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The genetic variation of our species reflects human demographic history and
adaptation to diverse local environments. Part of this genetic variation affects
individual responses to exogenous substances, such as food, pollutants and
drugs, and plays an important role in drug efficacy and safety. This review
provides a synthesis of the evolution of loci implicated in human phar-
macological response and metabolism, interpreted within the theoretical
framework of population genetics and molecular evolution. In particular,
I review and discuss key evolutionary aspects of different pharmacogenes
in humans and other species, such as the relationship between the type of
substrates and rate of evolution; the selective pressure exerted by landscape
variables or dietary habits; expected and observed patterns of rare genetic
variation. Finally, I discuss how this knowledge can be translated directly
or after the implementation of specific studies, into practical guidelines.
1. Introduction
Evolutionary history and adaptation of humans to diverse local environments
left a strong signature on the genetic variation of our species. A subset of this
genetic variation carried by pharmacogenes implicated in response to medi-
cations (hereafter PGx genes) affects drug efficacy and safety and varies
extensively between individuals and across populations [1–3]. PGx genes
encode for molecules such as drug-metabolizing enzymes (DMEs) responsible
for drug degradation or activation; drug transporters, regulating the movement
of drug molecules across the cell membrane; and drug targets, to which the
drug directly binds to produce a therapeutic effect [1,4,5]. Established PGx
genotype–phenotype relationships have been translated into successful clinical
implementation in cases such as clopidogrel (gene: CYP2C219), simvastatin
(SLCO1B1), thiopurines (TPMT) and tacrolimus (CYP3A5) (pharmagkb.org,
[6]). In recent years, developments in DNA sequencing technologies enabled
the transition from the candidate-gene approach typical of pharmacogenetics
to a genome-wide pharmacogenomic approach [2,7]. Yet, the translation of
extensive pharmacogenetic and genomic knowledge into clinical practice has
been slower than expected. This has prompted the establishment of scientific
networks and programmes aimed at overcoming the barriers that have thus
far hindered clinical implementations [8,9]. A better understanding of specific
evolutionary aspects concerning variation in PGx genes could improve the
accuracy in predicting drug response phenotypes. For example, the extreme
level of genetic polymorphism shown by DMEs [3,10] is related to their ability
to detoxify the body from molecules of environmental origin that vary signifi-
cantly with diet, climate and lifestyle. Thus, the wide range of variation in
DME genes, which are mediators between the organism and the environment,
makes evolutionary sense: more alleles allow a wider range of responses, both
individually and as a species. Regarding the spatial structure of this genetic
variation, populations living in similar environmental conditions should
share adaptive genetic variants or allele combinations resulting in similar phe-
notypes. Conversely, marked differences are expected between populations for
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locally adaptive alleles [11,12]. These genetic differences
between populations are particularly relevant in the age of
personalized pharmacogenomics.

The value of evolutionary principles in medicine is increas-
ingly being recognized in public health [13]. Here, I mention
three exampleswith a clear applicative relevance: (i) the knowl-
edge on HIV evolution is essential for the design of preventive
and therapeutic measures [14]; (ii) understanding the link
between the altered symbiotic community of microorganisms
living in our body and the onset of specific diseases [15] can
guide the development of disease prevention protocols; and
(iii) evolutionary-based models of human disease architecture
are crucial in designing and interpreting genome-wide
association studies [16]. Similarly, improving our understand-
ing of the evolution of PGx loci can enhance the potential of
personalized therapy for patients.

This review provides a synthesis of the current knowledge
on PGx loci evolution in humans and in other species and indi-
cates how this knowledge can be translated, directly or after
the implementation of specific studies, into practical guide-
lines. Particular emphasis will be given to the evolutionary
history of rare variants in PGx genes that may have important
implications for future pharmacogenetics study design and
clinical implementation.
2. Insights into the molecular evolution of
PGx genes

Comparisons between different species can assist in identifying
specific genes or gene families characterized by frequent or rare
changes along their evolutionary history.

