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ABSTRACT 12 

In May 2012 widespread sand blows formed along buried channels in the eastern sector of the Po 13 

Plain as a consequence of a seismic crisis with main shocks of Mw 6.1 and 5.9. At San Carlo 14 

(Ferrara) a trench dug a few week after the earthquakes exposed sand dikes cutting through an old 15 

Reno River channel-levee system that was diverted in the 18° century and was deposited starting 16 

from the 14° century (unit A); this sequence lie on Holocene muddy floodplain and scattered sandy 17 

channel deposits (unit B) and a Pleistocene channel sand unit (unit C). Sand inverse and direct 18 

grading, concave layering and vertical lamination coexisting along the dikes suggest multiple 19 

rhythmic opening and closing of the fracture borders that were injected and filled of slurry sand 20 

during the compression pulses end emptied during the extension phase. The pulse mechanism may 21 

have lasted for several minutes and formed well stratified structure of the sand volcanoes that 22 

formed on the top of some fractures. Sands from dikes and from the various units show well defined 23 

compositional fields from lithoarenitic to quartz-feldspar-rich compositions. Sorting related to 24 

sediment flux variations did not apparently affect the sand composition, across the sedimentary 25 

structures. Sands from the old Reno levee and channel fill (unit A) have abundant lithic fragments 26 
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deriving from the erosion of Apennine sedimentary carbonate and terrigenous successions. 27 

Pleistocenic sands (unit C) are enriched in quartz and feldspars as a consequence of the different 28 

climatic weathering condition that prevailed during the last glacial stage. The Pleistocene sands 29 

were partially reworked during the Holocene (unit B). Composition of the sand filling the dikes 30 

show clear affinities with sand layer of the old Reno River channel (Unit A) and clearly differ from 31 

any sand from deeper layers (Unit B and C), which are richer in quartz and feldspar and poorer in 32 

sedimentary lithic fragments. Textural and compositional data indicate that the liquefaction 33 

processes originated from a relatively shallow source consisting of channel sands located within 34 

Unit A at 6.8.to 7.5 m depth. 35 

 36 

Keywords: Sand liquefaction, sand composition, 2012 Emilia Romagna earthquake, fluvial 37 

deposits, Po Plain. 38 

 39 

1. Introduction 40 

 41 

In May 2012 the eastern sector of the Po Plain (northern Italy) was affected by two 42 

earthquakes (Mw 6.1 and 5.9; Pondrelli et al., 2012) followed by several aftershocks (up to 43 

Mw 5.1). The seismic crisis was triggered in correspondence of a portion of the Apennines 44 

thrust belt buried below the alluvial plain (Pieri and Groppi, 1981; Caputo et al., 2012). The 45 

first event produced relevant liquefaction phenomena, surface fracturing and sand ejection, in 46 

particular in the western sector of the Ferrara province (Papathanassiou et al., 2012). In this 47 

area, the liquefaction processes were concentrated along an elongated topographic ridge 48 

corresponding to an old channel of the Reno River that was active until the end of the 18° 49 

century when it was artificially diverted. 50 

Due to the destructive damage potentially produced on human structures and activities, sand 51 

boil and liquefaction phenomena are throughly studied to asses the geotechnical conditions for 52 
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their recurrence (Chang et al., 2011). Less explored is the sedimentology of the liquefaction 53 

mechanisms and the selective processes acting on sand grains: This is particularly interesting 54 

because, although the phenomenon is mostly limited to sands, even gravelly sediments can be 55 

susceptible to liquefaction (Chen et al., 2008). No data are available on the possible influence 56 

of the liquefaction phenomena on the sediment composition: does sand retain the same 57 

petrograhic composition of the source layer while travelling through the fractures? Is there 58 

any selective mechanism that may shift the sediment composition when the pressurized slurry 59 

of water and sand erupts to the ground surface? These questions are particularly significant as 60 

the sand compostition may be used as a tool to pinpoint the source layers, provided that sands 61 

located at different stratigraphic layers have been petrographically characterized. This applies 62 

also to old sand blows buried by other deposits preserved in the geologic record.  63 

Fluvial sand composition studies have a particular significance in depositional settings such as 64 

the late Pleistocene–Holocene Po Plain, where distinct compositional fields characterize 65 

modern sands from different streams, as well as older sediments, back to the Pleistocene 66 

(Lugli et al., 2007; Garzanti et al., 2011). Several key petrographic components provide 67 

diagnostic features to distinguish sand bodies buried beneath the floodplain (Johnsson et al, 68 

1991; Arribas and Tortosa, 2003; Critelli et al., 2003; Weltje and Von Eynatten, 2004: Basu et 69 

al., 2013). In this context, we analyzed the texture and petrographic composition of sands 70 

injected during the seismic crisis of 2012 along the paleo-Reno River body at San Carlo 71 

(Ferrara), and sands from subsurface deposits at different depths. The aim of the research was 72 

to provide a contribution to the understanding of earthquake-induced liquefaction mechanisms 73 

using texture and petrographic parameters to identify the possible source layers of the sand 74 

blows. 75 

 76 

2. Geological setting 77 

 78 
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The Ferrara alluvial plain area is located on the northern buried sector of the northern 79 

Apennines fold-and-thrust belt, where streams draining the chain flow northeastward into the 80 

Po River and the Adriatic Sea (Fig. 1). The Northern Apennines formed mainly during the 81 

