain approach. This sampling variability 

characterises a power spectral density that is estimated from a stationary time-history record 

of finite length. This represents the situation usually encountered in practice, where only few 

records – if not perhaps only one – are usually available from measurements. 

The work first obtained the analytical expression of the moment generating function (mgf) of 

the sample spectral moments computed from an estimated power spectral density. This mgf 

expression allowed one to approximate the probability distribution of the sample spectral 

moments by a chi-square probability distribution with a newly chosen number of degrees of 

freedom (named “equivalent degrees of freedom” of the power spectral density). This result 

was next used to obtain the confidence interval expression for the sample spectral moments 

and, more importantly, for the fatigue damage computed by the ‘single-moment’ spectral 
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method. The obtained confidence interval expression provides a way to account for the 

sampling variability characterising the damage computed from an estimated power spectrum. 

The correctness of the confidence interval expressions was verified through a numerical 

example, in which sixteen combinations of frequency resolution and number of degrees of 

freedom (dofs) were analysed. The number of dofs corresponds to twice the number of sub-

segments used in the Welch’s method for estimating the power spectral density from a time-

history record. 

The numerical example also provided an insight on how the probability density function of 

the sample damage varies as a function of the frequency resolution and the number of dofs, 

for the above sixteen combinations examined. The lowest statistical variability in the damage 

(that is, the lowest variance) occurs with the lowest frequency resolution and the highest 

number of dofs. This very desirable situation, however, requires a time-history record with a 

very long duration – yet not always achievable in practice. In this case, the equivalent degrees 

of freedom are very high, and the damage probability distribution approximates a normal 

distribution.  

By contrast, when the frequency resolution increases and the number of dofs decreases, the 

probability distribution has a larger variance, meaning a larger statistical variability in the 

damage. At the same time, the probability distribution deviates from the normal distribution 

and becomes slightly skewed. The variance increases, too, meaning an increased statistical 

variability in the damage.  

Nevertheless, the main conclusion of this study is that the fatigue damage computed ‒ through 

spectral methods ‒ from an estimated power spectral density has to be regarded as a sampling 

value inherently random, regardless of which specific combination of frequency resolution 

and number of dofs is considered in the power spectrum estimation. 

7.  Appendix: computation of the origin moments of sample spectral moments 

This Appendix explains the result in Eq. (22); it is obtained from the first and second 

derivative of the mgf  in Eq. (18) of the random variable . 

It is much easier to consider a mgf with only two terms ( 2): 

1 2 1 2   1 2 	 29 	
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The first derivative of  is: 

1 2   1 2   

  1 2   1 2 	
30 	

Deriving once more yields the second derivative: 

2
2

1 1 2 1 2

2 1 2 1 2           

2
2

1 1 2 1 2 	
31 	

There are two equal “cross terms” that add together. 

The first derivative computed at 0 gives the first moment about the origin (expected 

value): 

	 32 	

The second derivative computed at 0 gives the second moment about the origin (mean 

square value): 

2
2

1 2 2
2

1 	 33 	

All the terms like 1 2  disappear. 

The variance is: 

2 	 34 	

The result in Eq. (32) and (34) refer to the special case 2. Generalising to any  yields: 

which coincides with Eq. (22). 
  

														 2 			 35 	
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TABLES 
 

Table 1. Parameters used in numerical simulations, showing the relationship between block number, frequency resolution, standard error and 

total time length. Overlap fraction is .  and . . 

Number of 
segments, 

  

dof, 
  

Standard error, 
 

Frequency 
resolution, 
 ∆  [Hz]

Segment length, 
  [s] 

Total length, 
  [s] 

Estimated 
confidence, 

 

     .  .   

5 10 0.447 0.005 200 600 400 0.969 

0.01 100 300 200 0.969 

0.02 50 150 100 0.963 

0.03 33 100 67 0.962 

15 30 0.258 0.005 200 1600 900 0.956 

   0.01 100 800 450 0.959 

   0.02 50 400 225 0.959 

   0.03 33 267 150 0.953 

35 70 0.169 0.005 200 3600 1900 0.951 

0.01 100 1800 950 0.952 

0.02 50 900 475 0.952 

0.03 33 600 317 0.952 

75 150 0.115 0.005 200 7600 3900 0.951 

0.01 100 3800 1950 0.952 

0.02 50 1900 975 0.950 

0.03 33 1267 650 0.951 
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FIGURE CAPTIONS 

Figure 1. (a) Sample record and segments; (b) true and estimated PSD with confidence 
interval. 

Figure 2. Equivalent degrees of freedom  as a function of the PSD shape (Δf=0.1 Hz, 
fmax=55 Hz, N=551). The boxes indicate the values of . 

Figure 3. Comparison between the true power spectra density and two sample realisations 
obtained for different combinations of n and f. 

Figure 4. Probability density function of the sample ‘single-moment’ damage (normalised to 
the expected damage), as a function of the sixteen combinations of frequency 
resolution and dofs. 

Figure 5. Normal probability plot of the sample ‘single-moment’ damage for two different 
combinations: (a) n=10, f=0.03 Hz, (b) n=150, f=0.005 Hz. 

Figure 6. Sample of 25 confidence intervals constructed around the sample damage and 
compared with the ‘true’ damage (horizontal line). Results refer to: (a)	 =10, 
∆ =0.03 Hz; (b) =70, ∆ =0.01 Hz. 
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Figure 1. (a) Sample record subdivided into disjoint segments; (b) true PSD, estimated PSD 
and confidence interval. 
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Figure 2. Equivalent degrees of freedom  as a function of the PSD shape (Δf=0.1 Hz, 
fmax=55 Hz, N=551). The boxes indicate the values of . 
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Figure 3. Comparison between the true power spectra density and two sample realisations 
obtained for different combinations of n and f. 
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Figure 4. Probability density function of the sample ‘single-moment’ damage (normalised to the expected damage), as a function of the sixteen 
combinations of frequency resolution and dofs. 
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Figure 5. Normal probability plot of the sample ‘single moment’ damage for two different 
combinations: (a) n=10, f=0.03 Hz, (b) n=150, f=0.005 Hz. 
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Figure 6. Sample of 25 confidence intervals constructed around the sample damage and 
compared with the ‘true’ damage (horizontal line). Results refer to: (a)	 =10, ∆ =0.03 Hz; 
(b) =70, ∆ =0.01 Hz. 
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