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Demographic history and adaptation account for clock
gene diversity in humans

I Dall’Ara, S Ghirotto, S Ingusci, G Bagarolo, C Bertolucci and G Barbujani

Circadian clocks give rise to daily oscillations in behavior and physiological functions that often anticipate upcoming
environmental changes generated by the Earth rotation. In model organisms a relationship exists between several genes affecting
the circadian rhythms and latitude. We investigated the allele distributions at 116 000 single-nucleotide polymorphisms (SNPs)
of 25 human clock and clock-related genes from the 1000Genomes Project, and at a reference data set of putatively neutral
polymorphisms. The global genetic structure at the clock genes did not differ from that observed at the reference data set. We
then tested for evidence of local adaptation searching for FST outliers under both an island and a hierarchical model, and for
significant association between allele frequencies and environmental variables by a Bayesian approach. A total of 230 SNPs in
23 genes, or 84 SNPs in 19 genes, depending on the significance thresholds chosen, showed signs of local adaptation, whereas
a maximum of 190 SNPs in 23 genes had significant covariance with one or more environmental variables. Only two SNPs from
two genes (NPAS2 and AANAT) exhibit both elevated population differentiation and covariance with at least one environmental
variable. We then checked whether the SNPs emerging from these analyses fall within a set of candidate SNPs associated with
different chronotypes or sleep disorders. Correlation of five such SNPs with environmental variables supports a selective role of
latitude or photoperiod, but certainly not a major one.
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INTRODUCTION

Many biological processes show circadian rhythms, that is, regular
fluctuations along 24 h of the day, anticipating daily changes in the
environment. A system of endogenous oscillators presents in almost all
tissues and organs generates and coordinates such fluctuations, and it
includes, in mammals, a central pacemaker located in the suprachias-
matic nuclei of the hypothalamus (Mohawk et al., 2012). The main
role of the circadian clock is to synchronize body circadian rhythms
with those of the external environment, with light and temperature
being the most important cyclic factors (or Zeitgebers) entraining the
clock (Hut and Beersma, 2011).
At the molecular level, the circadian clock involves interlocked

positive and negative transcriptional/translational feedback loops
between clock genes and their protein products, together with a
multilevel post-translational regulation of key clock components
(Mohawk et al., 2012). In mammals the positive loop is formed by
the basic HLH-PAS proteins CLK (or its paralog NPAS2) and BMAL
that heterodimerize and bind E-box elements in the regulatory regions
of the Period (Per) and Cryptochrome (Cry) genes. The negative
feedback loop is constituted by PER/CRY heterodimers that repress
their own transcription by inhibiting CLK/BMAL activity. Moreover,
the CLK/BMAL complex activates the transcription of two nuclear
receptors, Rev-Erbα and Rora, the protein products of which regulate
Bmal1 expression to bind retinoic acid-related orphan receptor
response elements in the Bmal1 promoter. Post-transcriptional
modifications (such as phosphorylation, ubiquitination, sumoylation)
are also crucial in the regulation of circadian protein turnover

(Partch et al., 2014). For instance, mutations in the Casein kinase
1 ε and δ (Ck1ε and Ck1δ) alter the length of the circadian period in
humans and mice (Xu et al., 2005; Lee et al., 2009).
Several mutations in human clock genes, such as Per, Cry, Tim, Clk

and Bmal1, have been associated with abnormal circadian phenotypes
and sleep–wake (see Allebrandt et al., 2010; Hida et al., 2014) but there
is reason to believe that a greater number of serious and less serious
disorders may be related with disfunctions of clock genes. Because the
circadian clock is so tightly connected with the environment, it seems
logical to expect that adaptation played a significant role in its
evolution (Coop et al., 2009). However, the (so far, limited) analyses
of diversity of human clock genes have led to contradictory conclu-
sions, with different studies supporting either a role of geographically
variable positive selection (Cruciani et al., 2008) or the simple
effects of gene flow and genetic drift (Ciarleglio et al., 2008) or both
(Forni et al., 2014).
Inferring adaptation is no trivial task (Li et al., 2012). Only for a