Tertiary in the frame of the convergence between the European and the Adria plates. The plate 82 

movement consumed the interposed Tethyan oceanic crust with the formation of an 83 

accretionary prism, which during the subsequent collisional phase produced a complex 84 

orogenic wedge (Ricci Lucchi, 1986; Bettelli and De Nardo, 2001; Argnani et al., 2004). On 85 

the northern side of the chain, these units are unconformably overlain by Miocene-Pliocene 86 

and Quaternary terrigenous deposits of the Po Plain.  87 

The Po Plain is the syntectonic sedimentary wedge filling the Pliocene-Pleistocene Apennine 88 

foredeep. The total basin infill is up to 4 km-thick, and the Quaternary deposits reach a 89 

thickness of 1.5 km. The factors controlling the architecture of the sedimentary filling 90 

(Amorosi et al., 2008) were the contrasting subsidence average rates induced by the vertical 91 

motions of the blind thrusts buried under the foredeep deposits, such as the Ferrara faulf-fold 92 

system (Pieri and Groppi, 1981). This long-term effect combined with the Holocene rise of 93 

the Adriatic Sea level reduced the gradient along a west-east drainage axis. The main drainage 94 

element, the Po River, was tectonically forced to shift northwards and human pressure on 95 

forest cover since the Bronze Age produced a generalized increase in fine bedload discharge 96 

into the Apennines tributaries (Ravazzi et al., 2013). The river network continuously shifted 97 

laterally as a consequence of climate changes and to adjust the local tectonic pattern (Fig.1). 98 

The late evolution of the system has been successfully traced following the physical evidence 99 

of paleochannels on the alluvial plain surface, whereas the older sedimentary patterns are 100 

revealed by the provenance composition signal of buried Holocene channel sands wich match 101 

those of the present day rivers (Lugli et al., 2007). 102 

 103 

3. The recent evolution of the Reno River 104 
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 105 

The synergic role of fast subsidence and large sedimentary input have produced very high 106 

sedimentation rates and frequent changes in the fluvial drainage framework of the central part 107 

of the eastern Po plain (Fig. 1). The evolution of the river network can be reconstructed and 108 

dated in great detail, through the correlation of the stratigraphic sedimentological evidence 109 

with compositional data (Lugli et al., 2007) and a large amount of historical information and 110 

accurate ancient maps (e.g. Bondesan 1989; Caputo et al., 2015).  111 

In the late Middle Age, the Reno River was neither able to reach the Adriatic Sea nor to 112 

directly flow into the Po River, which was running about 10 km to the north of the study area. 113 

At that time the Reno River was mostly feeding a large paludal area and only at the end of the 114 

18° century it was successfully forced to reach the sea, through an abandoned southern 115 

distributary channel of the Po River. The diversion point is located just to the southwestof the 116 

investigated site (Fig.1). The investigated sector of the channel-levee system was already built 117 

in its present form at the beginning the 15th century C.E. and its depositional morphology is 118 

still recognizable today. It consists of a concave belt oriented SW-NE (the former channel), 119 

bordered by two marginal ridges (the levees) rising up to 4-5 m above the surrounding 120 

floodplain. The topographic gradients created by the channel-levee ridge had a major role in 121 

the coseismic liquefaction dynamics, which was emphasized by lateral spreading phenomena 122 

(Papathanassiou et al. 2012). 123 

The old Reno River channel-levee system was deposited on top of an alluvial sedimentary 124 

succession that was thoroughly investigated by boreholes, geotechnical and geognostic 125 

surveys. The shallow sequence (Calabrese et al., 2012) can be divided into three main units 126 

(A, B, C), from the top to the bottom (Fig. 2): 127 

- unit A, Recent channel-levee unit consisting of medium sand belts (channels) and alternate 128 

fine sand-mud bodies (levees and proximal crevasse splays), spanning from the surface to 129 
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about -13 m below the old channel ridge and -5 to – 6 m below the present-day floodplain; its 130 

base has been radiocarbon dated to a numerical age of 1450-1581 C.E.;  131 

- unit B, Holocene paludal unit, consisting of floodplain mud and peat, with isolated channel 132 

and crevasse-splay sand bodies; this unit is 6 to 10 m-thick and was deposited starting roughly 133 

since the beginning of the Holocene;  134 

- unit C, latest Pleistocene floodplain unit, consisting of floodplain mud, and channel and 135 

levee sand bodies deposited during and following the last glacial maximum. 136 

The earthquake shaking produced an array of fractures roughly parallel to the old river ridge 137 

that were exposed for a few months by digging a trench opened a few weeks after the main 138 

schock. The sedimentary sequence exposed in the trench (Caputo et al., 2012) belongs to the 139 

upper part of the Recent channel-levee system of the unit A and consists of four main 140 

depositional facies associations (Fig. 2):  141 

A1) distal levee to proximal alluvial plain silts and silty clays, with graded fine-sand overbank 142 

beds, which are partially amalgamated by bioturbation, contain root structures and show 143 

pedogenetic alteration, traces of agricultural activity and ceramic fragments;  144 

A2) proximal levee sands and sandy silts, with direct gradation and tractive lamination 145 

structures;  146 

A3) channel sediments consisting of medium sand, showing festoon cross stratification. The 147 

sand contains argillaceous rip-up clasts, rounded armored mud balls, wood and brick 148 

fragments;  149 

A4) channel sands slightly older than A3, that were intercepted by drilling at the base of the 150 

trench (depth 6.8-7.5 m). 151 

The above sequence is cross cut at high angle by several dikes which represent extension 152 

fractures infilled by sands injected upward from the trench bottom. Some of them reach the 153 

topographic surface and extend horizontally outside the trench for tens of meters, while others 154 
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stop below the ploughed layer (about 0.5-1 m deep); the latter have been associated with the 155 

1570 Ferrara earthquake (Caputo et al., 2012). 156 

 157 

 158 

4. Materials and methods 159 

 160 

The sampling of sand has been done in a trench dug immediately after the seismic event, 161 

which allowed the detailed observation of the fluvial sedimentary sequence across the Reno 162 

