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Abstract The classical Saint–Venant’s problem in cylinders is considered un-
der various boundary conditions and some estimates are proven. In particular,
if the cylinder is force free on the mantle and is subject to assigned displace-
ments on the bases, satisfying exact compatibility conditions, then a unique
elementary Saint–Venant’s solution can be selected in such a way that it differs
from the rigorous solution to the mixed problem only away from the bases.
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1 Introduction

In the middle of nineteenth century, Adhémar Jean Claude Barré, count of
Saint–Venant, proposed an ingenious and elegant theory, monumentum aere

V. Coscia
Department of Mathematics and Computer Science
University of Ferrara
Via Machiavelli 35, 44121 Ferrara, Italy
Tel.: +39 0532 974036
Fax: +39 0532 974003
E-mail: vincenzo.coscia@unife.it

A. Russo
Research Center “Mathematics for Technology, Medicine & Biosciences”
University of Ferrara
Scientific-Technological Campus, Building B
Via Saragat 1, 44122 Ferrara, Italy
Tel.: +39 0532 974793
E-mail: antonio.russo@unife.it



2 Vincenzo Coscia, Antonio Russo

perennius [1], to approximate the solution to the traction problem of elasto-
statics1

µ∆u+ (λ+ µ)∇divu = 0 in Ω,

s(u) = 2µ(∇̂u)n+ λ(divu)n = 0 on M,

s(u) = σ on C−h ∪ Ch,
(1)

in the cylinder

Ω =
{
x = (x′, x3) ∈ R3 : x′ = (x1, x2) ∈ C, |x3| < h

}
, (2)

where λ, µ are the Lamé moduli assumed to satisfy µ > 0, 3λ+ 2µ > 0 and σ
is an assigned field on ∂Ω, vanishing on M = ∂Ω \ (C−h ∪ Ch) and such that∫

∂Ω

σ = 0,

∫
∂Ω

x× σ = 0. (3)

Saint-Venant supposed that, due to the physical nature of the problem, a
solution to (1)1,2 should satisfy in Ω

s(u)ei = 0, i = 1, 2. (4)

He was able to find a simple analytic expression of all the solutions S to
(1)1,2, (4) (elementary Saint–Venant’s solutions, see also [16]), depending on
six arbitrary scalars, he used to select the unique field in u′ ∈ S having the
same net force and moment on Ch as the assigned field σ,∫

Ch
s(u′) =

∫
Ch
σ,∫

Ch
x× s(u′) =

∫
Ch
x× σ.

(5)

Of course, u′ corresponds to a particular distribution of tractions on the bases.
To overcome this difficulty, on the basis on his great physical intuition, Saint-
Venant supposed that if u and u′ are solutions to (1)1,2, then∫

Ch
s(u− u′) = 0∫

Ch
x× s(u− u′) = 0

 ⇒ ∇̂u ' ∇̂u′ away from the bases. (6)

1 For the main notation we follow the classical monograph [8]. In particular, italic light–
face letters, small upper–case letters and capital upper–case letters indicate scalars, vectors
in R3 and second–order tensors (linear maps from R3 into itself), respectively; Lin is the
linear space of second order tensors and Sym, Skw are the sets of its symmetric and skew
elements, respectively. If u is a regular vector field, then ∇u is the second order tensor with
components (∇u)ij = ∂jui in a orthonormal base {ei}i=1,2,3; divu = tr∇u, ∆u = div∇u,

∇u> is the transpose of ∇u and ∇̂u = 1
2

(∇u+∇u>), ∇̃u = 1
2

(∇u−∇u>). The cylinder
(1) has length 2h and axis e3, passing through the centroids of the sections Cx3 ≡ C of the
cylinder at (0, x3).
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Hence, if (6) holds true (since then called Saint–Venant’s principle), then
the solution to the traction problem and the corresponding elementary Saint–
Venant’s solution agree away from the bases. Saint–Venant’s principle was
proven in 1965 by R. Toupin [19] for the semi–infinite cylinder and general
elastic bodies. Some years later, G. Fichera [5] observed that Toupin’s argu-
ment can be easily modify to cover the case of a finite cylinder. The Toupin
and Fichera theorems can be stated as follows [8], [12]2.

