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Abstract

In this paper we address the numerical minimization of a variational approxi-
mation of the Blake-Zisserman functional given by Ambrosio, Faina and March.
Our approach exploits a compact matricial formulation of the objective func-
tional and its decomposition into quadratic sparse convex sub-problems. This
structure is well suited for using a block-coordinate descent method that cycli-
cally determines a descent direction with respect to a block of variables by few
iterations of a preconditioned conjugate gradient algorithm. We prove that
the computed search directions are gradient related and, with convenient step-
sizes, we obtain that any limit point of the generated sequence is a stationary
point of the objective functional. An extensive experimentation on different
datasets including real and synthetic images and digital surface models, enables
us to conclude that: (1) the numerical method has satisfying performance in
terms of accuracy and computational time; (2) a minimizer of the proposed
discrete functional preserves the expected good geometrical properties of the
Blake-Zisserman functional, i.e., it is able to detect first and second order edge-
boundaries in images; (3) the method allows the segmentation of large images.

Keywords: Blake-Zisserman functional, variational segmentation, free
discontinuity problem, noise reduction, edge-detection, crease-detection,
block-coordinate descent method

1. Introduction

Segmentation is a typical and widely investigated topic in image processing.
It can be defined as the process of partitioning an image into groups of pixels,
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called segments, in order to represent its content at an object level that poten-
tially simplifies the interpretation of the image itself.5

A class of segmentation methods recognizes the objects as the regions delimited
by edge-boundaries, i.e., sets of pixels presenting sharp variations of intensity.
Mathematical methods for segmentation are mainly divided into two categories:
methods based on PDEs and variational methods. PDE’s approaches originated
in the early 80s with the isotropic scale-space noise-reduction coarsing based on10

heat diffusion proposed in [1]. Then, anisotropic diffusion have been introduced,
which inhibits diffusion according to local properties of the image [2]. Another
approach, which is a particular case of anisotropic diffusion, has the interesting
property that the related PDE represents the flow generated by the minimiza-
tion of the Total Variation [3]. Principal issues of PDEs approaches are mainly15

due to the difficult interpretation of the role that parameters play in the model
and the physical meaning of solutions [4, 5].

In this perspective, the variational approach seems to be more intuitive and
allows for having a proper and explicit modelization of all the components:
noise-reduction, edge-detection, scale-space representation. By fully exploiting
a variational framework, Mumford and Shah [6] proposed a model for image
segmentation based on the minimization of the following functional

MS(u,K) =

∫
Ω\K
|∇u|2 dx+ αH1(K ∩ Ω) + µ

∫
Ω

|u− g|2 dx. (1)

Here Ω ⊂ R2 and g ∈ L∞(Ω) is the input image. The minimization is among all
the functions continuously differentiable outside K, i.e. u ∈ C1(Ω \K), where
K ⊂ Ω is compact. H1 is the 1-dimensional Hausdorff measure, and α, µ are
positive parameters. The minimization of the first term forces u to be smooth
(a piecewise constant behavior is expected) outside K. Because of the term
H1(K ∩ Ω), K is a one-dimensional set with finite length. The last integral
term is a distance term that forces u to be close to the original image g. The
set K can be easily understood as the set of the discontinuities of u, indeed
this is a typical problem belonging to a general class of problems called free
discontinuities problems, [7]. Kawohl found a strict relationship between the
Mumford-Shah and Perona-Malik approaches to segmentation [8]. In particu-
lar, he showed how the parameters of the Mumford-Shah (MS) functional can
be interpreted as parameters regulating an anisotropic diffusion process applied
to the image g.
From a practical point of view, the minimization of the MS functional (1) cannot
be addressed because the measure term H1(K ∩Ω) is not semi-continuous with
respect to any reasonable topology. As suggested in [7], by relaxing the prob-
lem into the weaker space of Special Functions of Bounded Variation SBV (Ω),
the methods of Calculus of Variations can be used to prove the existence of
minima [9]. The advantage of this approach is that for every u ∈ SBV (Ω),
the discontinuity set Su is uniquely determined by geometrical properties of
the function. This results in a functional formulation of the MS problem that
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uniquely depends on the function u:

G(u) :=

∫
Ω

|∇u|2 dx+ αH1(Su ∩ Ω) + µ

∫
Ω

|u− g|2 dx, (2)

where u ∈ SBV (Ω) and Su is the complement set of Lebesgue points of u. Using
compactness and lower semi-continuity theorems [10] it is showed that under
mild conditions, there exists a solution such that H1(Su) < ∞. Moreover, by20

regularity results one has that H1(Su \ Su) = 0 and the couple (u, Su) can be
identified with a minimizer of the strong formulation.

Based on this relaxed formulation, many techniques have been proposed to
tackle the problem of numerically computing a minimizer. The free discontinuity
term poses a serious problem. Ambrosio and Tortorelli [11], by exploiting a nice25

result of Modica and Mortola [12], proposed a Γ-convergence approximation via
integral functionals defined on proper Sobolev spaces. In their approximation
the discontinuity set is replaced by an auxiliary function that plays the role of
indicator function. Numerical solutions based on the Ambrosio-Tortorelli ap-
proximation are given in the framework of Finite Element Method (FEM) in30

[13], and via finite-difference discretization of Euler-Lagrange equations in [14].
In [15], a Γ-convergence approximation using local integral functionals defined
on a discrete space is given. Numerical implementation of the method is pre-
sented in [16]. Another minimization technique is based on a convex relaxation
of the functional [17]. A level set approach to minimization is presented in35

[18]. With no intent of being exhaustive, we refer the interested reader to the
overview on the numerical approaches for solving the MS functional given in
[19].

1.1. The Blake-Zisserman model for image segmentation

Being a first-order model, the MS variational segmentation suffers of some
side effects [20, 21]. The minimization of the gradient norm forces the solution
to be locally constant (zero gradient). In those regions where the gradient of g is
too steep, this local approximation results in a step-wise function characterized
by many fictitious discontinuities. This phenomenon is well-known as over-
segmentation of steep gradients. Moreover, the minimization of the length term
results in an approximation of complex edge junctions by triple-junctions where
edges meet at 2/3π wide angles. This may lead to a degradation of the real
geometry of boundaries. Lastly, properly because of its first-order nature, the
MS model is unable to detect second-order geometrical features such as points
of gradient discontinuity, see Figure 1. Since very often such points correspond
to object boundaries, the MS model has the limitation that is not capable of
detecting them.
With the specific intent to overcome such problems, Blake and Zisserman pro-

posed a variational model based on second order derivatives, free discontinuities
and free gradient discontinuities [20]. In their original formulation one has to
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(a) (b)

(c) (d)

Figure 1: Limitation of the MS model of detecting second-order geometrical features. (a,b)
Gray-scale image with second-order edges. (c) Edge-detection via Mumford-Shah functional
compared to (d) a full theoretical exact detection of 2nd-order features.

minimize

BZ(u,K0,K1) =

∫
Ω\(K0∪K1)

|∇2u|2 dx + µ

∫
Ω

|u− g|2 dx

+ αH1(K0 ∩ Ω) + βH1((K1 \K0) ∩ Ω), (3)

among all functions u that are twice differentiable (with continuity) outside
K0 ∪ K1 and at least differentiable (with continuity) outside K0. K0 and K1

vary among all the compact sets such that K0 ∪K1 is closed in Ω. µ, α, β are
positive parameters. Here ∇2u denotes the Hessian matrix of u. Notice that, for
an admissible solution u, discontinuities are allowed both on K0 ∪K1, whereas
discontinuities of the gradient are allowed only on K1. α and β are contrast
parameters regulating the total length of the discontinuity sets.
As in the MS case, also for the BZ functional minima existence and numerical
issues can be addressed by considering a relaxation of the functional. Following
[22], a relaxation in the space of Generalized Special Functions of Bounded
Variation GSBV (Ω), is given by the functional