River down to the depth of about 6 m (Fig. 2). The sediments consist of cross-bedded sands 163 

from the paleo-channel of the Reno River and the laminated sand-mud leeve deposits cut by 164 

the liquifaction sand dikes. We sampled also cores from deeper sand horizons crossed by 165 

drillings down to the maximum depth of 50 m. A total of 41 sand samples were collected and 166 

analyzed: - 17 samples from the five dikes (named D 3, 4, 5, 6 and 7 in the trench section 167 

shown in Fig. 2), each dike sampled at different depths; - 4 samples from the modern sands of 168 

the present-day Reno River; - 10 samples from the levee (unit A1-A2) and channel fill (A3) of 169 

the paleo Reno River; - 4 samples from paleo-channel sands drilled at the bottom of the trench 170 

(unit A4),  - 6 samples from cores outside the trench from unit B (borehole S2, 8.20 to10.45 m 171 

depth and borehole S3, 6.90 to 9.60 m depth) and the lower sand layer dating back to the 172 

uppermost Pleistocene (borehole S10, 22.50 to 24.50 m depth, unit C). Sample location is 173 

shown in Fig. 2. 174 

Grain-size analyses were performed using standard techniques: mechanical sieving for the 175 

sandy fraction and hydrometer analysis for fine-grained sediments. Sand samples consisting 176 

of a few hundreds of grams were washed with dilute H2O2 to remove organic matter and were 177 

air dried and mechanically sieved for granulometric and compositonal analyses. The result of 178 

grain size analyses for most of the samples is a mean value of multiple bands that are a few 179 

millimeters to centimeters in thickness, as sampling encompassed many of these vertical 180 
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features (see sedimentological description). 181 

For the compositional analyses, two sub-samples were prepared for each samples: the whole 182 

sandy fraction (for qualitative observations) and the fine sand fraction (0.125–0.250 mm) for 183 

point counting. The necessity to analyze the fine sand fraction was dictated by the lack of 184 

medium-coarse sand at some of the sampling sites and for comparison with the same grain-185 

size fraction used in Lugli et al. (2007). Sands were impregnated in epoxy resin under vacuum, 186 

thin-sectioned, and stained for carbonate identification. Point counting under transmitted light 187 

microscopy was performed on the 0.125–0.250 mm fraction, according to the Gazzi-188 

Dickinson method (Zuffa, 1985; Weltje, 2002). At least 300 grains were point counted for 189 

each section to achieve modal composition. Results of point counting are presented in Table 1. 190 

Components not related to the original sand composition, such as authigenic carbonate 191 

nodules, penecontemporaneous shell fragments, soil and organic fragments were excluded 192 

from the final calculations.  193 

 194 

 195 

5. Results 196 

 197 

5.1 Sedimentology of the sand blows 198 

 199 

The coseismic sand dikes represent vertical straight, planar or curved extension features 200 

crosscutting the sequence at high angles from the base of the trench to the topographic surface 201 

with a vertical extension of at least 5 m. In several cases (dikes D 5, 6, 7) they stop 1 m or a 202 

few decimetres below the surface, but the main fracture may have reached the surface 203 

elsewere. The width of the fractures varies from a few centimetres to about 30 cm. Most 204 

fractures are single, but tapering and bifurcation are also present (Fig. 3 and 4). Some fracture 205 
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margins are closely spaced locally and are partially filled by muddy fragments from the host 206 

sediment (Fig. 3). 207 

The sand injected into the fractures shows complex sedimentary structures similar to those 208 

described by Nichols et al (1994) and Hurst et al. (2011; see also references therein). The 209 

most common feature is a distinct banding, that ranges in thickness from 0.3 to 3 cm (Fig. 5), 210 

and can be longitudinal to the dike length, or perpendicular to the dike margins (Figs. 3, 4, 5). 211 

The bands oriented parallel to the dike are bounded by sharp contacts marked by thin clay 212 

veneers and are defined by differences in grain size and grain alignment. The multiple sets of 213 

graded layers that form the banding may show variable thickness along the dikes and some 214 

bands scoured into adjacent layers (Fig. 3 and 4). The largest fractures are filled by massive 215 

sand which graded along the vertical fissures (Fig. 5) and show an internal stratification 216 

consisting of multiple superimposed concave fine-grained veneers (Fig. 3). We observed both 217 

direct and inverse vertical grading of the sand from medium sand to mud. Similar well-218 

laminated structures are observed in sand volcanoes that formed on the top of the fractures in 219 

many of the liquefaction sites around San Carlo (Fig. 6). 220 

 221 

5.2 Grain-size distribution 222 

 223 

Results of grains size analysis are reported in Fig 7. The content of sand, silt and clay for all 224 

samples is shown in the triangular plot of Fig. 8. The samples range from almost pure sands to 225 

silt, with a content of clay less than 20%. Samples from the levee facies are the finest, made 226 

up of coarse silt to very fine to fine sands. Samples from the paleo-channel and from deeper 227 

layers are predominantly medium and medium-coarse grained sands. The dikes consist mainly 228 

of very fine to fine and medium sands. In four samples the amounts of coarse-grained sand is 229 

higher than 10 %. One dike sample is made up of silt. In all dikes the amount of clay is less 230 

than 10 %. The grain-size distribution along the same dike shows no systematic trends, as 231 
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samples located nearby each other may have different grain-size. This is shown by the 232 

diagram of Fig 9 that plots the mean diameter for each dike at different dephts: dike D 3 is 233 

characterized by a slight grain size increase from the lower portion to the top, while an 234 

opposite trend is observed in dike 5.  235 

Sorting of all sands is moderate to poor and for dikes ranges from 1.22 to 2.46. 236 