Theorem 1 (Toupin) Let Ω̃ = {x ∈ R3 : x ∈ C, x3 > 0} and let u be a
solution to

µ∆u+ (λ+ µ)∇divu = 0 in Ω̃,

s(u) = 2µ(∇̂u)n+ λ(divu)n = 0 on M̃,

s(u) = σ on C0
(7)

with ∇̂u ∈ L2(Ω̃), M̃ = ∂Ω̃ \ C0, and∫
C0
σ =

∫
C0
x× σ = 0. (8)

Then, u satisfies the decay estimate∫
Ω̃R
|∇̂u|2 ≤ e−

(R−δ)
γ(δ)

∫
Ω̃

|∇̂u|2, (9)

where Ω̃R = {x ∈ Ω̃ : x3 > R},

γ(δ) =

√
µ2
M

µmω(δ)
, (10)

µM , µm maximum and minimum elastic moduli, and ω(δ) the lowest (non–
zero) characteristic value for the free vibrations of the cylinder Tδ = {x : x′ ∈
C, |x3| < δ}, with δ assigned small positive constant.

Theorem 2 (Fichera)3 If u is a solution to (1), with ∇̂u ∈ L2(Ω) and∫
Ch
σ =

∫
Ch
x× σ = 0, (11)

2 W 1,2(Ω) is the ordinary Sobolev space [4], W 1/2,2(∂Ω) is its trace space and
W−1/2,2(∂Ω) is the dual space of W 1/2,2(∂Ω), W−1/2,2(∂Ω) = [W 1/2,2(∂Ω)]∗. If Σ is
a subsurface of ∂Ω, W 1/2,2(Σ) = {ϕ|Σ , ϕ ∈ W 1/2,2(∂Ω)} and W−1/2,2(Σ) = {ϕ ∈
W 1/2,2(∂Ω) : suppϕ ⊂ Σ}∗. To keep notation to the minimum, if ψ ∈ W−1/2,2(∂Ω)
and ϕ ∈W 1/2,2(∂Ω), we use the integral

∫
∂Ω ψϕ to denote the value of the functional ψ at

ϕ. It will be clear from the context when the integral keeps its usual meaning.
3 More recently, Theorem 2 has been extended to cover the case of concentrated forces

s(u) ∈W−1,q(∂Ω) for some q < 2 [17]. In such a case, (12) writes∫
ΩR

|∇̂u|2 ≤ c ec0(R−h)‖s(u)‖2
W−1,q(∂Ω)

.
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then u satisfy ∫
ΩR

|∇̂u|2 ≤ c0 e−
(R−δ)
γ(δ)

∫
Ω

|∇̂u|2, (12)

where ΩR = {x ∈ Ω : |x3| < R}, γ is defined by (10) and c0 is positive constant
depending only on the elastic moduli and Tδ.

The determination of the best constant appearing in (9), (12) is a relevant
issue of the Saint–Venant’s principle. For this question and other ones related
to Saint–Venant’s theory we quote [6], [7], [9], [11], [12], [13], [15], [17].

In this paper, we shall deal with Saint–Venant’s problem under general
boundary conditions, looking for assumptions on data assuring that the corre-
sponding solution satisfies estimates of the type (12). In particular, denoting
by R the linear space of infinitesimal rigid displacements, for the mixed prob-
lem

µ∆u+ (λ+ µ)∇divu = 0 in Ω,

s(u) = 0 on M,

u = σ on C−h ∪ Ch,
(13)

which is of some interest in the applications, we prove

Theorem 3 Let σ be the trace of a field in W 1,2(Ω). The solution u ∈
W 1,2(Ω) to (13) satisfies the decay estimate∫

ΩR

|∇̂u|2 ≤ c ec0(R−h)‖σ‖2W 1/2,2(∂Ω), (14)

for R� h, where c and c0 are positive constants independent of R, if and only
if ∫

C−h∪Ch
σ · s(v) = 0, (15)

for every solution v to the equations

µ∆v + (λ+ µ)∇divu = 0 in Ω,

s(v) = 0 on M,

u = 0 on C−h,
u = % on Ch,

(16)

with % arbitrary field of R.