F(u) =

∫
Ω

(
µ|u− g|2 + |∇2u|2

)
dx+ (α− β)H1(Su) + βH1(S∇u ∪ Su), (4)

where u ∈ GSBV 2(Ω) := {w ∈ GSBV (Ω) : ∇w ∈ [GSBV (Ω)]2}. In this40

weaker space, a proper definition of ∇2u and S∇u (the theoretic discontinuity
set of ∇u) as geometrical property of the function u, is possible. By regularity
arguments it can be proved [23] that a minimizer of (4) can be identified with
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a minimizing couple of the strong formulation, provided β ≤ α ≤ 2β. Thus, the
optimal set K0 ∪K1 is recovered via the discontinuity set Su and the gradient45

discontinuity set S∇u.
A vivid research interest is devoted to the Blake-Zisserman functional as it

represents the generalization of the well-known and widely used Mumford-Shah.
From a theoretical point of view it is a challenging topic, well-posedness of the
problem and uniqueness of the solution [24] as well as regularity properties of50

minimizers [25, 26, 27] are still under investigation. Recently, a concise survey
of the main results about the functional have been presented [28]
Segmentation based on the Blake-Zisserman model, because of its second-order
nature, is specifically suitable for addressing problems such as: (1) image in-
painting [29], where the functional minimization allows for predicting partially55

occluded regions in an image and their contours continuation, and (2) 3D data
segmentation [30], where the unique capability of the functional of tracing
second-order edges (creases) allows for precisely locating planar objects (such
as roof planes) in remote sensing 3D models of urban areas.

1.2. Variational approximation of the Blake-Zisserman relaxed functional60

Implementing gradient descent of (3) with respect to the unknown free dis-
continuity sets is extremely difficult. Γ-convergence has shown to be fundamen-
tal to solve the problem of numerically computing a minimizer. This notion of
convergence, suitable for functionals, has been introduced by [31]. For a deep
treatment of this topic we refer to [32, 33]. The key point in Γ-convergence is65

that a specific functional, which may not have good properties for minimiza-
tion, can be approximated by a sequence of regular functionals all admitting
minimizers. The sequence of these approximate minimizers converges (in the
classical sense) to a minimizer of the original objective functional. Besides its
importance as mathematical tool, Γ-convergence is very attractive also from a70

numerical point of view as it allows for the solution of several difficult numerical
problems in Computer Vision, Physics, and many other fields. See for instance
[33, 34].

Following the idea of Ambrosio and Tortorelli, in [35] a Γ-convergence result
is proved for the BZ functional in dimension 1. A full proof in dimension 2 and
a partial result for any dimension n is given by Ambrosio, Faina and March
[36]. The authors, by properly adapting the techniques of [35] and [11], have
introduced two auxiliary functions s, z : Ω→ [0, 1] (aimed at approximating the
indicator functions of the discontinuity sets) to the model and proposed a Γ-
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convergence approximation of F via the family of uniformly elliptic functionals

Fε(s, z, u) = δ

∫
Ω

z2|∇2u|2 dx+ ξε

∫
Ω

(s2 + oε)|∇u|2 dx

+ (α− β)

∫
Ω

ε|∇s|2 +
1

4ε
(s− 1)2 dx

+ β

∫
Ω

ε|∇z|2 +
1

4ε
(z − 1)2 dx

+ µ

∫
Ω

|u− g|2 dx, (5)

where (s, z, u) ∈ [W 1,2(Ω, [0, 1])]2 × W 2,2(Ω) =: D(Ω). Here ε is the conver-
gence continuous parameter, ξε, oε are infinitesimals and the convergence is75

intended for ε → 0. To prove Γ-convergence one has to show that for any
u ∈ GSBV 2(Ω), s ≡ 1, z ≡ 1 the two following properties hold:
Liminf inequality: for any sequence {(sε, zε, uε)}ε ⊂ D(Ω) that [L1(Ω)]3-
converges to (s, z, u), then F(u) ≤ lim infε→0 Fε(sε, zε, uε).
Limsup inequality: there exists a sequence {(sε, zε, uε)}ε ⊂ D(Ω) that [L1(Ω)]3-80

converges to (s, z, u) such that lim supε→0 Fε(sε, zε, uε) ≤ F(u).
By standard arguments of functional analysis it is possible to prove that for any
ε > 0 the functional Fε always admits a minimizing triplet. Let us denote it
by (sε, zε, uε). By sending ε → 0, thanks to the compactness properties of the
Γ-convergence, the sequence {(sε, zε, uε)}ε>0 converges in the [L1(Ω)]3-norm to85

a triplet (s, z, u) where u is a minimizer of the limit functional F and s, z ≡ 1
almost everywhere over Ω.1

The constructive part of the Γ-convergence (Limsup inequality) provides us
the tremendous advantage of keeping trace of the discontinuity sets Su and
Su ∪ S∇u via their regular function approximations. For a fixed ε > 0, the
two discontinuity sets, enjoying the regularity properties of GSBV 2(Ω) func-
tions, are approximated by sε and zε (respectively) using a slicing argument
and Coarea-formula for Lipschitz functions [36]. Let S be either Su or Su∪S∇u
and let us consider a 2-dimensional orthogonal slice of S (see Figure 2). The
idea is to build a function σε that is 0 in a tubular neighborhood of radius bε of
the set S and that tends to 1 smoothly elsewhere. The tubular neighborhood
shrinks as ε→ 0. Formally the function σε is defined as:

σε :=


0, (S)bε
1− ηε, Ω \ (S)bε+aε
hε ◦ τ, elsewhere

(6)

where aε, bε, ηε are infinitesimals as ε → 0, τ(y) := dist (y, S) and (S)r :=
{y ∈ R2 : dist (y, S) < r}. The function hε (the blue piece of function in

1In practice it is assumed that H2({σ = 0}) = 0 and 0 ≤ H1({σ = 0}) < ∞, for either
σ = s and σ = z.
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Figure 2: Slice section of the discontinuity set S and its approximation via the recovering
function σε realizing the Γ-convergence.

Figure 2) is obtained as the solution of the differential problem h′ = (1−h)/2ε,90

h(bε) = 0, where h(bε + aε) = 1 − ηε. Exploiting the Schwartz inequality
a2 + b2 ≥ 2ab it is possible to prove that such hε is energetically optimal in
the class of the admissible functions (a general result is given by [12] and used
for the approximation of discontinuity sets by [11, 36]). Because of the global
minimization of Fε, the distance term µ|uε − g|2 keeps the function uε close to95

g. High values of |∇uε| (associated to discontinuities of g) and high values of
|∇2uε| (associated to crease points of g) force the transition of the functions sε
and zε from 1 to 0. Elsewhere, the minimization of the two terms containing the
differential operators causes the smoothing of g. We remark here the importance
of the parameters δ, µ, α, β, that control the ratio at which the whole mechanism100

described before takes place.
From the discussion above it follows that, for small values of ε, the com-

putation of a minimizing triplet of (5) provides uε, an approximation of a real
minimizer u of F , and sε, zε, the functions that map the tubular neighborhoods
of the discontinuity sets Su and S∇u ∪ Su, respectively. The price to pay for105

having such nice outputs is computational complexity. In the remainder of
the paper we will show how the explicit minimization of (5) can be addressed
in an efficient way by exploiting the nice properties of the functional and a
compact formulation via finite-difference schemes enjoying good properties of
convergence.110

2. Numerical minimization of the Blake-Zisserman functional

In this section the numerical minimization of (5) is addressed. Firstly the
functional is discretized and written in matricial form. Because of nice properties
of the functional, the finite-difference discretization of the functional leads to a
quadratic function with respect to each block variable when the others two are115

left fixed.