handful of human loci there is convincing evidence, from both
genomic analyses and in vitro or in vivo studies of functional
differences between genotypes, that some well-identified environmen-
tal factors shaped patterns of variation. Examples include skin
pigmentation (Parra, 2007), the ability to digest lactose (Bersaglieri
et al., 2004) and the malaria-related polymorphisms at the Duffy blood
group (Hamblin and Di Rienzo, 2000) and G6PD (Tishkoff et al.,
2001) loci. For many other loci, evidence suggestive of positive
selection pressures does exist, but the patterns in the data are also
consistent with neutral evolutionary mechanisms related with
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demographic history (Harris and Meyer, 2006), that is, the processes
leading to the anatomically modern human dispersal over the whole
planet and successive local events.
In this study, we assembled a large database of DNA polymorph-

isms in human clock and clock-related genes, and used summary
statistics to compare observed data with expectations generated under
the null hypothesis of selective neutrality. We could identify loci in
which populations sharply differ from each other. In some instances,
these differences were detected between populations living at different
latitudes, and hence going through different modes of seasonal
fluctuation of environmental variables, such as the photoperiod. This
way, we could identify several single-nucleotide polymorphisms
(SNPs) showing evidence of positive selection, namely local adapta-
tion, clinal adaptation and, in two cases, both.

MATERIALS AND METHODS

Genomic data
We collected genetic data for SNPs genotyped in 2504 individuals, belonging to
26 worldwide populations from the 1000Genome browser (http://www.1000ge-
nomes.org/; 1000 Genomes Project Consortium et al., 2015). Among the
populations considered, 7 are from Africa, 5 from Europe, 5 from South Asia, 3
from East Asia and 4 are defined as Admixed American (Figure 1). We
assembled three genetic data sets: two consisting of clock gene polymorphisms
and one with presumably neutral SNPs. The first includes all SNPs in 25
autosomal genes, namely clock, clock-controlled and clock-related genes
(Supplementary Table S1). Out of the set of 135 162 SNPs we retained a
subset of polymorphisms showing a level of pairwise linkage disequilibrium
lower than r2= 0.3 (as estimated in the entire data set) by the PLINK v1.07 tool
(Purcell et al., 2007), using the following command: plink –file data –indep-
pairwise 50 5 0.3. This pruned subset contains 116 440 SNPs and we called it
Candidate data set.
Among these SNPs, we identified in the literature 15 polymorphisms

belonging to 11 clock genes (Supplementary Table S2), for which an association
with human sleep disorders was reported, such as the advanced sleep phase
syndrome and the delayed sleep phase syndrome, or with changes in circadian
phenotypes, at least in one world population. The data set including phenotypic
information, here referred to as the ‘Phenotype-associated’ data set, is not

independent from the Candidate data set, but no analysis was run in parallel on
both. Finally, we created a ‘Reference’ data set using the NRE software (http://
nre.cb.bscb.cornell.edu/nre/; Arbiza et al., 2012) applying Patin et al. (2009)
criteria. It consists of 200 000 autosomal neutral sites, sampled at random in
noncoding regions and at least 200 kb away from any known or predicted gene.

Environmental data
We included in the analyses seven environmental factors, that is, photoperiod,
humidity, radiation fluxes, precipitation, temperature and two proxy variables
summarizing climatic diversity: latitude and longitude. We also considered the
geographic distance from an arbitrary point in East Africa (Addis Ababa)
roughly representing the origin of the expansion processes of anatomically
modern humans, thus taking into account one crucial demographic event
affecting the allele frequency distribution.
Geographic distances from Addis Ababa were calculated as great circle

distances. In agreement with previous studies (Ramachandran et al., 2005), to
better reflect in those distances the likely routes of human dispersal between
continents, distances between populations of different continents were calcu-
lated through five obligatory waypoints (across the Suez Canal, between
Anatolia and Europe, in Northeastern Russia, Cambodia and Northwestern
Canada).
To test for any effects of the seasonal variation of the photoperiod, we

calculated for each population the difference in photoperiod between the
Summer and the Winter solstices (http://aa.usno.navy.mil/data/docs/RS_One-
Year.php).
The NCEP/NCAR (National Centers for Environmental Prediction/National