2 The boundary value problems of elastostatics for cylinders

We assume that the cylinder (2) enjoys the properties assuring application of
the divergence theorem and coincides with the stress free reference configu-
ration of a linearly elastic body B with a symmetric elasticity tensor C, i.e.,
a map from Ω × Lin into Lin, linear on Lin, such that C[W ] = 0, for every
W ∈ Skw,

|E|2 ≤ E · C[E] = EijCijhkEhk ≤ µ0|E|2, ∀E ∈ Sym,
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for some positive scalar µ0, and

E · C[F ] = F · C[E], ∀E,F ∈ Lin. (17)

If B is homogeneous, then C is independent of x; moreover, if B is isotropic,
then

C[E] = 2µ symE + (trE)1, (18)

where λ and µ are the Lamé moduli, satisfying µ > 0, 3λ+ 2µ > 0.
If u(x) is a displacement yielding the body from Ω to a new equilibrium

configuration, then u is a solution to the equations

divC[∇u] = 0 [∂j(Cijhk∂kuh) = 0] in Ω. (19)

If the body is homogeneous and isotropic, then the equations (19) takes the
form (1)1.

A weak solution to (19) is a field u ∈W 1,q(Ω), q ∈ (1,+∞), wich satisfies∫
Ω

∇ϕ · C[∇u] = 0, ∀ϕ ∈ C∞0 (Ω). (20)

For q = 2 the solution is said to be variational . To a variational solution
u a traction s(u) = C[∇u]n ∈ W−1/2,2(∂Ω) on the boundary is associated
[4], where n is the unit outward (with respect to Ω) normal to ∂Ω. If B is
isotropic, then s(u) = 2µ(∇̂u)n+ λ(divu)n.

Let u and ũ be two variational solutions to (19). The following relations
are classical∫

Ω

∇u · C[∇u] =

∫
∂Ω

u · s(u) work and energy theorem,∫
∂Ω

ũ · s(u) =

∫
∂Ω

u · s(ũ) Betti’s reciprocity relation.

(21)

To uniquely determine a solution to (19) we have to require some boundary
conditions. We shall be concerned with the following general boundary–value
problem

divC[∇u] = 0 in Ω,

α1un + α2s(u)n = 0 on M,

α3ut + α4s(u)t = 0 on M,

β1un + β2s(u)n = σn on C−h ∪ Ch,
β3ut + β4s(u)t = σt on C−h ∪ Ch,

(22)

where αi, βi are assigned scalars such that the products α1α2, α3α4, β1β2,
β3β4 are nonnegative, σ is an assigned field on the bases and

σn = (σ · n)n, σt = σ − σn.

In particular, by suitably choosing the scalars αi, βi, from (22) we have the
classical problems
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(ı) α1 = α3 = β1 = β3 = 0, α2 = α4 = β2 = β4 = 1 traction problem
(ıı) α1 = α3 = β1 = β3 > 0, α2 = α4 = β2 = β4 > 0 Robin problem
(ııı) α2 = α3 = β2 = β3 = 0, α1 = α4 = β1 = β4 = 1 first contact problem
(ıv) α1 = α4 = β1 = β4 = 0, α2 = α3 = β2 = β3 = 1 second contact problem
(v) α1 = α3 = β2 = β4 = 0, α2 = α4 = β1 = β3 = 1 mixed problem

Let us recall that in (ı) we must require conditions (3).
To deal with (22) we need Korn’s inequality (see [4], [10], [13], [14]) that

we state in the form we shall use.