2.1. Discretization

A simple discretization technique, commonly used for computer vision prob-
lems (see for example [37, 38]), can be applied to the functional in (5) in a
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straightforward way. The rectangular domain Ω ⊂ R2 is discretized by a lat-120

tice of points Λ = {(itx, jty); i = 1, . . . , N, j = 1, . . . ,M} with step sizes tx and
ty on the x and y directions respectively, giving rise to a point grid Λ of size
n := NM . Using the standard representation of grey-scale images as matrices,
the values of the image g on the grid points (itx, jty) are denoted gij . Sim-
ilarly, the approximate values of the functions s, z, u on the grid points are125

denoted sij , zij , uij . Furthermore, for any function v ∈ {g, s, z, u}, we denote
by v the column vector of dimension n obtained from the corresponding ma-
trix rearranging the elements vij by a column-wise vectorization. The function
w(i, j) := (j − 1)N + i makes a bijective correspondence between the entry vij
and its position in the vector v. Shortly, [v]w(i,j) = vij . Given a vector v, let130

us denote Rv the diagonal matrix with diagonal entries equal to the elements
of v. Furthermore, we also denote v2 the vector of the squared coefficients of v,
i.e., [v2]i = ([v]i)

2 and e := (1, 1, . . . , 1)T . The maximum value of the entries
of a vector is denoted by ‖v‖∞ := maxi [v]i.

The first and second order differential operators appearing in the functional
can be approximated via finite difference-schemes as follows

∂xvij :=
vi+1,j − vi,j

tx
= [Dxv]w(i,j)

∂yvij :=
vi,j+1 − vi,j

ty
= [Dyv]w(i,j)

∂xxvij :=
vi+1,j − 2vi,j + vi−1,j

t2x
= [Dxxv]w(i,j)

∂yyvij :=
vi,j+1 − 2vi,j + vi,j−1

t2y
= [Dyyv]w(i,j)

∂xyvij :=
1

ty

(
vi+1,j+1 − vi,j+1

tx
− vi+1,j − vi,j

tx

)
= [Dxyv]w(i,j)

(7)

for i = 1, . . . , N and j = 1, . . . ,M . By assuming zero boundary conditions
(v0,j = vN+1,j = vi,0 = vi,M+1 = 0) as in [36], the above matrices Dx, Dy, Dxx,
Dyy are given by

Dx :=
1

tx
IM ⊗A1

N Dy :=
1

ty
A1
M ⊗ IN

Dxx :=
1

t2x
IM ⊗A2

N Dyy :=
1

t2y
A2
M ⊗ IN

Dxy := DyDx = DxDy

where ⊗ is the Kronecker product. Here IK denotes the identity matrix of
dimension K and A1

K , A2
K are square matrices of order K > 0, representing

a forward-scheme approximating first-derivative and a central-scheme approxi-
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mating second-derivative respectively2:

A1
K :=


−1 1

−1 1
. . .

. . .
−1 1

−1

 , A2
K :=


−2 1
1 −2 1

. . .
. . .

. . .
1 −2 1

1 −2

 .

(8)
By using the following approximations over each grid point

|∇2vij |2 = ([Dxxv]w(i,j))
2 + ([Dyyv]w(i,j))

2 + 2([Dxyv]w(i,j))
2,

|∇vij |2 = ([Dxv]w(i,j))
2 + ([Dyv]w(i,j))

2,

we can approximate the integral over Ω with a simple 2-D composite rectangular135

rule, obtaining the following discrete form of the functional (5):

Fε(s, z,u) := txty

{
δ [uTDT

xxRz2Dxxu + uTDT
yyRz2Dyyu + 2uTDT

xyRz2Dxyu] +

+ ξε [uTDT
xRs2Dxu + uTDT

yRs2Dyu] +

+ (α− β) [ε (sTDT
xDxs + sTDT

yDys) +
1

4ε
(s− e)T (s− e)] +

+ β [ε (zTDT
xDxz + zTDT

yDyz) +
1

4ε
(z− e)T (z− e)] +

+ µ (u− g)T (u− g)
}
. (9)

Here, with abuse of notation, Rs2 is the diagonal matrix composed by the
elements of the vector s2 + oε (instead of s2).
Globally this functional is not convex, but it is quadratic with respect to each
block of variables s, z,u. The terms of Fε containing s or z depend only on u.
On the other hand, the terms containing u depend on s and z. Indeed, by fixing
the variable u or the other two variables s and z, we can write

Fε(s, z,u) = txty

{
1

2

(
sT zT

) ( As 0
0 Az

) ( s
z
)
−
(
sT zT

) ( bs
bz

)
+ csz

}
Fε(s, z,u) = txty

{
1

2
uTAu u− uTbu + cu

}
(10)

2The implementation of homogenoeus Neumann boundary conditions follows straightfor-
wardly by replacing the entries: [A1

K ]
K,K

= 0 and [A2
K ]

1,1
= [A2

K ]
K,K

= −1.
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where As = As(u), Az = Az(u), Au = Au(s, z) and bs,bz,bu are given by

As = 2ξεR|∇u|2 + 2ε(α− β)(DT
xDx + DT

yDy) +
α− β

2ε
I

bs =
α− β

2ε
e

Az = 2δR|∇2u|2 + 2εβ(DT
xDx + DT

yDy) +
β

2ε
I

bz =
β

2ε
e

Au = 2δ(DT
xxRz2Dxx + DT

yyRz2Dyy + 2DT
xyRz2Dxy)+

2ξε(D
T
xRs2Dx + DT

yRs2Dy) + 2µI

bu = 2µg

(11)

with |∇u|2 := (Dxu)2 +(Dyu)2 and |∇2u|2 := (Dxxu)2 +(Dyyu)2 +2(Dxyu)2.
Vectors csz and cu are constant, thus irrelevant for the minimization. In view of
the terms α−β

2ε I, β
2εI and 2µI, with ε, µ, β, α−β > 0, the matrices As,Az,Au are

symmetric and positive definite. Furthermore, these matrices are very sparse140

and structured: As and Az are block tridiagonal matrices where the diagonal
blocks are tridiagonal and the off-diagonal blocks are diagonal. Au is a block
five matrix, with at most 13 nonzero entries for each row.

In the following, for notation convenience, a generic point in R3n is repre-
sented by either y or (s, z,u). This makes a simple correspondence of the type:145

y1 = s, y2 = z and y3 = u. Accordingly, throughout the paper a similar corre-
spondence is used for denoting operators/vectors related to a specific block of
variables. For example: As = A1, Az = A2, Au = A3, and bs = b1, bz = b2,
bu = b3 etc. Furthermore, we denote the gradient of Fε with respect to the
generic block of variables yi, computed at y, by ∇iFε(y) = Aiyi − bi.150

2.2. Minimization method

We address here the minimization of the function Fε(s, z,u). Firstly we can
observe that the objective function is continuously differentiable, and in view
of the positive definiteness of matrices Ai, i = 1, 2, 3, it is strictly convex with
respect to each block component yi, when the others are left fixed. Let us prove155

that Fε is also coercive.

Lemma 1. The function Fε(s, z,u) is coercive in R3n.