Genes encoding for DMEs—such as cytochrome P450
(CYP450),UDP-glucuronosyltransferase (UGT) orN-acetyltrans-
ferase (NAT)—but also for transporters such as ATP-binding
cassette show extreme levels of single nucleotide polymorphism
(SNP)andcopynumbervariation (CNV) inanimal genomes [17–
19]. Most DME and transporter genes are part of gene families
subject to a birth-and-death model of evolution, whereby new
genes are created by repeated duplications and remain active in
the genome,whereas others are inactivated or lost [20]. A central
question is whether the extent of diversification of DME and
transporter genes within and between species is stochastic (i.e.
selectively neutral) or driven by adaptation. In this second case,
the rate of gene evolution should be related to the function of
the encoded protein.

The analysis of 50–80 CYP450 genes in 10 nearly complete
vertebrate genomes [21] showed that most of the genes
characterized by frequent gene duplications and losses
encode enzymes that function primarily as xenobiotic detoxi-
fiers (henceforth exogenous genes). One possible explanation
is that these genes have evolved under positive selection for
copy number changes, which may have increased the ability
of the species to coevolve with the environment. Signatures of
positive selection for amino acid changes observed in this
group of exogenous genes further support this interpretation.
On the other hand, genes with few changes in copy
number over evolutionary time were found to encode
enzymes with known functions in development and physi-
ology (henceforth endogenous genes) [21]. In this case,
changes in gene number, especially gene losses, may be rela-
tively more deleterious and, therefore, kept at low frequency
by purifying selection. Evidence obtained by comparing
CYP450 genes in different Drosophila species, as well as gluta-
thione S-transferase (GST) genes in mammals, further
supports the exogenous–endogenous model of evolution
[22,23]. Within humans, a recent analysis showed that CYP
genes metabolizing exogenous molecules have a much
greater proportion of SNPs highly differentiated between
populations compared to any other category of PGx genes
[3]. Similarly, the different selective regime inferred for the
two human NAT genes, namely purifying selection on
NAT1 and positive selection for amino acid diversification
on NAT2, could be explained in terms of substrate’s nature,
because only NAT1 seems to metabolize endogenous mol-
ecules [24,25]. In conclusion, even if exceptions have been
identified [17], the exogenous–endogenous model of evolution
seems to hold for different species and DME genes. Predic-
tions based on this model may be useful for
pharmacogenetic applications (figure 1a). For example, pat-
terns of genetic variation of GSTs superfamily enzymes
with a prevalent exogenous metabolism that includes carci-
nogens may be important for cancer detection and
progression and to predict the outcome of cancer treatment
[28]. In terms of evolution and practical applications, it
would be interesting to verify if the exogenous–endogenous
model can be extended to transporter genes, many of
which are part of actively evolving gene families, such as
ABCs or Solute Carriers (SLCs) genes [18,29,30].
3. Environmental factors influencing the
evolution of PGx genes

Loci coding for proteins that interact with molecules of
environmental origin, including PGx genes, often experience
some sort of natural selection. Classical examples are the loci
involved in pathogen defence, such as those coding for the
major histocompatibility complex of vertebrates, which typi-
cally evolve under long-term balancing selection, or the
lysozyme of primates, evolving under positive selection in
specific phylogenetic lineages [31,32]. Interestingly, signatures
of natural selection have been detected at several PGx genes,
mostly DMEs, with specific genetic variants or CNV pattern
conferring a selective advantage in a specific environment.