Lemma 1 Let T be the cylinder of section C and length δ, and let p be a
semi–norm on W 1,2(T ) which vanishes on R. There is a positive constant cκ,
depending only on C, δ and p, such that∫

T
|∇u|2 ≤ cκ

{∫
T
|∇̂u|2 + p(u)

}
. (23)

Choosing p(u) =
∫
M |ut|

2, (23) writes∫
T
|∇u|2 ≤ cκ

{∫
T
|∇̂u|2 +

∫
M
|ut|2

}
. (24)

If C is not a disk, then∫
T
|∇u|2 ≤ cκ

{∫
T
|∇̂u|2 +

∫
M
|un|2

}
. (25)

If C is a disk, then∫
T

∣∣∣∣∇u− 1

|T |

∫
T

(∇̃u)e3

∣∣∣∣2 ≤ cκ{∫
T
|∇̂u|2 +

∫
M
|un|2

}
. (26)

Under natural conditions (for instance, σ ∈ W−1/2,2(∂Ω) in (ı) and σ ∈
W 1/2,2(C−h ∪ Ch), σ ∈ W−1/2,2(M) in (v)) by coupling standard techniques
of functional analysis together with Korn’s inequality (23), one shows that a
unique variational solution to (22) exists (up to an additive field of R in (ı)
and and additive field αe3 × x, α ∈ R in (ııı), if C is a disk). Moreover, one
shows that if C, C and σ are more regular, then so the weak solutions do. In
particular, if C, C and σ are of class C∞, then u is of class C∞ in Ω except
on ∂C−h and ∂Ch.

3 Decay estimates for system (22)

Estimates of Saint–Venant’s type could be of interest also in the boundary–
value problems expressed by (22) different from (ı). Let us show that for the
weak solutions to the equations

divC[∇u] = 0 in Ω,

α1un + α2s(u)n = 0 on M,

α3ut + α4s(u)t = 0 on M,

(27)
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with C not a disk, a Saint–Venant’s estimate holds without any compatibility
condition on the data on the bases, under suitable assumptions on the scalars
αi.

Theorem 4 Let C be not a disk, let at least one of the scalars α1, α3 be
nonzero and let u be a weak solution to (27). There is a constant c0 depending
only on µ0, αi and the Korn constant of a small cylinder of length δ such that
for R < h− δ ∫

ΩR

|∇̂u|2 ≤ c ec0(R−h)
∫
Ω

|∇̂u|2. (28)

Proof - We give the details of the proof for the problem corresponding to
the choice α1α2 > 0, α3α4 ≥ 0 and one of α3, α4 different from zero. The
proof in the other cases is analogous. Let g(x3) be the function vanishing for
|x3| ≥ L−R, equal to 1 for |x3| ≤ L−R − δ and equal to δ−1(L−R − |x3|)
for L−R− δ < |x3| < L−R. Setting T +

δ = {x ∈ Ω : L−R− δ < x3 < L−R}
and T −δ = {x ∈ Ω : −L + R + δ < x3 < −L + R}, a standard computation
yields

G(R) =

∫
Ω

g|∇̂u|2 +α

∫
M
|un|2 ≤

1

δ

{∫
T +
δ

u · C[∇u]e3 +

∫
T −
δ

u · C[∇u]e3

}
.

where α = α1/α2. Hence, since by Cauchy’s, Poincaré’s and Korn’s inequalities
and the basic calculus∫

T±
R,δ

u · C[∇u]e3 ≤
1

2

∫
T±
R,δ

(|u|2 + µ2
0|∇̂u|2)

≤ 1

c0

{∫
T±
R,δ

|∇̂u|2 + α

∫
M∩∂T±

R,δ

|un|2
}

=
δ

c0
G′(R)

we have
c0G(R) ≤ −G′(R). (29)

and (33) follows by a simple integration. �

If C is a disk we consider the equations

divC[∇u] = 0 in Ω,

un = 0 on M,

s(u)t = 0 on M,

un = σn on C−h ∪ Ch,
s(u)t = σt on C−h ∪ Ch.