Center for Atmospheric Research) Reanalysis Project at the NOAA/ESRL
(National Oceanic and Atmospheric Administration/Earth System Research
Laboratory) Physical Sciences Division (http://www.esrl.noaa.gov/psd/data/rea-
nalysis/reanalysis.shtml) contains raw data of humidity and solar radiation
fluxes starting from 1 January 1948 until 1 January 2015. For each population,
the mean relative humidity was calculated as the ratio between the actual vapor
density and the saturation vapor density. Regarding the solar radiation fluxes,
we took into consideration the net shortwave and longwave radiation fluxes.
The former represents a measure of the difference between the incoming solar
shortwave radiation and the outgoing shortwave radiation from the earth
surface, whereas the latter is a measure of the difference between the outgoing
longwave radiation from the earth surface and the incident atmospheric

Figure 1 Worldwide distribution of 26 populations, belonging to 5 different groups: African (full circle), European (empty circle), South Asian (full square),
East Asian (empty square) and Admixed American (empty triangle). Black triangles represent the five waypoints used to estimate geographic distances
between pairs of populations (Ramachandran et al., 2005).
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longwave counter-radiation. For each sample, in reference to the period 1
January 1948–1 January 2015, we calculated the ratio between the average of net
longwave and of net shortwave radiation fluxes.
We obtained information for both the temperature and the precipitation rate

from the Climatic Research Unit database (http://www.cru.uea.ac.uk/).
Monthly average temperatures were measured starting from 1850, in stations
at different elevations, often using different methods. In order to avoid biases
that could result from these problems, temperatures in the database were
reduced to anomalies from the period with best coverage, 1961–1990.
We calculated, for each population, the mean annual temperature, considering
the number of years for which data are available. Conversely, data about
precipitations 1900–1998 are available for all 26 populations investigated in this
study. For each of them, we calculated the mean precipitation rate, expressed in
tenths of a millimetre.
Furthermore, we included in our analysis the longitude and latitude of each

population. The latter is a common proxy for other, unspecified environmental
variables that may have an effect of climate and/or photoperiod (Gunther and
Coop, 2013).

Population structure
As a preliminary step, we performed a principal component analysis (PCA)
using the snpgdsPCA function of the SNPRelate R package (Huber et al., 2015).
Then we moved to a model-based population structure analysis on the

Candidate and Reference data set using the ADMIXTURE software (http://
www.genetics.ucla.edu/software/admixture/; Alexander et al., 2009). To identify
the most supported number (K) of ancestral populations we calculated the
cross-validation error considering the number of K from 1 to 20. In both cases
five ancestral populations seem to best explain the genetic variation contained
in the data. We then clustered individual genotypes exploring a range of
K-values between 2 and 12, and repeating the analysis 50 times for each K-
value. The results were finally summarized and plotted using the CLUMPP
(http://www.stanford.edu/group/rosenberglab/clumpp.html; Jakobsson and
Rosenberg, 2007) and Distruct software packages (http://www.stanford.edu/
group/rosenberglab/distruct.html; Rosenberg et al., 2002).

Testing for the effects of natural selection
Positive selection leaves a signature in the genome that we tried to detect in
three ways. First, we used BayeScan (http://cmpg.unibe.ch/software/BayeScan/;
Foll and Gaggiotti, 2008), a differentiation-based method assuming a Bayesian
framework in which FST is a model parameter. For each locus, and taking
advantage of a reversible jump Markov Chain Monte Carlo algorithm,
BayeScan estimates the scale of evidence in favor of a model including selection
versus a model without selection. In particular, BayeScan scans for local
adaptation in allele frequency data modeling separately a coefficient (β)
assuming an island model of demography and thus regarded as population
specific, and a locus-specific coefficient (α) that reflects the strength of selection
acting on a particular locus. For each SNP, BayeScan estimates the posterior
distribution under neutrality (α= 0) and allowing for selection (α≠0), thus
computing the posterior odds ratio (PO) as an estimate of the support for the
model of local adaptation compared with neutral demography. This way, if α is
positive, the locus considered has potentially undergone positive selection,
whereas if α is negative, the locus is considered subjected to balancing selection.
Outlier detection levels depend on the estimation of the PO that can be
evaluated through the Jeffrey’s scale of evidence (Jeffreys, 1961). To control
against false positive results we calculated the expected value of log10PO yielding
a 1% of false discovery rate. We performed the BayeScan analyses on both the
Candidate and the Reference data sets under identical run conditions,
consisting of prior odds of 1000, meaning that we considered the selection
model 1/1000 as likely as the neutral model for any given SNP, 20 pilot runs,
50 000 burn-in iterations followed by 50 000 output iterations with a tinning
interval of 10, resulting in 5000 iterations for posterior estimation. As suggested
in the BayeScan manual, we removed from the analysis loci with very low
minor allele frequencies (o0.005), so that 14 707 SNPs of the Candidate data
set and 27 626 SNPs of the Reference data set were in fact analyzed. We defined
two significance thresholds. The first one was a Model-based significance
threshold, namely the expected value of the log10 of the PO (the support for