(a) PGx loci and examples of adaptation in non-human
species

Instructive examples of adaptation by natural selection
involving PGx genes have been identified in non-human
species. Recently, a comparative study of carnivore, omnivore
and herbivore mammalian genomes has revealed a general
relationship between diet and rate of evolution of UGT 1 and
2 gene families [33]. While the two families appear markedly
contracted (i.e. few gene copies per genome) in carnivores,
their copy number is expanded in herbivores and omnivores
in which the dietary content of plant-derived toxicants is
higher. Among carnivores, loss of function mutations inacti-
vating the gene UGT1A6 is more common in groups
consuming a hypercarnivore diet (i.e. a diet comprising of
more than 70%meat) [34]. Because the rate of nucleotide substi-
tutions in genes is inversely related to the stringency of the
functional constraints acting upon them [35], genes that code
for enzymeswhich no longer have ametabolic role are expected
to accumulate mutations and become pseudogenes [36].
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Figure 1. Evolutionary scenarios affecting drug response in humans. (a) Allelic frequency spectrum (AFS) expected under the exogenous–endogenous model of
evolution. Molecules mainly involved in endogenous pathways (left), e.g. drug targets are most probably under purifying selection (red) with a skew of the
AFS towards rare polymorphic sites compared to neutrality (white). Selective constraint on molecules with exogenous substrates (right, e.g. DMEs) are moderate;
thus, the AFS is expected to follow a neutral distribution (grey). Alternatively, positive selection may favour diversification and may increase common variants
(green). In all cases, a demographic model of a population of large and constant size with no population subdivision is assumed. The effect of demography
on AFS is discussed in the text. (b) Influence of human lifestyle on PGx genetic variation. For genes, such as NAT2 and CYP2D6, hunter–gatherers (brown)
are predicted to be faster metabolizers compared to food producers (green) [11,12]. (c) Positive selection owing to landscape variables according to the
sodium retention hypothesis [26]. CYP3A5 rs776746 (*3): the ancestral nucleotide C is the minor allele outside Africa, with the exception of admixed American
populations. The derived T allele (null-function) is almost fixed in Europe. Allelic frequency from the 1000 genomes project; distribution of plot generated with
geography of genetic variants browser [27]. (Online version in colour.)
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Given the low dietary content of plant-derived phenolic
intoxicants in carnivores, the relaxation of natural selection
is probably responsible for the pseudogenization of the
otherwise broadly conserved UGT1A6 gene [34].

In birds, whole-genome comparisons of 48 species with
different feeding habits, geographical distribution and
migratory behaviour revealed the influence of these variables
on the CYP2 enzyme family evolution [37]. Specific CYP2
enzymes in different groups of birds showed striking signatures
of diversifying selection at substrate recognition sites, as well as
difference in copy number frequency. Different CYP2molecules
are probably involved in the adaptation of a specific avian group
to a distinct ecological niche. In most of the reported examples,
adaptation seems to be achieved by variation in the number of
coding genes or gene copies, probably leading to an increased
or a decreased metabolic effect [38]. The CYP450 enzymes in
the Bactrian camel adapted to the arid conditions of the desert
support this conclusion. Compared to the genome of most
vertebrates, the CYP4A and CYP4F families in this species are
contracted, whereas the CYP2E and CYP2 J families are
expanded. Because all these CYP450s are involved in the
arachidonic acid pathway, this specific copy number pattern
may contribute to the camels’ ability to take in a large amount
of salt, apparently without developing hypertension [39].
(b) Coevolution between PGx loci and different
lifestyles in humans