(30)

Since for % = x× e3∫
C−h

% · s(u) =

∫
Cx3
% · s(u) = e3 ·

∫
C−h

x× σt, x3 ∈ [−h, 0]∫
Ch
% · s(u) =

∫
Cx3
% · s(u) = e3 ·

∫
Ch
x× σt, x3 ∈ [0, h]
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and ∫
T−
δ

%− · C[∇u]e3 =

∫
C−L+R+δ

%− · s(u),∫
T+
δ

%+ · C[∇u]e3 =

∫
CL−R−δ

%+ · s(u),

we have ∫
C−h

x× σt =

∫
Ch
x× σt = 0 ⇒

∫
T±
δ

%± · C[∇u]e3 = 0, (31)

with %± = α±x× e3, for all scalars α+ and α−.

Theorem 5 Let C be disk and let σn ∈W 1/2,2(∂Ω), σt ∈W−1/2,2(∂Ω). If∫
C−h

x× σt =

∫
Ch
x× σt = 0, (32)

then the solution to (30), unique modulo an additive infinitesimal rotation
around the axis e3, satisfies∫

ΩR

|∇̂u|2 ≤ c ec0(R−h)
{
‖σn‖W 1/2,2(∂Ω) + ‖σt‖W−1/2,2(∂Ω)

}
. (33)

where c0 is a positive constant independent of R.

Proof - By (26), (31), Schwarz’s inequality and by a suitably choosing of %±,
we have∣∣∣∣∣

∫
T±
R,δ

u · C[∇u]e3

∣∣∣∣∣ =

∣∣∣∣∣
∫
T±
R,δ

(u− %∓) · C[∇u]e3

∣∣∣∣∣ ≤ µ0
√
cκ

∫
T±
δ

|∇̂u|2.

Therefore, we easily arrive at (29) (with α = 0) and so to the desired result.
�

If C is a polygon and C is constant and isotropic, in (30) we can require C
to be only strongly elliptic, i.e., µ(λ+ 2µ) > 0 [18].

4 Saint–Venant’s problem with mixed boundary conditions

It is clear that among problems (22) the closest to the historical Saint–Venant’s
one and to the applications in engineering are those in which the mantle of
the cylinder is force free

divC[∇u] = 0 in Ω,

s(u) = 0 on M,

β1un + β2s(u)n = σn on C−h ∪ Ch,
β3ut + β4s(u)t = σt on C−h ∪ Ch.

(34)
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where, for simplicity, we assume4 β1 = β3 = 1. Of course, conditions on σ
assuring ∫

Ch
s(u) = 0,

∫
Ch
x× s(u) = 0, (35)

imply (12).
Let v% be the solution to

divC[∇v] = 0 in Ω,

s(v) = 0 on M,

β1vn + β2s(v)n = 0 on C−h,
β3vt + β4s(v)t = 0 on C−h
β1vn + β2s(v)n = %n on Ch,
β3vt + β4s(v)t = %t on Ch,

(36)

with % ∈ R. From Betti’s theorem∫
C−h∪Ch

u · s(v) =

∫
C−h∪Ch

v · s(u) =

∫
C−h∪Ch

[un · s(v)n + ut · s(v)t]

=

∫
C−h∪Ch

[(σn − β2s(u)n) · s(v)n + (σt − β4s(u)t) · s(v)t]

= −
∫
C−h

[β2s(v)n · s(u)n + β4s(v)t · s(u)t]

+

∫
Ch

[(%n − β2s(v)n) · s(u)n + (%t − β4s(v)t) · s(u)t] .

(37)

Hence, it follows ∫
C−h∪Ch

σ · s(v) =

∫
Ch
% · s(u). (38)

Therefore, we have

Theorem 6 Let u be the variational solution to (34). It holds∫
C−h∪Ch

σ · s(v%) = 0, ∀% ∈ R =⇒ u satisfies (12), (39)

where v% is the solution to (36).