the model of local adaptation relative to neutral demography) that would yield
a 1% false discovery rate based on the reference SNPs. The second threshold
was empirical, hence called Reference-based significance threshold, and it was
simply the 1% upper confidence limit of the FST distribution in the Reference
data set; all SNPs in the Candidate data set showing FST values beyond this limit
were considered significant.
If the population structure does not correspond to Wright’s island model,

BayeScan may give biased results (Excoffier et al., 2009). To circumvent this
problem we turned to the second method, based on a hierarchical island model
(Excoffier et al., 2009) and implemented in the Arlequin software (v3.5.1.2;
Excoffier and Lischer, 2010) that specifically takes into account coancestry
among related subpopulations. Accordingly, we generated the expected neutral
FST distribution conditioned on heterozygosity using a subsample of 1000
reference SNPs. To model the hierarchical genetic structure, in agreement with
Excoffier et al. (2009), we defined 10 groups, each consisting of 100 demes. The
expected distribution of FST values for the reference SNPs was then generated
simulating the effects of this structure for 50 000 replicates by the Arlequin
software. The same approach was then used to calculate FST on the Reference
data set. Again, in agreement with the previous (BayeScan) analysis of local
adaptation, we defined a Reference-based threshold corresponding to the
candidate SNPs to an FST value greater than the 99% upper limit of
the reference FST distribution, and a Model-based threshold related to the
simulated FST distribution based on 50 000 simulations.
In our third approach, we looked for local selection reflecting an environ-

mental gradient. One can detect cases in which the covariance between allele
frequencies and ecological variants exceeds the expected covariance at neutral
loci by the method proposed by Coop et al. (2010) implemented in the
program BAYENV2 (http://gcbias.org/bayenv/). First, we computed the neutral
covariance matrix based on 10 000 reference SNPs, thus summarizing the
pattern of allelic frequency variance among the 26 populations according to a
simple drift model. This matrix of population differences (Ω) was then used to
control for population history when testing for covariance between environ-
mental variables and the population-specific allele frequencies at a given SNP.
For each locus BAYENV2 computes the ratio of the posterior probability (PO)
of the model of adaptation vs random drift; the PO and the associated Bayes
factor (BF) represent the support for the model of local adaptation with respect
to a model of random drift. This parametric method assumes a linear effect of
the environmental variable, and this can lead to spurious correlations in the
presence of strong outliers. BAYENV2 also allows to estimate the nonpara-
metric Spearman’s ρ statistic that is less affected by extreme values. We analyzed
each SNP individually and determined the distribution of PO, BF and
ρ separately for reference and candidate SNPs. In order to identify candidate
polymorphisms really showing a strong departure from null expectations, we
defined two significance thresholds. Hereafter, we shall speak of Single
threshold when, for a given SNP, the BF of the model of adaptation vs the
null model is 410; combined threshold means instead that a SNP has both BF
410 and a ρ-value 40.25, as in Jaramillo-Correa et al. (2015).

RESULTS

Analysis of population structure
We started from exploratory analyses of two genomic data sets: the
Candidate and the Reference data sets.
The PCA plots of the Reference and Candidate SNPs show

remarkable similarities (Figures 2a and b). In both cases, the African
populations are spread along the first PC axis (accounting in both
cases foro1.5% of the total variance); admixed American populations
occupy intermediate positions between Africa and, to the left, the
Eurasian populations that are distributed along the second PC axis
(accounting in both cases for o0.5% of the total variance). At this
level of resolution, it is impossible to judge whether the small
differences observed between data sets are suggestive of specific
selective processes affecting loci of the Candidate data set; we can
only say that these differences, if any, are not obvious.
We then looked for the best clustering of genotypes of the Reference