Human populations subsisted by hunting wild animals and
gathering wild plants for about 90% of their history. Between
10 000 and 4000 years ago, domestic plants and animals
appeared independently in several regions of the world. This
so-called Neolithic transition represents a turning point in
the evolution of our species in terms of subsistence mode,
with consequent dramatic changes in human lifestyle, popu-
lation size and diet [40]. All these changes left a footprint in
our genome [41–43]. Several studies have investigated the
effect of the Neolithic transition on the evolution of PGx
genes by comparing present-day hunter–gatherers with
different types of food-producing populations (electronic sup-
plementary material, table S1; figure 1b). Most of these studies
focused on the gene NAT2 coding for the Phase II DME NAT
2. Detailed information on theNAT2 genetic variation is avail-
able for all geographical regions across the world [44].
Interestingly, when NAT2 alleles are translated into predicted
phenotype activity, gene variants coding for slow-function
NAT2 isoforms represent more than 50% of the total variation
worldwide, with the exception of East Asia [45]. Furthermore,
NAT2 genetic diversity shows an association with distinct
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subsistence mode in all continents except America, whereby
food-producing populations tend to be slower metabolizers
compared to hunter–gatherers [45]. From a neutral evolution-
ary perspective, dietary modification brought about by the
emergence of farming could have relaxed the selective
constraint on the detoxification enzyme NAT2. However, the
signature of a selective sweep, such as that exhibited by
the slow-function NAT2*5B in western and central Eurasian
populations [25], or evidence of genetic variation actively
maintained by balancing selection [46,47] invoke a non-
neutral explanation for a reduction in the NAT2 enzymatic
activity associated with the Neolithic transition. A low
metabolic activity may have been selected to avoid the bioacti-
vation of toxic substances (e.g. NAT2 activates heterocyclic
carcinogens found in well-cooked meat) [24].