 237 

5.3 Sand Composition 238 

 239 

5.3.1 The modern Reno River fluvial sands.  240 

Among the examined samples, the sands from the modern Reno River are the most 241 

lithoarenitic; they are made up of quartz (ranging from 29.7 to 35.19%, Table 1), feldspars 242 

(15.2 -21.7%) and sedimentary fine-grained siliciclastic and carbonate lithics. Shales are the 243 

dominant lithic grains (12.4 to 18.6%); they are well lithified, well rounded, with an evident 244 

iso-orientation of clay minerals, and for these characters they appear to have a detrital origin, 245 

derived from older pelitic successions of the Northern Apennines. Minor intrabasinal muddy 246 

components consisting of penecontemporaneous rip-up clasts have also been observed. Sands 247 

of the modern Reno River are well distinguishable from the other rivers of the Po plain, as 248 

defined by Lugli et al. (2007). 249 

 250 

5.3.2 The paleo Reno River fluvial sands  251 

The sand samples from the paleo-Reno levee (unit A1-A2) and channel fill (A3) are quite 252 

homogeneous in composition (Fig. 10 a, b), slightly impoverished in lithic fragments 253 

compared to the modern Reno River sands. The amount of quartz ranges from 29.7 to 37.7%. 254 

Feldspars (both plagioclase and K-feldspar) vary from 18.1 to 23.7%. Fine-grained lithics are 255 

mainly sedimentary, made up of micritic and sparitic limestones (from 9.4 to 17.0%) and 256 

siltstones and shale (14.4 to 20.4%). Metamorphic lithics and cherts are minor components.  257 
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The composition of older channel sands (Unit A4), shows quartz content ranging from 28,8 to 258 

39.6%, feldspars from 20.1 to 26.6%, siltstones and shale vary from 14.5 to 23%, carbonates 259 

from 21.3 to 23.7%. 260 

 261 

5.3.3 The sand dikes 262 

The sands filling the dikes show relatively homogeneous composition (Fig. 10d) with one 263 

exception.  Total quartz range from 31.2 to 42.2%, feldspars from 16.3 to 24.9%. Carbonate 264 

lithics vary from 22.3 to 30.2%; siltstones and shales range from 11.8 to 18.4%. Only one 265 

sample (no. 23) from the deepest portion of dike 3, shows higher quartz and feldspar content 266 

and is very low in siliciclastic lithics. Sands from single dikes at different depths show minor, 267 

non-systematic, compositional variations, mainly due to quartz and lithic fragments variations 268 

(see Fig. 9).  269 

 270 

5.3.4 The older sands: Holocene (unit B) to Pleistocene (unit C)  271 

The core fluvial sands in the subsurface at depths from 7 to 10 m (Holocene) and from 22 to 272 

24 m (Pleistocene in age) are rich in quartz and feldspar and metamorphic rock fragments 273 

(Fig.10c). Quartz range from 36.7 to 54.0%; feldspars vary from 19.7 to 28.6%; siltstones and 274 

shales are less than 11% and carbonate lithics range from 16 to 29.1%. Coarse-grained  275 

metamorphic rock fragments are also present. 276 

 277 

5.3.5 Compositional fields 278 

Data from modal analyses are reported in the classification diagram Q+F (quartz+feldspars), 279 

L (siliciciclastic fine-grained lithics), C (carbonate lithics) of Fig. 11, in which compositional 280 

fields of others fluvial sands in the Po plain are also reported (Lugli et al 2007). 281 

The examined sands are characterized by well defined fields and show a clear trend from 282 

lithoarenitic to quartz-feldspar-rich compositions. In detail the sands from the modern Reno 283 
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River are the most lithoarenitic, with shales as the dominant lithic type. Sands are well 284 

distinguishable from the other rivers of the Po plain, as defined by Lugli et al. (2007). The 285 

sand from the paleo-Reno channel fill show composition slightly enriched in quartz and 286 

feldspars and impoverished in lithic fragments compared to the modern Reno River sands. A 287 

similar composition characterizes also sands at shallow depth (unit A4, 6.8-7.5 m depth). In 288 

the modern and paleo Reno river sands the lithic fragments derive mostly from the erosion of 289 

sedimentary carbonate and terrigenous successions. 290 

Composition of dike sands clearly overlap that of the paleo-Reno river sands down to the 291 

depth of 7.5 m. Older Holocene sands coming from layers deeper than 8 m and the 292 

Pleistocenic sands (unit C) differ in composition and show an higher quartz-feldspar content. 293 

A similar enrichment in quartz and feldspars in the Pleistocene fluvial sands, compared with 294 

the present-day sands, was noted by Lugli et al. (2007) for the fluvial sediments of the Po 295 

alluvial plain. This shifting composition back in time was interpreted as a consequence of the 296 

different climatic weathering condition that occurred during the last glacial stage. The strong 297 

denudation, erosion and accelerated transport were probably responsible of promoting the 298 

survival of feldspar grains. 299 

 300 

5.3.6 Grain-size influence on sand composition 301 

As the counting technique here adopted (Zuffa, 1985) is especially designed to minimize the 302 

dependence of the analysis from the grain-size, we plotted the mean diameter and the percentage of 303 

significant types of grains (quartz and feldpars, shales, carbonates) in order to verify the reliability 304 

of the point counting analyses. Plot of Fig. 12 shows no correlation between composition and grain-305 

size of sands. These results suggest that disintegration, microfracturing or erosion of most erodible 306 

grains, such as shales, due to the abrasive flow of sand grains was not responsible of significant 307 

compositional variation. 308 

 309 
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 310 

6. Discussion 311 

 312 

In our study, texture and composition characteristics provide important constrains for source 313 

layer indentification in liquefaction processes and flow regime. 314 

Although there is currently no unequivocal evidence that texture in sand dikes (i.e. lamination, 315 

clay content, alignment of platy and elongate grains) may be indicative of a particular flow 316 

regime (Hurst et al., 2011), the diverse sedimentary features coexisting within the same dike, 317 

are probably related to the multiple rythmic opening and closing of the fracture borders that 318 

may have lasted for several minutes. The sedimentary features suggest that the fractures were  319 

rhythmically injected and filled of slurry sand and mud during the compression pulses end 320 

emptied by the rushing of the slurry back down deep into the fractures during the extension 321 

peak. These alternate flows, together with the sequential opening of various fractures in 322 

different area, may account for the presence of both inverse and direct grading of the sand 323 

filling different portion of the same dike and for the concave stratification of the dikes. 324 