and Candidate data sets in a number of clusters from K= 2 to K= 12.
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In agreement with previous studies (Rosenberg et al., 2002), at K= 3,
clusters correspond to the main continents (orange for Africa, blue for
Europe and yellow for Asia), with the American populations showing,
once again, evidence of admixture on a recognizable genomic back-
ground. The most likely number of clusters (minimum cross-
validation error) was K= 5 (Supplementary Figures S1A and B). A
remarkably similar pattern was observed for the Reference data set
(Supplementary Figure S1A) that also showed the minimum cross-
validation error at K= 5. In short, these explorative analyses did not
suggest that the distribution of SNPs involved in the human circadian
machinery is different from the distribution of random
autosomal SNPs.

Testing for local adaptation
BayeScan estimations of average population divergence were slightly
higher for candidate SNPs than for the reference SNPs (0.125 vs
0.117). Furthermore, the number of SNPs that exceeded the 1%

Model-based significance threshold is higher than the number of SNPs
showing evidence of local adaptation using the Reference-based 1%
threshold (Table 1). Support for selection on candidate SNPs was very
strong, with 74% of SNPs having log10PO ratios 43. This value,
according to the Jeffrey’s scale of evidence, is considered to be a
Decisive support for the selection model (Jeffreys, 1961). Consistent
with this interpretation, the estimated locus-specific effect (α) was
higher in the Candidate than in the Reference data set (0.32 vs 0.30, on
average), reaching a mean value of 1.4 in the 1250 positive selected
polymorphisms of the Candidate data set. The positively selected
polymorphisms under both thresholds are reported in Supplementary
Table S3.
Population divergence estimated through the hierarchical model

identified 91 SNPs in 22 genes having extreme FST values (40.3,
Supplementary Table S3). As it is shown in Figure 3, this is a
conservative choice, as 0.3 greatly exceed the 99% confidence interval
of the values simulated under a neutral model, represented by the

Figure 2 Plots of PCA inferred from the Reference (a) and Candidate (b) data sets.
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dotted line in Figure 3. We found 1073 SNPs in 25 genes with an FST
value exceeding the 1% Reference-based threshold (Table 1 and
Supplementary Table S3), and 38 of these SNPs having FST values
much greater than the highest FST (0.37) of the Reference data set.
Taken together, the two approaches identified more polymorphisms
with evidence of local adaptation considering the Reference-based
threshold than the Model-based one (data are summarized in
Table 1).
Among these loci, the highest percentages of SNPs with signatures

of local adaptation are located in the RORA gene (18% and 25% for
the Reference-based and Model-based thresholds, respectively;

Table 2), a key circadian transcriptional activator required for normal
Bmal1 expression (Sato et al., 2004).

Correlations with environmental variables
To explore the possibility that the distributions of allelic variants at
clock genes might simply reflect one, or a few, environmental factors,
we then looked for significant associations between allele frequencies
and eight environmental variables (geographic distance, photoperiod,
humidity, ratio between longwave and shortwave radiation fluxes,
precipitation, temperature, latitude and longitude) by means of the
software BAYENV2 (Gunther and Coop, 2013). We identified a higher
number of SNPs applying the Single threshold than the Combined
one; all these SNP frequencies correlate with, at least, one of the
environmental variables (Table 3). Among the environmental factors
studied here, temperature and precipitation show the highest percen-
tage of correlations with allele frequencies, respectively 21% and 12%
of all significant correlations when considering the Single threshold,
and 25% and 17% considering the Combined threshold.
Considered all together, the overlap among the results of the three

analyses was limited; we found only two SNPs exhibiting both elevated
population differentiation and covariance with one or more environ-
mental variables (Table 4). This is not unexpected, as the tests based
on correlations would identify only clinal spatial patterns, whereas an
excess variance does not necessarily reflect any spatial variables.

Figure 3 Plot of the results of the hierarchical model analysis. Black points are the reference SNPs and gray ones are polymorphisms from the Candidate
data set. The upper dotted line represents the 99% confidence interval based on the Reference data set SNPs.