A similar trend was observed in one of the most important
DME in humans, the CYP450 2D6. By controlling for environ-
ment and demography, a comparison of the entire CYP2D6
genetic variation between present-day hunter–gatherers
and food producers revealed in the latter a significant excess
of both slower metabolizers and intermediate-frequency
non-synonymous polymorphisms [11] (figure 1b). However,
akin to NAT2, the identification of the selective agent respon-
sible for diet-related patterns of evolution in CYP2D6 (e.g.
the presence/absence of a specific substrate or a different
concentration of substrates) has yet to be identified. Further
insights into genetic changes related to the transition from
hunter–gatherer to farming lifestyles may be obtained from
ancient genomes across different time points and environ-
ments [43]. Ancient DNA allows measurement of the action
of natural selection directly by detecting allele frequency
changes through time, in particular, before, during and after
a specific event requiring adaptation. Such direct measure-
ments improve estimates of the strength and timing of
selection, as in the case of lipid metabolism and lactose
tolerance in humans [48].
(c) PGx loci and examples of recent human adaptation
Understanding the role played by positive selection in the
evolution of human populations has been a central issue in
evolutionary genetics [49]. Genome scans in humans have
occasionally identified PGx loci as the target of recent posi-
tive selection, including signals at the SLC24A5 locus in
non-African populations, possibly owing to its association
with skin pigmentation [50,51], or at the CYP3A4 and
CYP3A5 loci [52]. The example of the CYP3A cluster shows
how specific and identifiable landscape variables can shape
patterns of genetic variation with important phenotypic out-
comes. The cluster includes four genes—CYP3A4, CYP3A5,
CYP3A7 and CYP3A43—located on chromosome 7. CYP3A4
and CYP3A5 are important Phase I DMEs and are responsible
for the metabolism of many commonly used drugs
(pharmgkb.org, cpicpgx.org). A whole-gene resequencing
study conducted by Thompson et al. [26] in three populations
from different continents, combined with the screening of the
null-function allele in more than 1000 individuals, revealed
an unusual geographical pattern of extreme variation across
human populations and significant correlation with distance
from the equator. In particular, the signature of recent selec-
tive sweep associated with the null CYP3A5*3 allele
(rs776746T>C) was interpreted as an adaptation underlying
salt regulation. A strong sweep would explain why the
derived (i.e. arose by mutation) CYP3A5*3 is the major
allele in most non-African populations while being nearly
fixed in Europe (figure 1c). Few other human genes show
the same pattern that was previously defined as the ‘west
Eurasia sweep’ [51]. Interestingly, the proposed selective
mechanism involves the endogenous role of the CYP3A5
enzyme rather than its detoxification activity. Specifically, in
the kidney, CYP3A5 converts cortisol to 6b-hydroxycortisol
that leads to a higher reabsorption of sodium and water
retention. According to the salt-retention hypothesis [53],
the allele coding for a full-function protein confers a selective
advantage in equatorial populations where water shortages
are common [54]. Heat dissipation lost its adaptive value in
human populations that colonized colder regions during
the out-of-Africa expansion. Moreover, at lower temperatures,
salt-retention alleles may cause salt-sensitive hypertension
and, possibly, pre-eclampsia thus having important fitness
reduction effects [55]. This can partially account for the selec-
tive sweep that has increased the frequency of the impaired-
function and derived allele outside Africa. The explanation
based on the salt-retention hypothesis is also supported by
the correlation between latitude and specific alleles of genes
involved in blood pressure regulation [26,56]. The case of
the CYP3A cluster illustrates how positive selection can
give rise to an evident global geographical structure of gen-
etic variation in response to environmental variables
(figure 1c). At the other extreme, selection may lead to detect-
able allele frequency change in a restricted geographical
region, as in the case of the Arsenite Methyltransferase
AS3MT in the populations residing near San Antonio de los
Cobres, Argentina. Here, individuals have probably been
exposed to poisonous levels of the acutely toxic arsenic pre-
sent in the water for thousands of years. In a recent
association study, Schlebusch et al. [57] identified a potential
protective regulatory variant upstream of AS3MT, a gene
involved in the arsenic methylation pathway. The putatively
protective variants are highly frequent in these populations
(68.7%) and are embedded in a long haplotype, both of
which are signatures of recent positive selection.
(d) Rapid evolution of PGx genes by artificial selection
Examples of evolution by artificial selection reveal how PGx
genes evolve under extreme selective pressure. Poisonous sub-
stances, such as insecticides and pesticides, increase the fitness
of individuals carrying a resistant genotype. The difference in
fitness between resistant and sensitive individuals depends
on the magnitude of the selection coefficient imposed by the
poisonous substance. Larger selection coefficients determine
a faster increase in the frequency of the advantageous
mutation and, therefore, a more rapid spread of the resistant
phenotype in the population [58]. Fungi and insects adapt to
pesticides in a matter of years, offering very good examples
of acquired resistance via DMEs’ evolution [59,60]. Resistance
can result from the rapid increase in the frequency of an
advantageous mutation conferring less sensitivity to a specific
molecule [61], or from an increased production of the detoxify-
ing enzyme owing to overtranscription or CNV [62]. An
example of resistance acquired through artificial selection is
that of the vitamin K 2,3-epoxide reductase subcomponent 1
(vkorc1) and anticoagulants in rodents. Polymorphism in
vkorc1 determines the physiological response of humans
and rodents to warfarin [63,64]. In humans, VKORC1 and
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CYP2C9 polymorphisms are included in a genotype-guided
dosage of this widely prescribed anticoagulant [65], which
was also used as a rodenticide in Europe since the 1950s. Gen-
etic analyses have shown how vkorc1-mediated resistance
convergently evolved in different rodent pest species in a
few years through selection on adaptive genetic variants
[63]. Interestingly, the house mice Mus musculus domesticus
have acquired adaptive vkorc1 polymorphisms from the
Algerian mouse (Mus spretus) through introgressive hybridiz-
ation [66]. This example stresses the fact that resistance
phenomena can spread rapidly through the gene flow
between populations and species.