Proof. Given a sequence yk = (sk, zk,uk) ⊂ R3n such that limk→∞ ‖yk‖ = +∞
the lemma is proved if we show that limk→∞ Fε(y

k) = +∞. The hypothesis
on yk implies that there exists a coordinate index j ∈ {1, 2, . . . , 3n} such that160

limk→∞ |ykj | = +∞. If 1 ≤ j ≤ n, then j corresponds to an index i in the s block

and we have that limk→∞ |ski | = +∞. In particular limk→∞(ski −1)2 = +∞ and
since (ski − 1)2 ≤ (sk − e)T (sk − e) we also have that limk→∞ Fε(y

k) = +∞. A
similar argument works in the case of n + 1 ≤ j ≤ 2n, where j corresponds to
an index in the z block. If 2n+ 1 ≤ j ≤ 3n then j corresponds to an index i in165
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the u block. From limk→∞ |uki | = +∞ we have that limk→∞(uki − gi)
2 = +∞

and, since (uki −gi)
2 ≤ (uk−g)T (uk−g), then we have again limk→∞ Fε(y

k) =
+∞.

By using a truncation argument we have that the functions s and z that minimize
the objective functional Fε belong to a specific compact subset of R3n. In fact,
given τ(v) := 0 ∨ v ∧ 1, i.e., the function that truncates v at 0 and 1, one can
see that for any triplet (s, z,u) ∈ R3n

Fε(s, z,u) ≥ Fε(τ(s), τ(z),u) (12)

holds (in fact, the truncation of s and z does not increase their gradients). It
follows that for a minimizer (s, z,u) the functions s, z ∈ [0, 1]

n
. A similar argu-170

ment is used for the Mumford-Shah functional in [11] to prove that the optimal
u is such that ‖u‖∞ ≤ ‖g‖∞ (maximum principle). Unfortunately, the Hessian
component of the Blake-Zisserman functional does not allow us to exploit the
maximum principle and an explicit bound for the function u cannot be calcu-
lated, [28].175

The structure of the function Fε(s, z,u) justifies the use of a block decompo-
sition method, such as the block non-linear Gauss-Seidel method. Starting
from (s0, z0,u0), in view of (10), the method has the following form:

sk+1 = arg mins Fε(s, z
k,uk)

zk+1 = arg minz Fε(s
k+1, z,uk)

uk+1 = arg minu Fε(s
k+1, zk+1,u)

. (13)

Because of the the block diagonal structure of the matrix related to the quadratic
functional obtained by fixing u in the first subproblem in (10), sk+1 and zk+1

can be obtained by further subdividing this subproblem into two independent
tasks.180

Theorem 6.2 in [39] assures that the algorithm generates a sequence {sk, zk,uk}
such that every limit point is a stationary point of Fε. Because of coercivity,
the level sets Lα = {(s, z,u) : Fε(s, z,u) ≤ α} are compact for every α > 0.
Since in particular Lα0 is compact, where α0 = Fε(s

0, z0,u0), the theorem also
guarantees that ∇Fε(sk, zk,uk)→ 0 as k →∞ and there exists at least a limit185

point that is a stationary point of Fε.
Nevertheless, any step of the non-linear Gauss-Seidel method requires the solu-
tion of three large and sparse systems. Although such systems can be efficiently
solved by the Preconditioned Conjugate Gradient (PCG) algorithm, the whole
method could be too expensive, above all for large images.190

Therefore, we propose to solve our minimization problem with a block coordi-
nate descent algorithm (BCDA), based on the line search technique described
in [39]. The basic idea of the method is to cyclically determine for each block
variable a descent direction di by few iterations of an iterative solver; then by
an Armijo–type procedure a suitable step size is devised to assure a sufficient195

11

Massimo Zanetti
Evidenziato



Algorithm 1 BCDA

Step 0: Given s0, z0, u0, ρsz > 0, ρu > 0, γs ∈ (0, 2), γz ∈ (0, 2), γu ∈ (0, 2);

Step 1: k = 0;

Step 2: Inexact minimization with respect to s and z:

• compute the search directions dks and dkz ;

• compute αks = γs
−(Akss

k−bs)Tdks
dks

TAksd
k
s

, αkz = γz
−(Akzz

k−bz)Tdkz
dkz

TAkzd
k
z

• update sk+1 = sk + αksd
k
s ; zk+1 = zk + αkzd

k
z .

Step 3: Inexact minimization with respect to u:

• compute the search directions dku;

• compute αku = γu
−(Akuu

k−bu)Tdku
dku

TAkud
k
u

• update uk+1 = uk + αkud
k
u.

Step 4: Set k = k + 1 and go to Step 2;

decrease of the objective function along this direction with respect to the i–th
block variable, when the remaining variables are fixed.
In view of the special structure of Fε(s, z,u), for each subproblem in (10) we can
cyclically obtain a descent direction by few iterations of the PCG method ap-
plied to the linear system Ak

i di = bi−Ak
i y

k
i . In the first subproblem, dks and dkz200

can be independently obtained. Furthermore, in view of the quadratic structure
of the objective function with respect to each block of variables when the others
are fixed, the step–lengths along the computed descent directions can be deter-
mined without having to use an Armijo–type procedure. Indeed, it is well known
that, for a symmetric positive definite quadratic function, a sufficient decrease is205

assured when the step size αki is chosen as γi
−(Aki y

k
i−bi)

Tdki
dki

TAki d
k
i

= γi
−∇iFε(yk)Tdki

dki
TAki d

k
i

,

with 0 < γi < 2; in particular, for γi = 1, we obtain the exact one-dimensional
minimizer of the quadratic function along the direction dki . As consequence, we
can devise a specialized version of the block-coordinate descent algorithm for
Fε(s, z,u); such scheme is outlined in Algorithm 1.210

2.2.1. Gradient related search directions

In order to obtain convergence results for BCDA, the vectors dki , i = 1, 2, 3,
have to be chosen so that they are gradient related search directions. Equiva-
lently, they have to satisfy the following assumption:

(a) dki = 0 if and only if ∇iFε(yk) = 0,215
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(b) there exists a forcing function σi : R+ → R+ such that:

∇iFε(yk)Tdki
‖dki ‖

≤ −σi(‖∇iFε(yk)‖) (14)

for all k satisfying ∇iFε(yk) 6= 0.

In order to determine a gradient related search direction when Ak
i y

k
i − bi 6= 0,

we can execute several iterations of PCG method for the symmetric positive
linear system Ak

i di = bi −Ak
i y

k
i by stopping the algorithm when the residual

r` = bi −Ak
i y

k
i −Ak

i d
`
i of the system at the ¯̀-th iteration satisfies the rule

‖r`‖ ≤ ηi‖Ak
i y

k
i − bi‖ ηi ≤

c√
K((Ak

i )−1)
< 1, (15)

where K((Ak
i )−1) is the spectral condition number of (Ak

i )−1 and c is a posi-
tive constant. We observe that K((Aki )−1) = K(Aki ) is bounded by a positive

constant L in Lα0 . Then we set d
¯̀
i = dki . We can prove that dki satisfies the

assumption (14). Indeed, recalling that ‖ · ‖A−1 denotes the A−1–norm (that is

‖x‖A−1 =
√
xTA−1x), for d

¯̀
i = dki we have

∇iFε(yk)Tdki
‖dki ‖

≤ (Ak
i y

k
i − bi)

T (Aki )−1Aki d
¯̀
i

‖d¯̀
i‖

+

+
1

2‖d¯̀
i‖

(‖r¯̀
+∇iFε(yk)‖2(Aki )−1 + ‖∇iFε(yk)‖2(Aki )−1 − ‖∇iFε(yk)‖2(Aki )−1)

=
1

2‖d¯̀
i‖

(
‖r¯̀‖2(Aki )−1 − ‖∇iFε(yk)‖2(Aki )−1

)
≤ 1

2‖d¯̀
i‖

(
λmax((Aki )−1)‖r ¯̀‖2 − λmin((Aki )−1)‖∇iFε(yk)‖2

)
(16)