Clearly, (39) is only qualitative, unless we are able to specify analytically
the solutions to (36). To get this information, let us consider the mixed problem

divC[∇u] = 0 in Ω,

s(u) = 0 on M,

u = σ on C−h ∪ Ch,
(40)

which, as is clear enough, is of interest in applications.

4 Clearly, for β1 = β3 = 0 we recover the classical Saint–Venant problem.
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If

∂jCij3k = 0, (41)

then the fields

vi = κ(x3 + h)ei, i = 1, 2, 3, (42)

with κ suitable constant, are the solutions to (36) corresponding to translations
and (38) yields

[
(41) and

∫
C−h

σ =

∫
Ch
σ

]
=⇒

∫
Ch
s(u) = 0.

If C is constant and isotropic, then

v4 = (x3 + h)
(

0,
κ

2
(x3 + h),−x2

)
,

v5 = (x3 + h)
(
− κ

2
(x3 + h), 0, x1

)
,

v6 = (x3 + h)(x2,−x1, 0)

(43)

and (37) implies

Theorem 7 Let C be constant and isotropic and let σ ∈W 1/2,2(∂Ω). If

∫
C−h∪Ch

σ · s(vi) = 0, (44)

where the fields vi, i = 1, . . . , 6 are expressed by (42), (43), then the solution
to (40) satisfies the estimate

∫
ΩR

|∇̂u|2 ≤ c ec0(R−h)‖σ‖W 1/2,2(∂Ω), (45)

for some positive constant c0 independent of R.

• Let C and σ satisfy the hypotheses of Theorem 7 and let u′ be the
Saint–Venant elementary solution such that∫

C−h∪Ch
(σ − u′) · s(vi) = 0.

By virtue of (45) if 1� |C|/h, then ∇̂u ' ∇̂u′ away from the bases.
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5 A counter–example

From a physical point of view it is clear that the space of elastic fields with finite
potential energy W 1,2(Ω) is the natural setting for the traction problem of
elastostatics and so for the Saint–Venant one under the hypothesis C ∈ L∞(Ω).
In this section we aim at pointing out that W 1,2(Ω) is natural also from a
mathematical point of view. Indeed, we shall point out that uniqueness is lost
for q < 2. To be precise, we show that, for every q in a left neighborhood of 2,
there is an elasticity tensor C0 such that the problem

divC0[∇u] = 0 in Ω,

α1un + α2s(u)n = 0 on M,

α3ut + α4s(u)t = 0 on M,

β1un + β2s(u)n = 0 on C−h ∪ Ch,
β3ut + β4s(u)t = 0 on C−h ∪ Ch,

(46)

has a non zero solution in W 1,q(Ω).
Let

C0[E] = (L⊗L)E + ξ2symE. (47)

where
E = 1 + 3er ⊗ er.

Observe that C0 is bounded on R3 and is of class C∞ in R3 \ {o}. Since

E · C0(E) = (L ·E)2 + ξ2|E|2 ≥ ξ2|E|2, ∀E ∈ Sym,

C0 satisfies (17) with µ0 = (16 + ξ2)/ξ2. By a simple computation [3] we see
that the system

divC0[∇u] = 0 (48)

admits the solution

ũ = rαer, α = −3

2

(
|ξ|√

16 + ξ2
+ 1

)
. (49)

Clearly, ũ ∈W 1,q(Ω) with limξ→0 q(ξ) = 2
−

. It is simple to see that ũ is a weak
solution to (46)1 [3]. Let u ∈ W 1,2(Ω) be the solution to (22) corresponding
to data σn = β1ũn + β2s(ũ)n, σt = β3ũn + β4s(ũ)n. Hence it follows that
the field ũ− u ∈W 1,q(Ω) is a nonzero solution to (46).
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