The fast evolution at the somatic level owing to the strong
selection coefficient involved in cancer progression and resist-
ance to chemotherapy is an important example of artificial
selection in our species [67]. In normal human tissues, the
constituent cells are not the unit of selection and their fitness
is the same as the fitness of the entire organism. Tissue cells
do not compete among each other, and their proliferation
and survival are governed entirely by tissue control mechan-
isms acting through intracellular pathways. Conversely,
somatic cells isolated from normal tissue controls can
evolve towards cancer and their survival and proliferation
are governed by the interaction of their own properties
with the environment [68]. Therapeutic resistance can then
arise from one or several subclones harbouring resistance-
conferring mutations, which can be either pre-existing (i.e.
present at diagnosis) or acquired. Both mechanisms have
been observed, for example, in acute myeloid leukaemia
and urothelial carcinoma [69,70]. Relapse after remission
generated from minor genetic subclones already present at
diagnosis is particularly interesting from an evolutionary
perspective. These subclones, which were carrying the resist-
ance-conferring mutation but were outcompeted in the
absence of therapy, will eventually be positively selected by
treatment and expand [71]. Understanding tumour evolution
during therapy is at the same time a unique opportunity to
study evolution in action at the cell level and promising for
drug development strategies [72].
4. Rare genetic variants in human PGx genes
The importance of rare genetic variants, whose minor allele
has a frequency below 5% in the global human population,
has been overlooked for a long time in human genetics.
Owing to the low frequency, rare variants tend to be geo-
graphically restricted or even private to a population [73], so
their predictive role in drug response, for example, is not
equally important in different human populations [74].
Additionally, before the advent of next-generation sequencing
(NGS) technologies, the lack of a cost-effective genotyping
approach led to the exclusion of rare genetic variants from
the worldwide used SNP reference panels, such as those
generated by the HapMap projects [75]. The development of
NGS has enabled researchers to obtain information on both
common and rare genetic variants, overcoming many intrinsic
biases of an SNP typing approach. With a slight delay, this
change has also involved pharmacogenetics and pharmaco-
genomics [10,76] (electronic supplementary material, table
S2). In the following, I first discuss important aspects of rare
genetic variants that can assist in interpreting their patterns
in human PGx loci; then I provide examples of studies
focusing on rare variants in genes for drug targets, DMEs
and transporters.

(a) Important aspects of rare genetic variation in
humans

The allele frequency spectrum is the distribution of allele
frequencies at a large number of equivalent loci, and its
shape is affected by population size and selection intensity
[77] (figure 1a). During the last 10 000 years, our species has
experienced an explosive population growth, from a few
million people to roughly 7 billion today [78,79]. Rapid popu-
lation growth is characterized by a very large number of recent
mutations that skew patterns of genetic variation increasing
the number of rare genetic variants.Most of these newvariants
will be either deleterious (or even lethal), slightly deleterious
or neutral (i.e. that do not affect the fitness), while only very
few will be advantageous [80]. The fate of new mutations is
then determined by the interplay of genetic drift and selection,
depending on the population size and on the mutation’s effect
on fitness (i.e. the selection coefficient, s) [81]. In sufficiently
large populations purifying selection acts against deleterious
variants, which then have lower population frequency and
are generally younger (i.e. not yet purged by selection) than
the neutral ones [82] (figure 1a). Consistent with these expec-
tations, a study on 6515 human exomes in populations of
European and African ancestry estimated that most of the
rare variants, especially those with deleterious effect, arose
in the past 5000 years [83]. Conversely, in small populations,
the strength of selection is reduced and the fate of each
mutation, even if deleterious, and especially if slightly deleter-
ious, is mainly governed by random genetic drift. It is
therefore expected that small population size, bottleneck or
founder effect will be characterized by an excess of deleterious
variants that can drift to high frequency or even to fixation
[80]. In line with this prediction, people of European descent
that have experienced the bottleneck associated with the
out-of-Africa dispersal, seem to carry an excess of deleterious
variants compared to those of African descent [83,84].
Altogether, in terms of the site frequency spectrum, given
the equal input of mutations, deleterious variants will be
numerous among rare alleles in small as well as in large
populations. Conversely, their proportion at intermediate
and high frequency depends on the equilibrium between
drift and selection [82,84].