Table 1 Number of single-nucleotide polymorphisms (SNPs) showing

evidence of local adaptation using both the Reference-based

threshold (left) and the Model-based threshold (right)

Significant threshold
Reference based Model based

Approach BayeScan Arlequin BayeScan Arlequin

No. of SNPs 273 1073 1250 91

No. of genes 24 25 25 22

Shared SNPs 230 SNPs in 23 genes 84 SNPs in 19 genes

The number of SNPs giving significant results under both approaches are reported at the
bottom.
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Analyses of the ‘Phenotype-associated’ data set
Finally, we wanted to understand whether SNPs in the ‘Phenotype-
associated’ data set have been possible targets of adaptation phenomena.
None of our Phenotype-Associated SNPs showed significant departures
from null expectations in the previous analyses based on extreme FST
values (that is, BayeScan and Hierarchical Model). However, when
considering candidate SNPs with BF 499% of the reference values in
the BAYENV2 analysis, we could identify 5 polymorphisms showing
significant correlation with at least one of the environmental factors
analyzed here. These polymorphisms, falling in five crucial clock genes,
along with the correlated environmental variables, are detailed in Table 5.

DISCUSSION

Taken together, the results of our analyses do show support for the
view whereby various components of the human circadian clock
evolved under the effects of positive selection, but also that selective
pressures were rather weak upon individual loci.
Previous studies in human populations investigated the association

of the circadian clock genes with pathological conditions, such as
metabolic and affective disorders. For example, Forni et al. (2014)
analyzed whole genome polymorphism data in populations of the
CEPH panel to investigate how the seasonal photoperiod variation
might have exerted a selective pressure during the expansion of modern
humans out of Africa. They suggested that this expansion influenced
adaptive evolution at circadian regulatory loci and at risk variants for
psychiatric and neurologic diseases. Lane et al. (2016) performed a
genome-wide association study of self-reported chronotypes of4100 000
UK individuals, identifying 12 variants in genes involved in the circadian
clock mechanism and in the light-sensing pathways (possibly related to
schizophrenia, educational attainment and body mass index). A similar
study has been conducted by Hu et al. (2016), who searched for
correlations between whole genome variants and a self-reported morn-
ingness in the 23andMe participant cohort, finding significant signals in
circadian and phototransduction pathways. The present survey thus
represents a broader effort to explore specifically human clock gene
variation at the worldwide level and using polymorphism data coming
from complete genomes; this way, we could draw inferences on their
evolution and on the effect of potentially relevant factors in the
environment. The Candidate- and the Phenotype-associated data sets
we analyzed include SNPs associated either generally with the circadian
clock or specifically with chronotype alterations.
Our initial analyses of population structure show that the distribution

of the SNPs of the Candidate data set, including clock, clock-controlled
and clock-related genes, does not depart from that observed in the
analysis of neutral genome diversity (see also Rosenberg et al., 2002; Li
et al., 2008). Although such a result does not mean that selection was
irrelevant, certainly it does not point to simple selective mechanisms
affecting single genes as major determinants of population differences.
Inferring positive selection from genomic data is complicated by the

fact that patterns in the data may indeed reflect selection, or also the
effects of population history, or a combination of both. For some 60
years now, the presence of outliers in the distribution of genetic
variances, that is, of loci showing either very low or very high levels of
variation, has been taken as suggestive of phenomena affecting
single loci (such as selection), as opposed to the whole genome
(such as genetic drift and gene flow) (Cavalli-Sforza, 1966). The
availability of large amounts of information about nongenic regions

Table 2 Genes showing at least 10% of single-nucleotide

polymorphisms (SNPs) with evidence of local adaptation

Reference based Model based

Gene % Of SNPs Gene % Of SNPs

RORA 18 RORA 25

NPAS2 11 CKIδ 19

BMAL1 10 AVPR1B 12

TIM 11

Table 3 Number of single-nucleotide polymorphisms (SNPs) showing

evidence of correlation with environmental variables, using both the

‘Single’ and ‘Combined’ thresholds in the BAYENV analysis

Significant threshold Single Combined

No. of SNPs 190 69

No. of genes 23 20

Table 4 Two single-nucleotide polymorphisms (SNPs) showing both

evidence of local adaptation and significant correlation with, at least,

one environmental factor

Significant threshold Gene SNP Correlated environmental variables

Reference based NPAS2 rs72976842 Latitude

Ratio of L/S wave radiation fluxes

Model based AANAT rs4647868 Ratio of L/S wave radiation fluxes

Abbreviations: L/S, long/short; SNP, single-nucleotide polymorphism.
For each SNP the significance threshold and the correlated environmental variable is reported.