Unfortunately this phenomenon was not observed directly in May 2012, but similar examples, 325 

although of much larger magnitude, were filmed during the M 9.0 Tohoku great earthquake in 326 

Japan (see Great Japan Earthquake, 2011, www.youtube.com/watch?v=TzlodnjPAuc).  327 

The pulse mechanism of sand blows is also supported by the well stratified structure of the 328 

sand volcanoes that formed on the top of the fractures in many of the liquefaction sites around 329 

San Carlo (Fig. 6) and elsewhere, a feature described also by Rodríguez-Pascua et al. (2015). 330 

These volcanoes are up to a few tens of centimeters high and show several centimetic to 331 

millimetric alternance of graded laminae consisting of sand and mud (Fig. 6). 332 

The grain-size distribution of the sands filling dikes clearly overlaps that of sands at dephts of 6.8-333 

7.5 meters, and in deeper layers. Grain-size distribution of examined dikes show a good agreement 334 

with the grain-size characteristic reported in the literature for sands ejected during earthquakes in 335 

http://www.youtube.com/watch?v=TzlodnjPAuc
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California or Japan (Kishida,1970; Figueroa et al.,1995). In particular, the amount of clay less than 336 

10% fits with other case histories that show that only sand with a low natural clay content are 337 

susceptible to liquefaction. Tokimatsu and Yoshimi (1983) documented 70 cases in Japan resulting 338 

from 10 separate earthquakes that show a cut-off for liquefaction susceptibiliy at a clay content of 339 

about 15-10%. 340 

The composition adds an important constraint in identifying the source layer. Composition of the 341 

sand filling the dikes show close similaritiy with the composition of the sand layer located at a 342 

depth from 6.8 to 7.5 metres (Unit A4), while clearly differ from deeper sands which are richer in 343 

quartz and feldspar and poorer in sedimentary lithic fragments.These data clearly indicate a 344 

relatively shallow source for the blowouts.  345 

About the relatively shallow depth of the source layer, it is known that the liquefaction 346 

resistance of a soil deposit increases with depth as the effective overburden pressure increases. 347 

For this reason, sand deposits deeper than about 15 m are rarely observed to liquefy 348 

(Krinitzsky et al. 1993). Particle cementation, not observed in the examined dike sands, is also 349 

an important factors and layers older than the Holocene  are usually not prone to liquefaction 350 

(Youd and Perkins 1978), perhaps due to a weak cementation at the grains.  351 

Regarding the possibility that selective mechanism due to flux variation may have influenced 352 

the sand composition, our data seem to indicate that no major variation was induced by 353 

liquefaction phenomena. This is probably the result of the point counting technique which 354 

seems to successfully reduce the effect of grain size over composition. 355 

Finally, an interesting point concerns the enrichment in quartz and feldspars in the relatively 356 

shallow sands of unit B deposited by the Reno River in the Holocene (pre 16th century C.E.), which 357 

are similar to the deeper Pleistocene sands (unit C). This could be due to partial recycling of sands 358 

deposited during the last glacial maximum at about 20 ka. Another possibility is that the drainage 359 

network was different from that of today, as suggested by Ravazzi et al. (2013), and those sand may 360 

have been deposited by another river, the Enza, which is today flowing much further to the west. 361 
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 362 

6. Conclusions 363 

 364 

The study of the sands injected in the San Carlo area (Ferrara) during the Mw 6.1 earthquake, 365 

and the comparison of their texture and composition with those of buried fluvial sediments as 366 

deep as 20 m provided us with clues about the emplacement mechanisms and the source 367 

layers identification. 368 

The sands from the dikes show a composition compatible with that of the recent shallow 369 

sands deposited by the Reno River. These sands clearly differ from deeper sands (at depth of 370 

more than 8 m), which are richer in quartz and feldspar and poorer in sedimentary lithic 371 

fragments as a consequence of their deposition during the last glacial maximum and later 372 

reworking. 373 

Composition and fabric characteristics, such as grain-size distribution and clay content, 374 

indicate that liquefaction processes affected mainly sand layers at depth of 6.8-7.5 m, a 375 

relatively shallow source for the blowouts. Pulsations in the flow during shaking appear to be 376 

responsible for the concave and vertical layering within the dikes, normal and inverse 377 

gradation along the dikes and only modest petrographic compositional variations within 378 

individual dikes. 379 

Our results show that selective mechanisms due to flux variation have not influenced the sand 380 

composition and thus petrographic point-counting methodology may be successfully applied 381 

to trace back the source sand layers of ancient blowouts. 382 
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Figure captions 482 

 483 

Fig. 1. Sketch map of the alluvial plain in the Emilia area affected by the May 2012 484 

earthquakes (location of the two major epicenters are indicated with stars). The studied trench 485 

is located at San Carlo, along an old Reno River channel abandoned as a result of the 18° 486 

century diversion. Arrows indicate the river channel shift trends during the Holocene 487 