≤ 1

2‖d¯̀
i‖
(
λmax((Aki )−1)η2

i − λmin((Aki )−1)
)
‖∇iFε(yk)‖2 (17)

where (16) follows from the well-known inequalities

xT (Aki )−1xT ≤ λmax((Aki )−1)‖x‖2

xT (Aki )−1xT ≥ λmin((Aki )−1)‖x‖2

for any x, and the inequality (17) follows from (15). Furthermore, the bound on
ηi implies (λmax((Aki )−1)η2

i−λmin((Aki )−1)) < 0; then, since d
¯̀
i = (Ak

i )−1(−∇iFε(yk)−
r

¯̀
), we have

‖d¯̀
i‖ ≤ ‖(Ak

i )−1‖(‖∇iFε(yk)‖+ ‖r¯̀‖)
≤ λmax((Ak

i )−1)(1 + ηi)‖∇iFε(yk)‖
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Using this inequality in (17), we can conclude that

∇iFε(yk)Tdki
‖dki ‖

≤ 1

2(1 + ηi)

(
η2
i −

1

K((Ak
i )−1)

)
‖∇iFε(yk)‖

≤ c2 − 1

2L
‖∇iFε(yk)‖, (18)

where c2 − 1 < 0. Consequently, in the level set Lα0 , the search directions dks ,
dkz and dku generated by a PCG method with stopping rule (15) are gradient
related search directions. Therefore, by Theorem 7.1 in [39], we can affirm that
for BCDA the same convergence results hold as for block non–linear Gauss220

Seidel method, that is ∇Fε(uk, zk, zk) → 0 as k → ∞ and there exists at least
a limit point in Lα0 that is a stationary point of Fε.

2.2.2. Algorithm parameters and preconditioning

We observe that from the practical point of view the computation of the
condition number of (Ak

i )−1 (which equals that of Ak
i ), can be avoided. Indeed,

in view of the condition (15) on ηi, it is sufficient to have an upper bound
for K(Ak

i ). Then, using the inequalities between the matrix norms, we have
λmax(Ak

i ) ≤ ‖Ak
i ‖∞. Since As and Az are strictly diagonally dominant, the

first Gerschgorin’s theorem [40] enables us to determine as lower bound for
the minimum eigenvalue the intersection between the union of the Gerschgorin
circles and the x-axis of R2, given by λ̃ki = mint((A

k
i )tt −

∑
v 6=t |(Ak

i )vt|) for
i = 1, 2. For the matrix A3, a lower bound for the minimum eigenvalue is the
value λ̃k3 = 2µ. Therefore, we have

K(Ak
i ) =

λmax(Ak
i )

λmin(Ak
i )
≤ ‖A

k
i ‖∞
λ̃ki

, (19)

consequently, we can set

ηi =

√
λ̃ki

‖Ak
i ‖∞

. (20)

From the computational point of view, the quadratic structure of Fε re-
stricted to any block variable yi implies that the condition related to the Armijo
rule that has to be verified to accept the step size αki = maxj≥0{δji∆k

i } can be

αki ≤ 2(γi − 1)
(Aki y

k
i − bi)

Tdki
(dki )TAki d

k
i

. (21)

Furthermore, since As and Az are block tridiagonal matrices, an inexpen-
sive diagonal preconditioner enable us to satisfy the stopping rule (15) with a225

very few iterations, as shown by numerical experiments in the Section 3.
For the linear system related to matrix Au we can use a diagonal precondi-
tioner or a block diagonal preconditioner. In this last case, each diagonal block
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is a tridiagonal matrix that can be easily factorized by the Cholesky algorithm.
Although the factorization can be calculated in advance, PCG requires the fac-230

torization of the preconditioner and, at each iteration, the solution of bidiagonal
lower and upper systems; thus PCG coupled with block preconditioner becomes
effective with respect to the version with diagonal preconditioner for large order
of the system and only when high accuracy is required. Furthermore, unless for
the first outer iteration, we use as starting vector of the PCG algorithm in Step235

2 and 3 of BCDA the direction computed at the previous outer iteration. For
the first iteration, the starting vector is the null vector.
In the numerical experiments, standard values equal to 1 are set for γs and γz;
we set γu = 1.5, since for this value we obtain a slightly better performance.

2.2.3. Initialization and stopping criteria240

The objective functional to minimize is non-convex; thus, the significance
of the solution returned by the iterative method (a stationary point) strongly
depends on the choice of the first iterates. Using prior knowledge on the prop-
erties of the theoretical solution, an effective choice of the initial values can be
made [36]. Being the functions s, z ≡ 1 almost everywhere over Ω (in the limit245

case), we set the corresponding variables to s0, z0 ≡ e. Since the function u is an
approximation of the input image g, we assume that an energetically convenient
initialization of the corresponding variable is u0 = g.

In the experiments described in the next section, the algorithms are stopped
at the iteration k such that the relative variation of the energy satisfies the
condition ∣∣∣∣Fε(uk, sk, zk)− Fε(uk−1, sk−1, zk−1)

Fε(uk, sk, zk)

∣∣∣∣ < TOLF , (22)

where TOLF is a fixed tolerance.

3. Numerical results250

In this section we present the results of an extensive numerical experimen-
tation aimed at assessing different properties of the proposed block-coordinate
descent method applied to (9). In Section 3.1 the proposed BCDA is compared
with the GS in order to evaluate its performance both in terms of efficiency
and accuracy. In Section 3.2, by focusing the attention on the noise reduction255

properties of the model, we compare the performance of the BCDA when a
Point-Diagonal and a Block-Diagonal preconditioner is used for the solution of
the PCG related to the linear system involving Au. In Section 3.3 we make a
discussion on the choice of the Γ-convergence parameter ε, which may critically
affect the quality of the detection of first and second order discontinuities.260

Very different datasets are considered in the tests, including both real and
synthetic images and also Digital Surface Models (DSMs) obtained from remote
sensing LiDAR (Light Detection and Ranging) data [41]. DSMs are obtained
from airborne LiDAR point clouds by interpolation over a regular planimetric
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grid. The value of the DSM on each pixel (grid point) corresponds to the height265

of the object hit by the laser pulse. In particular DSMs are very attractive as
they represent the real geometry of the objects instead of the light geometry
provided by gray-scale images.

All tests are performed using MATLAB R© on a standard workstation. Hard-
ware is Intel(R) Core(TM) i5-4750 CPU @ 3.20 GHz, 8.00 GB Ram. For all270

numerical tests that follow, some common parameters to control convergence
of outer/inner iterations are used. The algorithms are always stopped at the
iteration k such that the corresponding relative variation of the energy (22) is
less than TOLF = 10−3. A maximum number of outer iterations is also fixed as
stopping criterion to 30. It is worth noting that in all computations this bound275

has never been reached. Regarding the solution of internal PCGs, we fixed a
maximum number of iterations to 1000. It has been observed in a very large
number of tests that, the linear systems involving As,Az are solved within an
inner tolerance TOLPCG in no more than 3 iterations in the case of GS, and
in only 1 iteration in the case of BCDA. Other parameters and tolerances are280

explicitly specified in the tests.