Table 5 Five SNPs in the phenotype-associated data set showing significant correlation with at least one environmental variable

Gene SNP Correlated environmental variable(s) Chronotypes associated References

NPAS2 rs7598826 Distance from Addis Ababa Alteration of sleep duration Allebrandt et al. (2010)
Ratio of L/S wave radiation fluxes

Mean longwave radiation flux

PER2 rs934945 Mean humidity rate Diurnal preferences Lee et al. (2011)
PER3 rs228730 Mean precipitation rate DSPS Archer et al. (2010)
CKId rs7209167 Photoperiod Alteration of sleep duration Allebrandt et al. (2010)
OPN4 rs2675703 Distance from Addis Ababa Variation in sleep onset and chronotypes Roeckelin et al. (2012)

Longitude

Abbreviations: DSPS, delayed sleep phase syndrome; L/S, long/short; SNP, single-nucleotide polymorphism.
For each polymorphism, we reported the abnormal chronotypes or the sleep disorder to which the polymorphism has been previously associated.
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has increased the power of tests exploiting this basic idea (Novembre
and Di Rienzo, 2009).
Because the Admixture and PCA analyses did not point to obvious

differences between clock genes and presumably neutral genome regions,
we chose to combine different approaches to detect the signature of
selection at individual loci. Whether or not the island model assumed by
BayeScan can faithfully represent migrational relationships at this scale is
open to discussion. In principle, a hierarchical island model seems to be
more realistic and more conservative than a standard island model, but,
in practice, there is no way to tell. We thus decided to combine the two
approaches in order to identify a (smaller) subset of SNPs showing
significant departures from null expectations under both methods, and
hence to have a higher chance to tell natural selection from the
background of demographic history.
The results of our analyses point to several SNPs departing from

null expectations in their distribution, some of them very significantly.
Most of the polymorphisms with evidences of local adaptation were in
the BMAL1, NAPS2, TIM, RORA and CKIδ genes, suggesting selection
action might have affected all circadian clocks components (positive,
negative and clock-related genes).
In addition, and contrary to what was observed in one (Cruciani

et al., 2008) but not all (Forni et al., 2014) previous studies on human
clock genes, we also found some evidence of correlation between
circadian clock SNPs and environmental factors.
Two SNPs emerge from the joint analyses of local and clinal

adaptation, namely rs72976842 in NPAS2 and rs4647868 in AANAT.
NPAS2 (neuronal PAS domain protein 2) is a transcription factor
paralog of CLOCK expressed mainly in the mammalian forebrain. It
has been shown in mice that both clock proteins can independently
heterodimerize with BMAL1 in the suprachiasmatic nuclei to maintain
molecular and behavioral rhythmicity (Reick et al., 2001). An over-
lapping role of CLOCK and NPAS2 has also been shown in the
circadian expression of liver FVII, a key liver protease (Bertolucci
et al., 2008). In humans, epidemiologic evidence linked NPAS2 with a
variety of disorders, including winter depression (Partonen et al.,
2007). Furthermore, a NPAS2 missense mutation (rs2305160) is
associated with risk of cancer (Zhu et al., 2008), but that SNP is not
in linkage disequilibrium with the one we found to be positively
selected, namely rs72976842 (r2= 0.014).
The second locus, AANAT (arylalkylamine N-acetyltransferase),

codes for a key enzyme involved in daily melatonin synthesis and its
transcription is regulated by the circadian clock via the E-box
promoter elements.
Evidence of correlation between ecological factors and five SNPs

from the Phenotype-associated data set suggest that the genetic
variation associated with some crucial components of the circadian
clock is variously influenced by environmental factors (Table 5). Three
such polymorphisms are in clock genes (rs7598826 in NPAS2,
rs934945 in Per2 and rs228730 in Per3) and two in clock-related genes
CKIδ (rs7209167) and OPN4 (rs2675703).
We have already mentioned NPAS2; its SNP rs7598826 is known to