(b) Examples of studies on rare genetic PGx variants
In the last few years, several studies have focused on the
importance of low-frequency genetic variants in PGx genes
(electronic supplementary material, table S2). Their results
consistently indicate that rare variants in PGx genes are
(i) enriched for predicted (in few cases functionally tested)
protein-damaging mutations, (ii) abundant and population-
specific, and (iii) usually neglected in common pharmaco-
genetics genotyping panels (and, when included, affected
by ascertainment bias [85–88]). Most of these studies ana-
lysed PGx or ADME (absorption, distribution, metabolism
and excretion) loci as a whole (electronic supplementary
material, table S2). However, as described in the previous
paragraphs, PGx or ADME loci code for proteins with very
heterogeneous functions, which means different evolutionary
histories and, thus, heterogeneous patterns of rare genetic
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variation. With the aim of determining the abundance, distri-
bution and phenotypic effects of rare variants in drug-related
phenotypes, studies focused on a more homogeneous group
of genes may be more informative. For example, in the study
by Nelson et al. [89], the observed patterns of genetic vari-
ation of 202 drug target genes in 14 002 ethnically diverse
individuals match predictions based on evolutionary prin-
ciples. Specifically, the genes in this study show a signature
of strong purifying selection (i.e. they are extremely con-
served), which is consistent with their role as drug targets
and importance to human health (figure 1a). The excess of
rare genetic variants that characterizes the large European
subset analysed in the study (12 514 individuals) is concen-
trated in gene regions with a more likely functional effect
(i.e. untranslated regions and non-synonymous variants),
which are under-represented among common-frequency
variants. A significantly different pattern can be observed at
putatively neutral sites (i.e. synonymous and intronic
regions). Thus, target genes as a group are under consider-
able selective constraint in all populations, even in those
with smaller population size. Purifying selection at these
loci effectively prevents new damaging mutations from
becoming common and shared among populations.

Patterns of common and rare genetic variation have also
been analysed in DMEs. For example, Gordon et al. [90]
sequenced the entire coding region of 12 CYP genes in two
large population samples of African American and European
origin. The 12 CYP gene panel includes most of the DMEs for
which therapeutic recommendation and guidelines exist
(pharmgkb.org, cpicpgx.org), as these are collectively respon-
sible for nearly 75% of all known drug oxidizing reactions
[91,92]. Non-synonymous variation in the 12 CYP genes is
similar to the rest of the exome, with the interesting exception
of the extremely variable CYP2A6, CYP2B6 and CYP2D6 (see
also Zhou et al. [93]). In terms of the proportion of variants
with functional effect, the 12 CYP genes appear less con-
strained than drug target genes [89] (figure 1a). However,
for rare variants, target genes and the 12 CYP genes show
similar patterns, and newly discovered variants are exceed-
ingly rare and enriched for predicted damaging mutations
in all population samples.

To date, patterns and effects of rare variants in transporter
genes havemostly been analysed in the general context of PGx
genes [85–87,93] (electronic supplementarymaterial, table S2).
Two notable exceptions concern the SLCO gene family.
The first is a detailed analysis of rare genetic variation in the
gene SLCO1B1 [94], coding for a hepatic anion transporter of
extreme pharmacogenetic interest [4]. By sequencing the
gene in a very large group of well-phenotyped individuals,
the authors concluded that rare variants significantly contrib-
ute to the inter-individual variation in the clearance of
methotrexate—an antifolate agent used in autoimmune
diseases and malignancies. The functional effect of some of
these detrimental mutations has been confirmed via in vitro
analyses [94]. Recently, a comprehensive analysis of SLCO
variability by Zhang & Lauschke [95] highlighted the
considerable impact (although highly gene-dependent) of
rare functional variants, which represented the sole source
of variation for 7 out of the 11 human SLCO genes.

Besides rare variants of known or easy-to-predict pheno-
typic effect, exome and genome sequencing generate lists of
rare variants that harbour one or more potentially deleterious
properties (e.g. change the amino acid and have never been
observed in other species), but whose functional conse-
quences remain unclear. These variants are therefore
considered of uncertain significance (VUS) and challenge
the clinical implementation of pharmacogenomics [88].
Principles of population genetics and molecular evolution
described at the beginning of this fourth paragraph, together
with comparative genomics approaches, can guide the categ-
orization of VUS into subgroups with more or less probable
functional effect [96].
5. Conclusion and practical implications
Evolutionary processes, such asmutation, genetic drift, natural
selection,migration and non-randommating, are important for
understanding the role of genetics in response to the drug.
The following key points summarize the important aspects
discussed in this review and delineate their implications for
pharmacogenetics and pharmacogenomics approaches.