(Modified from Burrato et al., 2012). 488 

 489 

Fig. 2. a) Stratigraphic section of the old Reno river channel ridge at San Carlo. Depositional 490 

facies and stratigraphic units (modified after Caputo et al. 2012 and Papathanassiou et al., 491 

2012). b) Stratigraphy and depositional units in the trench exposure along two walls (upper 492 

section flipped) showing the sand dikes cutting the fluvial sequence. Sample location is also 493 

reported. Modified after Caputo et al., 2012 494 

 495 

Fig. 3. Dike D7 filled by laminated sand cutting through stratified proximal levee sand and 496 

silt facies. The left side of the wall collapsed as a result of lateral spreading. Laminae within 497 

the dike are highlighted by concave silt veneers suggesting multiple phases of sediment 498 

settling by collapse of the sand column along the fracture. The fracture is locally filled by silty 499 

clast originated by the mechanical crushing of the fracture borders (upper right). Location of 500 

dike in the trench is shown in Fig. 2. 501 

 502 

Fig. 4.  Dike D5 cutting across bioturbated massive clayey silt. Note the cross cutting 503 

relationships between the larger and smaller fracture which are also marked by a few oblique 504 

fine-grained laminae (upper left). Sand in the larger dike is normally graded. Location of dike 505 

in the trench is shown in Fig. 2. 506 

 507 
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Fig. 5. Distinct vertical lamination within dike D3. Single sand layers are graded and are 508 

separated by thin fine-grained laminae. Layering is accentuated by differential weathering. 509 

Location of dike in the trench is shown in Fig. 2. 510 

 511 

Fig. 6. Ejected sand at San Carlo forming a volcano structure consisting of various laminated 512 

sand layers. At least 6 sand/mud couplets are visible indicating multiple opening and closing 513 

phases of the mother fracture. 514 

 515 

Fig. 7. Cumulative grain size distributions of sands from the paleo Reno River levee and 516 

channels, units B and C, and the dikes. 517 

 518 

Fig. 8. Triangular plot showing the relative proportions of sand, silt and clay for the examined 519 

samples. 520 

 521 

Fig. 9. Variations in grain size (mean diameter), quartz+feldspars and shale contents in a 522 

vertical profile along dikes 3 and 5. 523 

 524 

Fig. 10.  Photomicrographs of sands from the old Reno River channel (a), levee (b), Pleistocene 525 

sands from unit C (c) and dike D3 (d). Transmitted light, crossed polars. 526 

 527 

Fig. 11.  Q+F, L, C diagram showing the composition of sands from dikes, recent and paleo 528 

Reno River and from older units B and C. Composition of sands from the Modena plain 529 

streams is also reported (Lugli et al., 2007). Q: quartz; F: feldspars; L: siliciclastic rock 530 

fragments; C: carbonate rock fragments. 531 

 532 
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Fig. 12  Plot showing the content of quartz+ feldspar vs the mean diameter for all the 533 

examined samples. Note the lack of correlation between grain-size and composition. This 534 

result is confirmed for the other compositional classes (not reported here). 535 

 536 

Table 1. Results of petrographic modal analyses. 537 

 538 
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PALEO 

CHANNEL 

(A3)

Sample FR2 FR1 FR3 FR4 SC1 36B SC1 37B SC1 38B SC1 39B SC1 43B SC1 44B SC1 45 SC1 46B SC1 48 SC1 55 SC1 61 SC1 59 SC1 60 SC1 23 SC1 22 SC1 1 SC1 2 SC1 3 SC1 4 SC1 5

Quartz single crystal 23.4 27.1 20.6 22.1 28.9 25.9 28.5 31.1 22.3 26.3 30.4 25.3 26.3 26.1 28.9 25.2 22.7 28.0 27.3 25.5 30.7 27.3 21.1 24.2

Quartz polycrystalline coarse texture 2.2 2.3 3.1 1.4 2.4 1.6 1.6 2.3 9.0 1.9 2.3 2.7 5.0 2.6 3.9 3.8 2.9 10.0 4.8 3.8 4.2 3.8 3.5 4.6

Quartz polycrystalline fine texture 0.4 1.4 0.8 1.1 0.9 1.9 0.9 1.7 - 3.8 1.0 0.3 1.0 0.6 1.9 2.6 1.3 1.3 1.8 1.0 1.0 1.9 1.6 1.6

Q Chert 0.1 0.9 - 0.3 0.3 - - 0.3 - 0.9 0.3 - - - 0.3 0.3 0.3 - 0.3 0.6 - - 0.6 -

Quartz in plutonic-gneissic rock fragment 1.8 1.1 - 0.3 0.6 1.6 0.6 0.3 3.0 0.6 - 0.3 2.7 2.6 0.6 0.3 1.0 6.3 0.6 0.3 1.3 - 2.2 0.3

Quartz in metamorphic rock fragment 0.1 - - - - 0.3 - 0.7 - 0.3 0.7 0.7 - 0.6 1.0 0.2 0.3 - 0.3 - - - 0.3 1.0

Quartz in volcanic rock fragment - - - - - - - - - - - - - - - - - - - - - - - -

Quartz in clastic rock fragment 2.3 2.3 4.2 3.7 3.3 3.2 1.3 1.3 0.7 2.5 1.3 0.3 0.3 3.9 2.9 1.8 0.3 2.0 5.2 2.9 3.2 1.0 4.1 1.6

K-feldspar single crystal 9.1 9.4 11.3 9.5 8.5 8.1 7.2 10.6 8.7 10.1 10.2 9.0 6.7 11.3 10.7 15.1 7.1 10.3 9.4 12.4 13.3 7.9 12.6 10.5

K-feldspar in plutonic-gneissic rock fragment 0.6 0.9 1.1 0.9 0.3 - - - 0.3 - 1.0 - 0.3 0.3 - 0.2 0.6 0.7 - 0.6 0.3 - 0.9 0.3