3.1. Comparison of GS and BCDA performance

In this section we show how the proposed BCDA produces accurate solu-
tions by also significantly reducing computational time if compared with a GS
method. In order to compare the effectiveness of the two methods, we compute285

an ideal solution s∗, z∗,u∗ by performing a lot of iterations of the GS method,
i.e., by running GS until it reaches stagnation since all PCGs (with a very strong
relative tolerance TOLPCG = 10−10) do not make any progress.
For the inner PCGs in the GS method, a strong relative tolerance TOLPCG =
10−8 is required; smaller tolerances have never resulted in lower minimizers.290

Tolerances for the solution of inner iterations of the PCGs in the BCDA are
theoretically defined by (15) and (20). Furthermore, we propose also an hybrid
version of the BCDA, to which we will refer to as BCDAc, where the number
of iterations for solving the inner PCGs is capped at 10 (in view of a previous
remark this affects only the solution of the system involving Au). The main idea295

behind this choice it to show that actually just few steps of the inner solvers
are needed to reach satisfying results at lower computational cost, even though
a small (negligible) amount of accuracy is payed. Since the performance of the
method when a block-diagonal preconditioner is used is analyzed in detail in
Section 3.2, in all tests conducted in this section a diagonal preconditioner is300

used for the PCGs.
We consider as test problems the four datasets represented in Figure 3. The

first image is a 600× 600 portion of the oil painting “Girl with a Pearl Earring”
by Johannes van der Meer. We refer this dataset to as pearl. Then, two gray-
scale images3 are considered. The first image is called aerial and it has size of305

3Images are downloadable at http://sipi.usc.edu/database/database.php?volume=

misc#top
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(a) pearl (600× 600) (b) aerial (512× 512) (c) airport (1024× 1024)

(d) barracks (600× 600) (e) barracks (3D rendering)

Figure 3: Datasets of the experiment including three gray-scale images and a digital surface
model obtained from airborne LiDAR points acquired over Trento, Italy.

512×512 pixels. The second image is called airport and it has size of 1024×1024
pixels. The last dataset is a subset of a DSM of Trento4, in Trentino Alto-Adige,
Italy. The considered scene presents some old barracks and surrounding area.
The size of the grid is 600×600, spatial resolution is 1mt. We refer this dataset
to as barracks. In Figure 3d a 3D rendering of the surface model is shown.310

Functional parameters for the minimization on these datasets are set as follows:

• pearl: ε = 0.01, δ = 3, α = 2, β = 1, µ = 0.07, t = 1;

• aerial: ε = 0.01, δ = 1, α = 2, β = 1, µ = 0.05, t = 1;

• airport: ε = 0.01, δ = 1, α = 2, β = 1, µ = 0.05, t = 1;

• barracks: ε = 0.01, δ = 30, α = 2, β = 1, µ = 1, t = 1.315

In Table 1 we report the total number of outer (k) and inner (totiter) it-
erations of GS, BCDA and BCDAc together with the total time in seconds

4DSMs are downloadable at http://www.territorio.provincia.tn.it/portal/server.

pt/community/lidar/847/lidar/23954
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(the mean of ten runs) required to compute an approximate solution, with
TOLF = 10−3 in (22). Computational performance of GS, BCDA, and BCDAc

is better illustrated in Figure 4, where the value of the objective function at320

each outer iteration is plotted against the cumulative execution time.
The solutions obtained with all the proposed methods are very similar each

other, in such a way that they cannot be distinguished only visually. The
accuracy (and the similarity) of the solutions obtained with GS, BCDA and
BCDAc can be measured in terms of their distance to the ideal solutions. To
this aim we defined a normalized distance based on the L1 norm as follows. In
view of (12), the solutions of the algorithms are such that s, z ∈ [0, 1]n. Given
H := [0, h]n, with h > 0, we easily have that

d(h) := max
x,y∈H

‖x− y‖1 = hn. (23)

Therefore, we can define a normalized distance function dh : H × H → [0, 1]
by setting dh(x,y) := 1

d(h)‖x − y‖1. As a consequence, the maximum possible

distance in H := [0, 1]
n

is 1, and the value 100 · dh(x,y) can be interpreted
as the percentage of image content which is changed between x and y. Thus,325

the distances for the functions s and z are given in terms of d1. As already
mentioned in Section 2.2, it is not possible to define an explicit bound for the
values of the function u. Altough our method produces a sequence of iterates
(sk, zk,uk) ∈ Lα0 , the inequality Fε(s

k, zk,uk) ≤ Fε(e, e,g) does not necessarily
imply that ‖uk‖∞ ≤ ‖g‖∞. However, in all numerical experiments presented330

in this paper (and many others) it is observed that the optimal u satisfies
‖uk‖∞ ≤ ‖g‖∞, thus it is meaningful to compute the distances of the solutions
u by means of dG where G := ‖g‖∞.

The distances between the solutions of GS, BCDA, BCDAc with respect
to the ideal solutions are given in Table 2. By analyzing the results we see335

that the BCDA algorithm, if compared to GS, significantly decreases the time
of computation of approximately 75% and returns solutions that do not differ
more than 1% with respect to the ideal solution. BCDA and GS always resulted
in the same accuracy. In the case of BCDAc, the time of computation further
decreases of 10% and the difference of the solutions with respect to the ideal340

solution are never greater than 1%. Notice that the obtained solutions have a
lower accuracy as the normalized distances are about 10 times those obtained
by the other two methods. In Figure 5, for each dataset we plot the smooth
approximation u, the edge-map s and the edge/crease- map z obtained by the
BCDA.345

Second-order segmentation provides a piecewise linear approximation of the
input image. Therefore, if compared to first order models, it avoids the problem
of over-segmentation and the real geometry of objects is followed properly. For
instance, in the pearl image both the noise and the craquelure are removed while
the geometry of shadows is preserved. For example, by taking a look at the par-350

ticular showed in Figure 6, we see that around the nostril, the variation of grey
level in the shadowed area is over-segmented by the s function (shadow-like trait
in the s map) but it is correctly outlined by the z function. In fact, boundaries
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dataset method k totiter (s-z-u) time

pearl
600× 600

GS 18 43-49-6435 190.3
BCDA 14 14-14-690 38.9
BCDAc 14 14-14-106 25.0

aerial
512× 512

GS 19 49-55-4592 105.9
BCDA 15 15-15-492 25.8
BCDAc 11 11-11-62 14.4

airport
1024× 1024

GS 20 51-55-4937 460.1
BCDA 16 16-16-493 107.9
BCDAc 12 12-12-72 62.1

barracks
600× 600

GS 14 31-39-3906 119.1
BCDA 12 12-12-463 29.3
BCDAc 10 10-10-69 17.3

Table 1: Outer/inner iterations and execution time in seconds observed in the run of algo-
rithms.

(a) pearl (b) aerial

(c) airport (d) barracks

Figure 4: Energy-versus-time at every outer iteration for all three datasets with GS, BCDA
and BCDAc. Algorithms are stopped by criterion (22) with tolerance TOLF = 10−3.

of shadows are characterized by a transient zone of luminance variation which
is a ramp and not as sharp as a jump. The aerial image is smoothed out and the355

contrast between the ground and human-made objects is more evident in the
segmented image. A similar behavior is observed for airport, where the smooth-
ing removes the noise but is able to keep the geometry of cars in the parking
area. By looking at the particular in Figure 7 we see that almost every trait in
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dataset method d1(s, s∗) d1(z, z∗) dG(u,u∗)

pearl
GS 3.40e− 03 6.45e− 03 4.02e− 04
BCDA 4.00e− 03 7.59e− 03 4.93e− 04
BCDAc 1.38e− 02 1.84e− 02 4.78e− 03

aerial
GS 9.76e− 03 1.27e− 02 1.13e− 03
BCDA 9.44e− 03 1.22e− 02 1.14e− 03
BCDAc 3.33e− 02 3.18e− 02 8.35e− 03

airport
GS 5.41e− 03 7.46e− 03 6.59e− 04
BCDA 5.74e− 03 7.80e− 03 7.43e− 04
BCDAc 1.86e− 02 1.83e− 02 6.88e− 03

barracks
GS 2.47e− 03 1.65e− 02 3.57e− 05
BCDA 2.47e− 03 1.62e− 02 3.63e− 05
BCDAc 6.48e− 03 2.62e− 02 1.80e− 04

Table 2: Accuracy in the approximations given by the GS, BCDA and BCDAc with respect
to the ideal solution for the considered datasets.

s seems to be doubled in z. Again, this happens because in luminance images360

the transition of intensity between two areas with different values is usually not
purely a jump. The doubled trait is due to the fact that the z function is able
to detect both sides of the transition ramp.