(i) Comparative studies between different species suggest a
direct relationship between the extent of the endogenous
role of a PGx protein and its conservation. Proteins
mainly interacting with substrates of environmental origin
will thus be more polymorphic and more prone to CNV.
In the case of unstable genes, genotyping approaches
based on few known polymorphic positions may greatly
underestimate genetic variation compared to a whole-
gene resequencing [30].

(ii) Factors that influence the evolution of PGx genes in human
and non-human species are of demographic or environ-
mental origin. Modern drugs can have an evolutionary
effect only if they actually influence the individual’s
fitness, such as in the case of warfarin for mice and some
chemotherapies in human cancer treatment. Given the
fast replication of tumour cells and the strong selective
coefficient involved in chemotherapy, the application of
evolutionary principles in cancer treatment is particularly
promising [97]. For example, the application of adaptive
evolutionary strategies allowed to control the proliferation
of resistant cells in breast cancer by stabilizing the popu-
lation of therapy-sensitive cells through intratumoural
competition [98].

(iii) Local adaptation can generate a gene-specific spatial dis-
tribution of detrimental alleles [41]. In humans, loci that
have undergone directional selective pressure—such as
CYP3A5, VKORC1 or AS3MT—typically exhibit marked
(and locus-specific) differences between populations or
geographical regions (figure 1c). On the other hand, con-
vergent adaptation, or relaxation of natural selection,may
be responsible for the presence of slow-function alleles in
different geographical regions for genes such as CYP2D6
and NAT2 (figure 1b). From a practical perspective, this
means that genetic variation at PGx loci as a whole
cannot be partitioned in population groups based, for
example, on general continental or ethnic criteria [3].

(iv) As theoretically postulated, rare damagingPGxgenetic var-
iants, as well as newly discovered VUS, are abundant, and
therefore important, but are also population-specific, and
thus difficult to include into standard genetic tests. Given
the current human population size and considering a
genome-wide average mutation rate of 1.5 × 10−8 per site
per generation [99], the number of mutations arising each
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generation is substantial, at least 100 billion mutations. As
sequencing costs continue todecline, analysing rare andpri-
vate variants on an individual’s genome will become
feasible [100]. Until then, a reasonable compromise could
be to focus on variants segregating at a sufficiently
common frequency to be detected without sequencing of
thewhole genome, and rare enough to be enriched for dele-
terious variants, as suggested by association studies in
disease genetics [101,102].

Finally, it is important and timely to mention the
additional level of complexity owing to population admixture.
Historically admixed populations such as African-Americans,
Brazilians and Caribbeans, but also new mixing because of
recent and very recent migrations, for example, from Asia to
Australia, or from Africa and Middle East to Europe, can
show particular combinations of genetic variants which are
not captured by standard and population-based pharmaco-
genetics tests [103]. Studies in Brazilians, a classical admixed
population, show that for genes highly differentiated between
Africans and Europeans, such as ABCB1, CYP3A5, CYP2C9,
VKORC1, the probability of observing a specific genotype
may be modelled as a function of individual’s continental
admixture [104]. In clinical pharmacogenetics, it has been
suggested that the inclusion of admixture inferences improve
dosage algorithm for warfarin in Puerto Rico [105]. A more
in-depth genetic characterization of admixed populations is
required to capture the set of genetic variation that is unique
to admixed individuals. This approach would provide
valuable insights to further develop pharmacogenetic tests
specific for individuals with likely multiple ancestry or to
include key SNPs and genes in multi-populations tests.
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