K K-feldspar in metamorphic rock fragment - - - - - - - - - - - - - - - - - - - - - - - -

K-feldspar in volcanic rock fragment - - - - - - - - - - - - - - - - - - - - - - - -

K-feldspar in clastic rock fragment 0.1 - 0.3 - 0.3 0.3 0.3 0.0 0.3 0.6 0.3 - - - 0.3 0.3 0.3 - - 0.6 - 0.3 - 0.3

Plagioclase single crystal 7.9 4.0 7.9 7.5 9.7 9.7 12.5 7.3 13.3 11.7 9.2 - 10.3 - 8.8 10.1 13.9 9.3 6.4 5.1 6.5 9.5 10.4 5.9

Plagioclase in plutonic-gneissic rock fragment - 0.3 0.3 - 0.6 - 0.6 0.3 0.7 0.6 - 8.7 1.0 11.9 0.3 0.5 0.6 1.3 0.6 0.3 0.3 0.6 0.3 1.0

P Plagioclase in metamorphic rock fragment - - - - - - - - - - - 0.7 - 0.6 - - - - - - - 0.3 - -

Plagioclase in volcanic rock fragment - - - - - - - - - - - - - - - - - - - - - 0.3 - -

Plagioclase in clastic rock fragment 0.4 0.6 0.8 0.6 1.5 - 0.3 1.0 - 0.6 - - - - - 0.5 - - 0.3 0.3 - - 0.6 1.6

Metamorphic rock fragment - - - 0.3 - 0.3 - - 1.7 0.6 - 0.7 2.0 - - - - 0.7 - - - - - -

Volcanic rock fragment - - - - - - - - - - - - 0.7 - - - - 1.7 - - - - - -

L Spilite - - - - - - - - 0.3 - - 0.3 - - - - - 0.7 - - - - - -

Serpentinite 0.4 - - 0.3 0.3 0.3 - 0.3 - 0.3 0.3 0.3 0.3 - 0.6 - - - 0.3 - 0.6 - - -

Shale 18.3 14.3 18.6 12.4 13.7 16.2 16.3 12.6 10.7 7.3 9.9 10.3 10.7 13.2 14.6 9.9 17.2 1.0 13.6 14.3 11.0 12.4 12.0 12.1

Siltstone 6.4 5.7 5.4 7.5 6.1 3.2 4.1 3.6 3.0 4.4 4.6 4.0 3.7 3.9 2.9 4.6 5.8 1.0 2.4 4.1 3.9 2.9 4.1 5.9

Muscovite+Chlorite single crystal 0.1 0.6 1.1 0.6 0.6 1.6 1.9 1.0 0.3 1.3 1.7 4.0 1.7 0.6 - 0.5 0.3 - 0.6 - 0.6 - 1.3 1.6

Muscovite+Chlorite in rock fragment 0.3 - - 0.6 0.6 - - - 0.3 - - 0.3 0.7 - - 0.3 - 0.3 - - - - 0.3 -

M Heavy mineral single crystal (unspecified) 0.3 - - 1.1 - - - - - - - - - - - 0.3 0.3 - - - - - 0.6 -

Heavy mineral in rock fragment (unspecified) - - - - - - - - - - - - - - - - - - - - - - - -

Fe-oxide - - - 1.7 - - - - 0.3 - - 0.7 0.3 - - - - - - - - - - -

Calcite single crystal 11.0 15.7 11.0 16.7 11.2 9.1 11.0 13.9 9.3 9.2 15.8 12.3 14.3 10.6 10.7 10.9 9.4 11.3 10.3 14.0 13.6 15.2 12.0 12.1

Sparitic limestone 4.5 3.1 3.7 3.2 0.3 2.3 0.9 2.0 6.7 3.8 1.7 9.0 6.0 1.9 1.0 2.2 2.9 4.0 4.2 1.9 1.0 0.6 1.6 0.3

C Silty-arenitic limestone - - - - - 0.6 - - 2.3 - 5.9 0.3 0.3 - 0.3 0.6 0.6 1.3 0.3 1.3 - - 0.3 0.3

Mudstone-Wackestone 7.5 6.3 7.6 7.2 7.3 10.0 8.5 7.0 1.7 9.2 - 3.0 3.0 7.1 9.4 7.1 8.4 4.7 7.3 8.9 7.4 10.5 7.3 8.8

Bioclast (terrigenous) 1.5 2.0 1.1 0.9 1.8 2.6 2.5 2.3 1.0 3.2 3.0 4.7 1.3 1.6 0.6 1.4 2.3 3.7 3.0 1.3 1.0 3.2 2.2 3.6

Brick and pottery fragments - - - - - - - - - - - - - - - - - - - - - - - -

Organic material - - - - - 1.0 0.9 0.3 - - - - - 0.3 - 0.2 0.3 - 0.3 - - 1.0 - 1.6

Bioclast (penecontemporaneous) - - - - - - - - - - - - - - - 0.2 - - - - - - - -

Caliche 1.0 2.0 1.1 0.3 - - - - 3.7 - - 1.7 0.7 - - 0.3 0.3 - - - - - - -

Undetermined - - - - 0.6 - - - 0.3 0.6 0.3 0.3 0.7 - - 0.6 0.6 0.3 0.6 0.6 - 1.3 - 0.7

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

DIKE 6

Sample SC1 6 SC1 7 SC1 41 SC1 49 SC1 19 SC1 20 SC1 21 SC1 32 SC1 34 SC1 33 SC1 52 SC1 53 SC1 51 SC1 50 SC1 28 SC1 26

Quartz single crystal 21.0 21.9 27.5 21.7 25.9 26.6 34.6 25.7 30.7 26.3 40.0 25.4 31.3 32.9 36.0 31.3