In the barracks dataset, the capability of the model of detecting second-
order edge boundaries is clear. In the surface models the geometry is real and365

the structure of many man-made objects is linear (buildings for instance). By
looking at the particulars in Figure 8 we see that the noise is removed and
the edges that define the roof planes are preserved and correctly detected by
the z function. Notice also the substantial difference between the functions s
and z. This difference is not so evident in the images as variations of gradient370

of luminance are usually as not as sharp as variations of gradient of height in
surface models of urban areas. This means that discontinuities that are purely
of second-order are difficult to find in images, but not in DSMs.

Lastly, we remark here that in a discrete setting a jump is also a crease. In
view of the second-order differential operators used in (8) a jump is traced along375

1-pixel wide curve in s, whereas it is traced along a 2-pixel wide curve by z (cfr.
Section 3.3).
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Figure 5: Results of the BCDA method for the considered datasets. First column is the smooth
approximation u, second column is the edge-map s and third column is the edge/crease-map
z.
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g u

s z

Figure 6: Particulars of the segmentation for the dataset pearl.
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g u

s z

Figure 7: Particulars of the segmentation for the dataset airport.
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g

u

s z

Figure 8: Particulars of the segmentation for the dataset barracks. Above there are the 3D
renderings of the surface model g and its smooth approximation u. In the bottom there are
the edge map s and the edge+crease map z.
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3.2. Noise reduction and effect of Block-Preconditioner for the BCDA

The Step 3 in Algorithm 1 attempts to minimize the objective function
Fε(s, z,u) with respect to the variable block u. The performance of this step380

depends on both the size and the noise level of the image. The inverse of the
parameter µ of the objective function represents the scale at which variations
in g are considered as noise. At each outer iteration k, variations that are in
order to be smoothed out are signaled by the points where sk, zk are close to 1.
Smoothing takes place when the system involving Au is solved and returns uk.385

The computational burden related to this step is determined by the scale of the
noise in the image: the greater the variations are related to the noise, the more
effort is required to smooth out such variations. Assuming that interesting
features (edge-boundaries) and noise are at different scales in the image, the
parameter µ must be chosen at an intermediate level in such a way that the390

former ones are preserved by the model whereas the latter ones are smoothed
out. However, from (11) one can see that small values of µ reduce the definite
positiveness of matrix Au. Thus, µ should be optimal, i.e., as greater as possible
but not such that noise is preserved.

The first test we present concerns with the relationship between the choice of395

µ, the noise reduction and the performance of the minimization performed by the
proposed BCDA. The basic element of the datasets considered in the following
is a synthetic 100 × 100 grey-scale image presenting geometrical features of
first and second order consisting in a truncated pyramid. Images of greater
dimensions are obtained by assembling several basic elements of the same type.400

Test images are corrupted by artificial additive Gaussian noise with 0 mean
and varying standard deviation σ (top-left image in Figure 9 represents one
pyramidal element, in the same row other elements with added noise). Along
the experiments, functional parameters except µ are fixed to α = 2, β = 1, δ =
30, ε = 0.01, t = 1. After running the algorithm several times, we observed that405

that for values µ < 0.05 the smoothing also affected the interesting features
of the image (pyramid edges), whereas for µ > 0.15 no smoothing at all was
observed. Therefore, the results given in the following relate to 0.05 ≤ µ ≤ 0.15.
Performance of the BCDA with respect to noise and µ is evaluated in two
experiments.410

• In the first experiment the minimization is performed on one pyramidal
element for different levels of noise σ = 0, 0.5, 1, 2 (σ = 0 means that no
noise is added) and for µ = 0.15. In Figure 9, the input image g, the
difference between g and its smooth approximation u, the edge-detection
function s and the edge/crease-detection function z are showed. Notice415

from the plots of g − u how the noise is uniformly detected and removed
by the model in all cases. The detection of first and second order features
of the image is sufficiently accurate, and only for σ = 2 the scale of the
noise slightly affects the detection of pyramid edges. Let us denote gσ
and uσ the input image and its smooth approximation for different values420

of σ. Quantitatively, the capability of the model of removing the noise
is given in terms of the distance between the smooth approximations uσ
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σ = 0 σ = 0.5 σ = 1.0 σ = 2.0

Figure 9: Smoothing on synthetic images with different noise levels, image size is 100× 100.
Row 1: input noisy images g. Row 2: difference g − u. Row 3: edge-detection functions s.
Row 4: edge/crease-detection functions z.

and the original noise-free image g0. We obtained dG(g0,u0) = 2.90e−03,
dG(g0,u0.5) = 2.81e−03, dG(g0,u1) = 2.88e−03, dG(g0,u2) = 3.13e−03,
where we used G = ‖g0‖∞.425

• In the second experiment, the effect of varying µ on the performance of
the minimization method is tested with respect to different levels of noise.
Test images have size of 1000 × 1000 pixels. Times of computation and
average number of iterations of the PCG related to u are given in Figure
10. As we can see, for a fixed value of µ the time required for smoothing430
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(a)

(b)

(c)

Figure 10: Performance details of BCDA by varying µ and for different variances of the noise.
Test images are 1000×1000 pixels compositions of the pyramidal elements showed in Figure 9.
For each value of µ we plot (a) the execution time, (b) the total number, and (c) the average
number of iterations of the PCG solver related to u.

the data increases with σ. Moreover, since the average number of PCG
iterations for u does not significantly change with σ, we conclude that
more outer iterations are needed to smooth out the noise. Notice also
that, as expected, increasing values of µ resulted in less computational
time due to the fact that the definite positiveness of matrix Au increases.435

As we have seen in the previous experiments, the noise removal task can be
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(a)

(b)

(c)

Figure 11: Performance of BCDA with Diagonal (D) and Block-Diagonal (BD) preconditioners
for the PCG solver related to u, versus the size of g. We plot (a) the execution time, (b) the
total number, and (c) the average number of iterations of the PCG solver related to u.

very expensive. Moreover, the execution time also depends on the size of the
input image. The second test we present aims at showing that the general per-
formance of BCDA can be enhanced if a block-diagonal preconditioner, instead
of a point–diagonal one, is used. In the experiments, the algorithm is run on440

synthetic images composed by several pyramidal elements corrupted with noise
with different variances. Analyzed images have a number of pixels ranging from
2 · 105 to 4 · 106. From Figure 11 we see that the execution time linearly in-
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creases with the size of the image. Moreover, the use of a block-preconditioner
reduces the time of approximately 14% regardless the noise variance. It is also445

confirmed from the graphs of total and average number of PGC iterations that,
for increasing sizes of the image the number of iterations does not significantly
change. The computational burden is instead in the time for completing each
iteration.