correlate with sleep duration (Allebrandt et al., 2010). SNPs in PERs
correlate with humidity and precipitation mean rates and have been
associated with diurnal preferences (Per2, rs934945: Lee et al., 2011;
Per3, rs228697: Hida et al., 2014) and delayed sleep phase syndrome
(Per3, rs228730: Archer et al., 2010). Both Per2 and Per3 participate in
timekeeping mechanism in the central (suprachiasmatic nuclei) and
peripheral (pituitary gland and lung) oscillators, respectively
(Pendergast et al., 2010). A recent study demonstrated that the
phosphorylation of the PER2 protein is the mechanism underpinning
the ‘temperature compensation’, a key feature of the circadian clock

that allows the organisms to maintain a 24-h period regardless of the
environmental temperature (Zhou et al., 2015).
Per3 was deeply studied because some 10% of the human

population is homozygous for the five-repeat allele of a VNTR
(variable number tandem repeat) polymorphism within it, and these
people show morning preferences (Archer et al., 2010). In contrast, the
homozygous genotype for the four-repeat allele has been associated
with evening preferences (Archer et al., 2010). We did not investigate
this VNTR polymorphism because the standard algorithms we used to
identify selection are not suitable for tandem repeat loci.
As for the CKIδ gene, it controls nuclear transport and degradation

of core elements of the circadian clock such as PER1 and PER2 and
determines the circadian period length through the regulation of the
speed and rhythmicity of their phosphorylation (Partch et al., 2014). It
is intriguing to note that rs7209167 in CKIδ shows a significant
correlation with photoperiod and has been associated with the
alteration of sleep duration (Allebrandt et al., 2010). CKIδ is currently
the target of pharmacological studies aimed at shifting or resetting the
phase of circadian rhythm for the treatment of circadian rhythm
disorder, such as the familial advanced sleep-phase syndrome deter-
mined by a missense mutation (T44A, rs104894561) (Xu et al., 2005).
rs104894561 was not included in our analysis because population data
are not available in 1000Genome browser.
Finally, OPN4, also called melanopsin, is a circadian photopigment

expressed within the ganglion and amacrine cell layers of the
mammalian retina (Lucas, 2013), mediating non-image-forming
responses to light, such as the sleep induction, the pupillary light
response and others. The mouse melanopsin gene is present in two
fully functional isoforms: the short (OPN4S) and the long (OPN4L)
isoform. Recent papers showed that these different isoforms of OPN4
mediate different behavioral responses to light (Jagannath et al., 2015).
Both isoforms are also present in the human genome, but the
functional results requires confirmation. rs2675703 in OPN4, the
SNP that we found correlated with two geographical parameters, has
been previously associated with variation in sleep onset and chron-
otypes (Roeckelin et al., 2012). Recently, activator or inhibitor of
melanopsin have been proposed as treatments to mimic light and
darkness to manage sleep disturbances and mood disorder in normal
and blind patients (Hatori and Panda, 2010).
Although all these findings make biological sense, and may have

implications for the development of drugs against sleep disturbances
and disorders, very few SNPs of this study correlate with some of the
main environmental variables. We interpret this finding as suggestive
that mechanisms underpinning the evolution of human circadian
clock, much like those related with other complex traits, are the result
of more complex interactions, ones that can hardly be discovered
focusing only on SNP frequencies.
Investigations on how circadian systems are adapted to different

latitudes in humans are at an early stage. Evidence of genetic differences
likely because of selection caused by environmental conditions along
latitudinal clines are mainly available for insects and fishes (Kyriacou
et al., 2008; O'Malley and Banks, 2008). Analysis conducted on Drosophila
melanogaster (Kyriacou et al., 2008) showed that latitude and photoperiod
could indeed affect the evolution of circadian clock genes.
The selection mechanisms we could investigate at the genomic level

are clearly unlikely to affect all clock genes, and even less so to act with
the same intensity on most of them. The emerging picture seems one
in which local selective pressures had an effect on one or a few
components of the human biological clock. However, these effects are
likely minor, as shown by the absence of significant differences in the
global patterns of variation for clock and clock-related genes on the
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one hand, and the set of presumably neutral markers we analyzed on
the other. Larger samples of populations will certainly help telling
apart the effects of positive selection from those of shared demo-
graphic history. However, we feel that an even more crucial leap
forward will be represented by the development of new methods
allowing one to jointly consider several genes and their interactions,
and compare them with a large set of variables in the environment.
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