Quartz polycrystalline coarse texture 4.5 4.6 2.0 3.7 5.2 2.5 1.0 5.3 3.4 4.0 6.0 3.7 6.3 4.3 8.0 6.0

Quartz polycrystalline fine texture 2.2 2.0 3.6 1.0 0.9 1.6 2.0 0.7 2.8 2.0 1.3 2.1 2.0 2.0 3.3 2.3

Q Chert 0.3 - - - - - - 0.3 - - - 0.3 - - 1.0 0.5

Quartz in plutonic-gneissic rock fragment 0.6 0.3 2.3 3.3 1.2 0.6 1.6 2.3 0.3 2.7 3.3 2.1 3.3 2.3 0.3 1.4

Quartz in metamorphic rock fragment 0.3 0.7 - 0.3 - 0.3 0.7 0.3 0.6 - - - - - - 0.3

Quartz in volcanic rock fragment - - - - - - - - - - - - 0.3 - - 0.2

Quartz in clastic rock fragment 2.2 4.2 3.0 2.7 3.1 1.3 2.3 4.0 2.5 2.7 3.3 3.1 - 0.7 0.3 2.3

K-feldspar single crystal 11.5 6.9 8.6 12.7 7.4 9.7 9.8 11.3 12.5 10.0 7.7 12.2 10.0 11.3 12.7 14.8

K-feldspar in plutonic-gneissic rock fragment 0.6 - - 0.3 0.6 0.6 - 1.0 - 2.0 1.0 0.6 1.3 1.0 0.3 1.2

K K-feldspar in metamorphic rock fragment - - - - - - - - - - - - - - - -

K-feldspar in volcanic rock fragment - - - - - - - - - - - - - - - -

K-feldspar in clastic rock fragment 0.3 0.7 - 0.3 - - - - - - - - - - - -

Plagioclase single crystal 8.9 12.1 7.6 7.3 9.0 9.4 8.8 6.0 6.0 4.0 10.0 8.3 7.7 12.0 7.3 9.7

Plagioclase in plutonic-gneissic rock fragment 0.6 - 0.3 0.7 0.3 - - 1.0 0.3 0.3 1.0 0.6 0.7 0.3 0.3 2.8

P Plagioclase in metamorphic rock fragment - - - - - - - - - - - - - - - -

Plagioclase in volcanic rock fragment - - - - - - - - - - - - - - - -

Plagioclase in clastic rock fragment 0.6 0.3 - - 0.6 0.3 - - - - - 0.6 - - - 0.2

Metamorphic rock fragment 0.3 - - 2.0 - - - 1.0 - 3.7 1.7 - 2.3 1.7 1.3 1.2

Volcanic rock fragment - - - 1.7 - - - 1.0 - 0.7 0.3 - 0.7 - - -

L Spilite - - - 0.3 - - - 0.3 - - 0.3 - - - 0.3 0.2

Serpentinite 0.6 0.7 - - - 0.3 0.3 - 0.3 1.0 - - - - - 0.2

Shale 9.6 12.1 14.9 14.0 9.9 12.9 8.2 8.7 10.3 11.7 2.3 6.7 2.0 5.3 3.3 2.3

Siltstone 3.2 2.3 3.0 3.7 4.6 2.2 3.6 3.0 5.6 4.3 1.0 3.7 3.3 1.7 7.3 1.9

Muscovite+Chlorite single crystal 0.3 1.0 1.0 - 0.3 1.9 2.0 2.0 0.6 2.3 - 0.9 0.0 1.0 0.3 -

Muscovite+Chlorite in rock fragment 0.6 - - 1.0 - 0.3 0.3 1.0 - - 0.3 - 0.3 - 0.3 0.5

M Heavy mineral single crystal (unspecified) 0.3 - 0.3 - 0.6 - - - - - - - - - - -

Heavy mineral in rock fragment (unspecified) - - - - - - - - - - 0.3 - - - - -

Fe-oxide - - - 0.3 - - - - - - - - - - 0.3 -

Calcite single crystal 14.3 14.7 10.3 13.3 13.9 12.5 11.8 12.0 11.9 12.3 13.0 14.7 18.7 15.9 7.3 10.5

Sparitic limestone 2.2 3.3 6.0 3.0 4.9 0.3 1.0 3.7 3.4 2.7 3.3 2.4 2.3 2.0 2.0 3.2

C Silty-arenitic limestone 0.3 - - - 0.3 - 0.3 2.0 0.3 - - 0.6 2.0 - - 0.7

Mudstone-Wackestone 10.2 7.2 7.0 3.3 6.8 11.0 8.2 5.0 6.0 5.0 2.7 8.6 2.0 2.0 6.0 4.7

Bioclast (terrigenous) 3.2 3.9 2.6 2.7 3.1 4.7 2.6 2.0 0.9 2.3 0.7 2.8 2.3 2.7 1.3 1.1

Brick and pottery fragments - 0.0 - - - - - - 0.3 - - - - - - -

Organic material - 0.3 - - 0.3 - - - 0.3 - - 0.3 - 0.3 - 0.6

Bioclast (penecontemporaneous) - - - - 0.3 0.3 0.7 - - - - - - - - -

Caliche - - - - - - - - - - 0.3 - 0.3 - - -

Undetermined 1.0 1.0 - 0.7 0.6 0.6 0.3 0.3 0.6 - - 0.3 0.7 0.7 0.3 0.2

NCI

CI

CORE S3 CORE S2 CORE S10

NCE

Clastic lithic

CE

CE

NCI

CI

DIKE 4 DIKE 5 DIKE 7

RENO RIVER LEVEE (A1-A2) PALEOCHANNEL (A4) DIKE 3

NCE

Clastic lithic
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