3.3. Parameter ε, grid resolution and sensitivity of the discontinuity functions450

The explicit construction of a recovery sequence in the Γ-convergence proof
of [36] allows for having an essential prediction of geometrical properties of the
discontinuity functions sε, zε approximating the discontinuity sets Su, S∇u, for
ε > 0 (see Figure 2 and related discussion). The geometrical behavior of sε, zε
is theoretically determined by the convergence parameter ε and geometrical fea-455

tures of the input image g. However, no analytical expression of the functions in
proximity of the discontinuities is given. These facts give rise to some numerical
problems that must be taken into account when the functional Fε is minimized
and the numerical approximations of sε, zε (given by s, z, respectively) are com-
puted. On the one hand, the discrete sampling of the domain Ω with steps tx, ty460

must resolve the tubular neighborhoods of the discontinuity sets, which shrink
as ε → 0. On the other hand, increasing values of |∇g| and |∇2g| will force
sharper transitions of the discontinuity functions from 1 to 0, whereas decreas-
ing values will result in softer transitions, therefore limiting the capability of
detecting edge boundaries.465

In order to have a clear understanding of the geometrical behavior of functions
s, z, in the following the sensitivity of the model with respect to the parameter
ε and the variations of |∇g| and |∇2g| is tested. In the tests the two synthetic
images showed in Figure 12 are used. The first image contains a uniform jump
(discontinuity) of grey value with variable height h. The second image contains470

a crease (gradient discontinuity) between a flat area and a uniform slope with
variable angle θ.

Let us discuss the results obtained on the test image with a jump (Figure
12a), firstly by varying parameter ε, then by varying h. In the first experiment
all the functional and discretization parameters, except ε, are fixed to δ = 30,475

α = 2, β = 1, µ = 1, tx = ty = 1, the step height is h = 90. A sufficiently wide
range of behaviors of the discontinuity functions can be depicted by minimizing
the functional Fε for values of ε ranging from 10−5 to 5. In Figures 13a and
13b the plots of slices of the minimizing functions s and z in correspondence
of the jump, are given. As we can see, the width of the tubular neighborhoods480

of the discontinuity sets increases with ε. For ε = 10−5 the grid is too coarse
for detecting the transition phase of both s and z, which are uniformly 1. The
optimal choice of the Γ-convergence parameter is ε = 10−2, as it corresponds to
a detection of the jump which is 1 grid-point wide in the case of s, and two grid-
point wide in case of z (detection is optimal in view of the differential discrete485

operators described in Section 2.1). For greater values of ε the detection of the
jump is increasingly over-estimated. In particular, notice the difference in the
rate at which s and z become flat in the neighbors of the jump.
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(a) (b)

Figure 12: Test images. (a) Image with jump of variable height h. (b) Image with a crease
of variable slope θ. The slices of functions s, z plotted in Figures 13 and 14 are located in
correspondence of the red dashed lines.

In the second experiment, the same parameters as before are used and ε is fixed
at the optimal value ε = 0.01. Slices of discontinuity functions are plotted490

in Figures 13c and 13d for values of h ranging from 1 to 90. In the case of
h = 90 the gradient ∇g is very high, therefore functions s and z are forced
to inhibit the costly gradient contribution to the energy by taking the 0 value
in correspondence of the jump. By decreasing h, the discontinuity functions
become less sensitive to the jump and their values approach 1 gradually. In the495

limit case, h = 1, the step is not detected at all. Since here we are studying
the behavior of minimizers as ∇g changes, we have to remark that a similar
behavior is observed if h is fixed and the discretization parameters tx and ty
are changed; this corresponds to a re-scaling of the image that only changes
derivatives.500

Now, we present the results obtained on the test image with a gradient
discontinuity (Figure 12b), again by varying parameter ε, and then by varying
the inclination angle θ. Functional parameters are the same as in the previous
tests, expert that δ = 300 (crease detection is enforced).
In the first experiment the range of values of ε is the same as in the previous505

one, and tan(θ) = 1 is fixed. In Figures 14a and 14b the plots of slices of the
minimizing functions s and z in correspondence of the crease, are given. For
ε > 10−2 the ramp is over-segmented by s and z. In particular, the larger is ε,
the softer is the transition of z from 1 to 0. The value ε = 10−2 is again optimal
as s is uniformly 1 (no over-segmentation) and the crease is correctly detected510

with sharp variation of z from 1 to 0. Again, for smaller values of ε the tubular
neighborhood of the discontinuity of the gradient is too thin for being resolved
by the grid.
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Figure 13: Slices of functions s and z obtained by minimizing Fε in the case of test image
with a jump (Figure 12a) for different values of ε (a,b) and h (c,d).

s z

ε
(a) (b)

θ
(c) (d)

Figure 14: Slices of functions s and z obtained by minimizing Fε in the case of test image
with a gradient discontinuity (Figure 12b) for different values of ε (a,b) and tan(θ) (c,d).

In the second experiment we tested the sensitivity of the discontinuity functions
with respect to the slope of the ramp. Parameters are the same as in the previous515

experiment. Results are are plotted in Figures 14c and 14d for values of tan(θ)
ranging from 0.2 to 5. The steepest is the ramp, the better is the detection of
the gradient discontinuity given by z. Notice that for tan(θ) = 5, the function s
tends to over-segment the ramp. This fact can be explained by noticing that for
such θ, the difference of grey value from one pixel to an adjacent one in the ramp520
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is in the order of a detectable jump. Since tx = 1, the jump in this case is 5.
Compare the value of function s with the value of s in Figure 13c corresponding
to a jump of height 6: they are both close to 0.8. As a last remark we point out
that, as in the previous example, a change in the step widths tx, ty has the only
obvious effect of re-scaling the derivatives in the image, thus the behavior of s525

and z is similar to the one presented here with variable θ.
These tests described the relationship between the geometry of the disconti-

nuity functions returned by the minimization of Fε, the geometry of the image g
and the Γ-convergence parameter ε. By increasing the parameter ε the width of
the tubular neighborhood of the discontinuity sets increases, until reaching a full530

over-segmentation of the image. Conversely, for small values of ε, the tubular
neighborhood is narrower and narrower, until it is not resolved by the grid. A
correct value of the Γ-convergence parameter should be chosen accordingly. The
parameters that affect gradient and Hessian are the height of the jumps, crease
angles, and also the grid steps tx, ty. By varying such quantities the width of535

the tubular neighborhoods does not change. However, functions s and z are
sensitive to their variations and they approach 0 and 1 at different rates. We
conclude that the width of the tubular neighborhood of the discontinuity sets
depends only on ε, whereas other geometrical properties of the image affect the
rate at witch these functions approach 0 and 1.540

4. Conclusions and future work

In this work we proposed an efficient block-coordinate descent method for the
numerical minimization of a variational approximation of the Blake-Zisserman
functional given by Ambrosio, Faina and March. The Blake-Zisserman varia-
tional model for segmentation is a second-order model based on free discontinu-545

ities and free gradient discontinuities that is able to both detect first and second
order edge-boundaries in images and produce a piecewise linear approximation
of the input image. Therefore, the model presents several advantages if com-
pared with other methods for segmentation. The proposed algorithm exploits
the structure of the minimization problem, allowing the segmentation of large550

images, with a satisfying performance in terms of accuracy and computational
time. In particular, it outperforms a standard Gauss-Seidel of 75%. More-
over, the use of a block-diagonal preconditioner always increases performance of
about 14%. Numerical experiments presented in the paper involve very different
types of datasets. We consider also the segmentation of Digital Surface Models555

(DSMs), showing that the application of the Blake-Zisserman functional allows
to reconstruct, and locate the boundary, of planar objects. In the experimental
part we also focused the attention on the geometrical parameter of the func-
tional related to noise reduction and the behaviour of the discontinuity functions
with respect to the Γ-convergence parameter ε and geometrical properties of the560

input image.
Preliminary tests showed that the proposed method can be combined with a
domain decomposition technique, enabling the segmentation of huge images by
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a tiling strategy. Future work will concern the deepening of this attractive fea-
ture in the framework of the multiprocessing computing with the aim to design565

a code for modern parallel architectures.
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